PAPER-1 (B.E./B.TECH.) JEE MAIN 2019...JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS 1.The mean and variance...

21
PAPER-1 (B.E./B.TECH.) JEE MAIN 2019 Computer Based Test Solutions of Memory Based Questions Date: 8 th April 2019 (Shift-1) Time: 09:30 A.M. to 12:30 P.M. Durations: 3 Hours | Max. Marks: 360 Subject: Mathematics www.embibe.com

Transcript of PAPER-1 (B.E./B.TECH.) JEE MAIN 2019...JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS 1.The mean and variance...

PAPER-1 (B.E./B.TECH.)

JEE MAIN 2019 Computer Based Test

Solutions of Memory Based Questions

Date: 8th April 2019 (Shift-1)

Time: 09:30 A.M. to 12:30 P.M.

Durations: 3 Hours | Max. Marks: 360

Subject: Mathematics

www.embibe.com

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

1. The mean and variance for seven numbers are 8 and 16 respectively. If the five observation are 2,4,10,12,14

and the product of other two numbers is

(A) 48

(B) 49

(C) 50

(D) 51

Solution: (A)

Let the remaining numbers are π‘₯ and .

Mean οΏ½οΏ½ =βˆ‘π‘₯𝑖

𝑁=

2+4+10+12+14+π‘₯+𝑦

7

=42+π‘₯+𝑦

7= 8 β‡’ π‘₯ + 𝑦 = 14 …(1)

Variance 𝜎2 =βˆ‘π‘₯𝑖

2

π‘βˆ’ (οΏ½οΏ½)2 =

4+16+100+144+196+π‘₯2+𝑦2

7βˆ’ 64

=460 + π‘₯2 + 𝑦2

7βˆ’ 64 = 16

β‡’ π‘₯2 + 𝑦2 = 100 ….(2)

From (1) and (2), we get

π‘₯ = 6, y = 8 and π‘₯𝑦 = 48

2. Evaluate ∫sin

5π‘₯

2

sinπ‘₯

2

𝑑π‘₯

(A) π‘₯ + 𝑠𝑖𝑛2π‘₯ + 𝐢

(B) 2π‘₯ + 𝑠𝑖𝑛π‘₯ + 2π‘₯ + 𝐢

(C) π‘₯ + 2 𝑠𝑖𝑛π‘₯ + 𝑠𝑖𝑛2π‘₯ + 𝐢

(D) 𝑋 + 2 𝑠𝑖𝑛π‘₯ + 2𝑠𝑖𝑛π‘₯ + 𝐢

Solution: (C)

I = ∫sin

5π‘₯

2

sinπ‘₯

2

𝑑π‘₯ = ∫sin(2π‘₯ +

π‘₯

2)

sinπ‘₯

2

𝑑π‘₯

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

= ∫sin2π‘₯. cos

π‘₯2

+ cos2π‘₯. sinπ‘₯2

sinπ‘₯2

𝑑π‘₯

= ∫ (2sinπ‘₯cosπ‘₯. cos

π‘₯2

sinπ‘₯2

+ cos2π‘₯) 𝑑π‘₯

= ∫ (4cos2π‘₯

2cosπ‘₯ + cos2π‘₯)𝑑π‘₯

= ∫ (2(1 + cosπ‘₯)cosπ‘₯ + cos2π‘₯)𝑑π‘₯

= ∫ (2cosπ‘₯ + 2cos2π‘₯ + 1)𝑑π‘₯

= 2sinπ‘₯ + sin2π‘₯ + π‘₯ + 𝐢

3. Given triangle 𝑂𝐴𝑃 where O(0, 0) and 𝐴(0,1). Then the locus of the third vertex 𝑃 if the perimeter of the

triangle is 4, is

(A) π‘₯2

8+

(π‘¦βˆ’1)2

9=

1

4

(B) π‘₯2

9+

(π‘¦βˆ’1/2)2

8=

1

4

(C) π‘₯2

8+

(π‘¦βˆ’1/2)2

9= 1

(D) π‘₯2

8+

(π‘¦βˆ’1/2)2

9=

1

4

Solution: (D)

OA + PO + PA = 4 β‡’ PO + PA = 3 β‡’ Locus of P is ellipse with foci at O & A and major axis (2b) = 3

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

Distance between foci = 2𝑏𝑒 = 1 β‡’ e =1

2

β‡’ minor axis 2a = 2b√1 βˆ’ 𝑒2 = 3.2√2

3= 2√2

β‡’ Equation of Locus of 𝑃 is:

π‘₯2

8+

(𝑦 βˆ’12

)2

9=

1

4

4. If the quadratic π‘₯2 βˆ’ 2π‘₯ + 21 = 0 has two distinct roots 𝛼 and 𝛽 such that (𝛼

𝛽)

𝑛

= 1 then the minimum

value of 𝑛 𝑁 is

(A) 2

(B) 3

(C) 4

(D) 6

Solution: (C)

π‘₯2 βˆ’ 2π‘₯ + 2 = 0 β‡’ (π‘₯ βˆ’ 1)2 + 1 = 0

β‡’ The roots 𝛼, 𝛽 = 1 Β± 𝑖

(𝛼

𝛽)

𝑛

= (1 + 𝑖

1 βˆ’ 𝑖)

𝑛

= (𝑖(1 βˆ’ 𝑖)

1 βˆ’ 𝑖)

𝑛

= (𝑖)𝑛

β‡’ The minimum value of 𝑛 𝑁 = 4

Since (𝑖)4 = 1

5. If the solution of the equation (π‘₯2 + 1)2 𝑑𝑦

𝑑π‘₯+ 2π‘₯(π‘₯2 + 1)𝑦 = 1 satisfies 𝑦(0) = 0 and βˆšπ‘Ž 𝑦(1) =

πœ‹

32 then

the value of π‘Ž is

(A) 1

16

(B) 1

4

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

(C) 2

(D) √2

Solution: (A)

(π‘₯2 + 1)2 𝑑𝑦

𝑑π‘₯+ 2π‘₯(π‘₯2 + 1)𝑦 = 1

⇒𝑑𝑦

𝑑π‘₯+

2π‘₯

π‘₯2 + 1𝑦 =

1

(π‘₯2 + 1)2

Which is a linear differential equation with integrating factor

𝐼. 𝐹. = π‘’βˆ«

2π‘₯

π‘₯2+1𝑑π‘₯

= 𝑒ln(π‘₯2+1) = π‘₯2 + 1

β‡’ The solution of the given differential equation will be

𝑦. (π‘₯2 + 1) = ∫ (π‘₯2 + 1).1

(π‘₯2 + 1)2𝑑π‘₯ = ∫

𝑑π‘₯

π‘₯2 + 1= tanβˆ’1π‘₯ + c

Now 𝑦(0) = 0 β‡’ C = 0 and 𝑦 =1

(π‘₯2+1)tanβˆ’1π‘₯

βˆšπ‘Žπ‘¦(1) =πœ‹

32β‡’ βˆšπ‘Ž =

πœ‹/32

πœ‹/8=

1

4

β‡’ π‘Ž =1

16

6. Find the projection of the vector 3οΏ½οΏ½ + 2𝑗 + οΏ½οΏ½ to the vector which is perpendicular to both οΏ½οΏ½ + 𝑗 + οΏ½οΏ½ and οΏ½οΏ½ +

2𝑗 + 3οΏ½οΏ½

(A) 1

√6

(B) 2

√6

(C) 0

(D) 1

√3

Solution: (C)

A vector perpendicular to οΏ½οΏ½ + 𝑗 + οΏ½οΏ½ a and οΏ½οΏ½ + 2𝑗 + 3οΏ½οΏ½ is

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

|i j k1 1 11 2 3

| = οΏ½οΏ½ βˆ’ 2𝑗 + οΏ½οΏ½

β‡’ The projection of the given vector 3οΏ½οΏ½ + 2𝑗 + οΏ½οΏ½ on the above vector is

(3οΏ½οΏ½ + 2𝑗 + οΏ½οΏ½). (οΏ½οΏ½ βˆ’ 2𝑗 + οΏ½οΏ½)

|οΏ½οΏ½ βˆ’ 2𝑗 + οΏ½οΏ½|

=3 βˆ’ 4 + 1

√6= 0

7. The shortest distance between the curve 𝑦2 = π‘₯– 2 and the line 𝑦 = π‘₯ is

(A) 3

2√2

(B) 7

4√2

(C) 5

4√2

(D) 11

4√2

Solution: (B)

𝑦2 = π‘₯– 2

Differentiating w.r.t. π‘₯ we get

2𝑦𝑦′ = 1 β‡’ yβ€² =  1

2𝑦

For the shortest distance, the tangent at point 𝑃 will be parallel to the given line

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

β‡’ 𝑦′|𝑝 =1

2𝑦1= 1 β‡’ 𝑦1 =

1

2

β‡’ π‘₯1 = 2 + (1

2)

2

=9

4 (∡ 𝑦1

2 = π‘₯1 βˆ’ 2)

The shortest distance between the given curve & the line

= The perpendicular distance of point 𝑃 from the line

= |

94

βˆ’12

√12 + 12| = |

74

√2| =

7

4√2

8. Given 𝑓(π‘₯): [0, 2]𝑅 and 𝑓′′(π‘₯) > 0 π‘₯ [0,2], if another function πœ™(π‘₯) = 𝑓(π‘₯) + 𝑓(2– π‘₯) π‘₯ (0,2),

then

(A) πœ™(π‘₯) is decreasing in (0,1) and increasing in (1,2)

(B) πœ™(π‘₯) is increasing in (0,1) and decreasing in (1,2)

(C) πœ™(π‘₯) is decreasing in (0,2)

(D) πœ™(π‘₯) is increasing in (0,2)

Solution: (A)

𝑓(π‘₯): [0,2]𝑅 and 𝑓′′(π‘₯) > 0 for π‘₯ [0,2]

β‡’ f β€²(π‘₯) is increasing π‘₯ [0,2]

Now, πœ™ (π‘₯) = 𝑓(π‘₯) + 𝑓(2 βˆ’ π‘₯)

β‡’ πœ™β€²(π‘₯) = 𝑓′(π‘₯) βˆ’ 𝑓′(2 βˆ’ π‘₯)

For π‘₯ [0,1), x < 2 – x β‡’ 𝑓′(π‘₯) < 𝑓′(2 βˆ’ π‘₯) β‡’ πœ™β€²(π‘₯) < 0

Forπ‘₯ (1, 2], x > 2 – x β‡’ 𝑓′(π‘₯) < 𝑓′(2 βˆ’ π‘₯) β‡’ πœ™β€²(π‘₯) > 0

So πœ™(π‘₯) is decreasing in (0, 1) and increasing in (1, 2).

9. If 𝑓(π‘₯) =2βˆ’π‘₯ cosπ‘₯

2+π‘₯ cosπ‘₯ and 𝑔(π‘₯) = loge π‘₯ then ∫ 𝑔(𝑓(π‘₯))𝑑π‘₯ =

πœ‹/4

βˆ’πœ‹/4

(A) loge 2

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

(B) loge 1

(C)loge 3

(D) loge 4

Solution: (B)

𝑓(π‘₯) =2βˆ’π‘₯ cosπ‘₯

2+π‘₯ cosπ‘₯ , 𝑔(π‘₯) = loge π‘₯

β‡’ 𝑔(𝑓(π‘₯)) = log (2 βˆ’ π‘₯ cosπ‘₯

2 + π‘₯ cosπ‘₯)

β‡’ 𝑔(𝑓(βˆ’π‘₯)) = loge (2βˆ’(βˆ’π‘₯) cos (βˆ’π‘₯)

2+(βˆ’π‘₯) cos (βˆ’π‘₯))= log𝑒 (

2+π‘₯ cosπ‘₯

2βˆ’π‘₯ cosπ‘₯)

=– 𝑔(𝑓(π‘₯))

β‡’ 𝑔(𝑓(π‘₯)) is an odd function

β‡’ ∫ 𝑔(𝑓(π‘₯))𝑑π‘₯ =πœ‹/4

βˆ’πœ‹/4 0 = loge 1 (By using property of definite integration)

10. Using all the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 to form 9 digit numbers in which all the odd digits are placed at the

even positions. Total number of such numbers is –

(A) 150

(B) 170

(C) 160

(D) 180

Solution: (D)

Odd digits:1, 1, 3

Even digits: 2, 2, 2, 2, 4, 4

The number of ways of placing odd digits at even position = 𝐢3 Γ—3!

2!= 4 Γ— 3 = 124

The number of ways of placing even digits =6!

4! 2!= 15

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

∴ Total number of ways = 12 Γ— 15 = 180

11. The area of the region bounded by 𝑦 ≀ π‘₯2 + 3π‘₯, 0 ≀ 𝑦 ≀ 4 and 0 ≀ π‘₯ ≀ 3 is

(A) 8

(B) 59

6

(C) 49

6

(D) 16

Solution: (B)

The area of the region 𝑂𝐷𝐢 is

= ∫[4 βˆ’ (π‘₯2 + 3π‘₯)]𝑑π‘₯ = [4π‘₯ βˆ’π‘₯3

3βˆ’

3π‘₯2

2]

0

11

0

= 4 βˆ’1

3βˆ’

3

2=

13

6

So, the area of t he given region 𝑂𝐴𝐡𝐢 is

= Area of 𝑂𝐴𝐡𝐷 – Area of 𝑂𝐢𝐷

= 3 Γ— 4 βˆ’13

6

=59

6

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

12. If two events 𝐴 and 𝐡 are such that 𝐴 βŠ‚ 𝐡, then which of the following is correct?

(A) 𝑃 (𝐴

𝐡) β‰₯ 𝑃(𝐴)

(B) 𝑃 (𝐴

𝐡) ≀ 𝑃(𝐴)

(C) 𝑃(𝐴) > 𝑃(𝐡)

(D) None of these

Solution: (A)

A

B

𝑃 (𝐴

𝐡) =

𝑃(𝐴 ∩ 𝐡)

𝑃(𝐡)=

𝑃(𝐴)

𝑃(𝐡)      [𝐴 βŠ‚ 𝐡 β‡’ 𝐴 ∩ 𝐡 = 𝐴]

Now, since 𝑃(𝐡) ≀ 1

β‡’ 𝑃 (𝐴

𝐡) =

𝑃(𝐴)

𝑃(𝐡)β‰₯ 𝑃(𝐴)

13. The sum of squares of lengths of intercepts made on the chord π‘₯ + 𝑦 = 𝑛, 𝑛 𝑍 in the circle π‘₯2 + 𝑦2 = 16

is

(A) 420

(B) 384

(C) 484

(D) 648

Solution: (C)

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

The length of perpendicular from centre (0, 0) to the line π‘₯ + 𝑦 = 𝑛 is |0+0βˆ’π‘›

√12+𝐼2| =

𝑛

√2

β‡’ Length of intercept = 2√42 βˆ’ (𝑛

√2)

2

= √64 βˆ’ 2𝑛2

β‡’ Possible values of n are 0, Β±1, Β±2, … . Β±5

β‡’ Sum of square of lengths of intercepts

= βˆ‘ (64 βˆ’ 2𝑛2)

5

𝑛=βˆ’5

= 64 Γ— 11 βˆ’ 2 βˆ‘ 𝑛2

5

𝑛=βˆ’5

= 704 βˆ’ 4 βˆ‘ 𝑛2

5

𝑛=1

= 704 βˆ’ 220 = 484

14. limπ‘₯β†’0

sin2π‘₯

√2βˆ’βˆš1+cosπ‘₯

(A) 4√2

(B) √2

(C) 1

√2

(D) 6√2

Solution: (A)

limπ‘₯β†’0

sin2π‘₯

√2 βˆ’ √1 + cosπ‘₯

On Rationalization:

limπ‘₯β†’0

sin2π‘₯

√2βˆ’βˆš1+cosπ‘₯Γ—

√2+√1+cos

√2+√1+cos

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

= limπ‘₯β†’0

(2sin

π‘₯2

cosπ‘₯2

)2

1 βˆ’ cosπ‘₯Γ— (√2 + √1 + cosπ‘₯)

= limπ‘₯β†’0

4sin2 π‘₯

2cos2 π‘₯

2

2sin2 π‘₯2

Γ— (√2 + √1 + cosπ‘₯)

= limπ‘₯β†’0

2cos2π‘₯

2(√2 + √1 + cosπ‘₯) = 2 Γ— 2√2

= 4√2

15. Area between 𝑦 = π‘₯3 and 𝑦 = |π‘₯|

(A) 1

(B) 1

2

(C) 1

4

(D) 2

Solution: (C)

Intersection points of 𝑦 = π‘₯3 and 𝑦 = |π‘₯| are 0 & 1

∴     𝐴 = ∫(π‘₯ βˆ’ π‘₯3)𝑑π‘₯

1

0

= (π‘₯2

2βˆ’

π‘₯4

4)

0

1

=1

2βˆ’

1

4

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

=1

4

16. If 𝛼 = cosβˆ’1 3

5 and 𝛽 = tanβˆ’1 1

3, then 𝛼 βˆ’ 𝛽 is equal to

(A) cosβˆ’1 (5

13)

(B) tanβˆ’1 (9

13)

(C) cosβˆ’1 (12

13)

(D) tanβˆ’1(3)

Solution: (B)

𝛼 = cosβˆ’13

5= tanβˆ’1

4

3

∴ π‘Ž βˆ’ 𝛽 = tanβˆ’14

3βˆ’ tanβˆ’1

1

3

= tanβˆ’1

43

βˆ’13

1 +43 Γ—

13

= tanβˆ’11

139

= tanβˆ’19

13

17. If sin(𝛼 + 𝛽) =3

5 & 𝑠𝑖𝑛(𝛼 βˆ’ 𝛽) =

5

13 then tan2𝛼 =

(A) 56/33

(B) 57/22

(C) 0

(D) 2

Solution: (A)

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

sin(𝛼 + 𝛽) =3

5β‡’ tan(𝛼 + 𝛽) =

3

4

sin(𝛼 βˆ’ 𝛽) =5

13β‡’ tan(𝛼 + 𝛽) =

5

12

Now, tan2𝛼 = tan((𝛼 + 𝛽) + (𝛼 βˆ’ 𝛽))

=tan(𝛼 + 𝛽) + tan(𝛼 βˆ’ 𝛽)

1 βˆ’ tan(𝛼 + 𝛽)tan(𝛼 βˆ’ 𝛽)

=

34 +

512

1 βˆ’34

Γ—5

12

=56

33

18. 2.20 𝐢0 + 5.20 𝐢1 + 8.20 𝐢1+. . . . . . . +62.20 𝐢20 =

(A) 224

(B) 225

(C) 226

(D) 220

Solution: (B)

Let 𝑆 = 2.20 𝐢0 + 5.20 𝐢1 + 8.20 𝐢2+. . . . . . . +62.20 𝐢20 …(i)

& 𝑆 = 62.20 𝐢0 + 59.20 𝐢1 + 56.20 𝐢2+. . . . . . . +2.20 𝐢20 …(ii) (writing in reverse order & π‘›πΆπ‘Ÿ =𝑛 πΆπ‘›βˆ’π‘Ÿ)

Adding (i) & (ii)

2𝑆 = 64(20𝐢0+20𝐢1+20𝐢2+. . . . . +20𝐢20)

β‡’ S = 32.220 = 225

19. If 𝑓(π‘₯) = 𝑙𝑛 (1βˆ’π‘₯

1+π‘₯) then for |x|< 1, 𝑓 (

2π‘₯

1+π‘₯2)=

(A) 𝑓(π‘₯2)

(B) (𝑓(π‘₯))2

(C) – 2𝑓(π‘₯)

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

(D) 2𝑓(π‘₯)

Solution: (D)

𝑓(π‘₯) = 𝑙𝑛 (1 βˆ’ π‘₯

1 + π‘₯)

β‡’ 𝑓 (22

1 + π‘₯2) = ln (

1 βˆ’22

1 + π‘₯2

1 +2π‘₯

1 + π‘₯2

)

= ln (1 + π‘₯2 βˆ’ 2π‘₯

1 + π‘₯2 + 2π‘₯)

= ln ((1 βˆ’ π‘₯

1 + π‘₯)

2

)

= 2ln |1 βˆ’ π‘₯

1 + π‘₯|

= 2ln (1βˆ’π‘₯

1+π‘₯)      (∡ |π‘₯| < 1)

= 2𝑓(π‘₯)

20. The perpendicular distance of point (2, βˆ’1, 4) from the line π‘₯+3

10=

π‘¦βˆ’2

βˆ’7=

𝑧

1 lies between

(A) (1,2)

(B) (2,3)

(C) (3,4)

(D) (4,5)

Solution: (C)

Let 𝑃(2, βˆ’1,4)

Now any point Q on line π‘₯+3

10=

π‘¦βˆ’2

βˆ’7=

𝑧

1= πœ†; is

𝑄 = (10πœ† βˆ’ 3, βˆ’7πœ† + 2 , πœ†)

DR’s of PQ = (10πœ† βˆ’ 3 βˆ’ 2, βˆ’7πœ† + 2 + 1, πœ† βˆ’ 4)

= (10πœ† βˆ’ 5, 7πœ† + 3, πœ† βˆ’ 4)

∡ 𝑃𝑄 is perpendicular to given line

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

∴ 10(10πœ† + 5) βˆ’ 7(βˆ’7πœ† + 3) + (πœ† βˆ’ 4) = 0

β‡’ 150 πœ† = 75 β‡’ πœ† =1

2

∴ 𝑃𝑄 = √(10πœ† βˆ’ 5)2 + (βˆ’7πœ† + 3)2 + (πœ† βˆ’ 4)2 = √0 +1

4+

49

4= √

50

4

Which lies in (3,4)

21. If |√π‘₯ βˆ’ 2| + √π‘₯(√π‘₯ βˆ’ 4) = 2 then find the sum of roots of equation is

(A) 12

(B) 16

(C) 10

(D) 4

Solution: (B)

Given |√π‘₯ βˆ’ 2| + √π‘₯(√π‘₯ βˆ’ 4) = 2

β‡’ |√π‘₯ βˆ’ 2| + π‘₯ βˆ’ 4√π‘₯ = 2

β‡’ |√π‘₯ βˆ’ 2| + (√π‘₯)2

βˆ’ 4√π‘₯ + 4 = 6 (Adding 4 on both sides)

β‡’ (√π‘₯ βˆ’ 2)2

+ |√π‘₯ βˆ’ 2| = 6

β‡’ 𝑑2 + 𝑑 βˆ’ 6 = 0 (𝑙𝑒𝑑 |√π‘₯ βˆ’ 2| = 𝑑)

β‡’ 𝑑 = 2 (or) π‘‘βˆ’= βˆ’3

β‡’ |√π‘₯ βˆ’ 2| = 2

β‡’ √π‘₯ = 4 or √π‘₯ = 0

β‡’ π‘₯ = 0 or π‘₯ = 16

22. Let 𝑆1 be the set of minima and 𝑆2 is set of maxima for the curve 𝑦 = 9π‘₯4 + 12π‘₯3 βˆ’ 36π‘₯2 βˆ’ 25

(A) 𝑆1 = {βˆ’2, βˆ’3}; 𝑆2 = {0}

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

(B) 𝑆1 = {βˆ’2}; 𝑆2 = {βˆ’1}

(C)𝑆1 = {βˆ’2,1}; 𝑆2 = {0}

(D) None

Solution: (C)

𝑦 = 9π‘₯4 + 12π‘₯3 βˆ’ 36π‘₯2 βˆ’ 25

𝑑𝑦

𝑑π‘₯= 36π‘₯3 + 36π‘₯2 βˆ’ 72π‘₯

= 36π‘₯(π‘₯2 + π‘₯ βˆ’ 2)

= 36π‘₯(π‘₯ + 2)(π‘₯ βˆ’ 1)

Sign convention for 𝑑𝑦

𝑑π‘₯

∴ 𝑆1 = {βˆ’2,1} & 𝑆2 = {0}

23. Let 2𝑦 = (cotβˆ’1 (√3 cos π‘₯βˆ’sin π‘₯

cos π‘₯+√3 sin π‘₯))

2

then 𝑑𝑦

𝑑π‘₯ is equal to

(A) π‘₯ +πœ‹

2

(B) 2π‘₯ βˆ’πœ‹

2

(C) π‘₯ +πœ‹

6

(D) None

Solution: (C)

2𝑦 = (cotβˆ’1(√3 cos π‘₯βˆ’π‘ π‘–π‘›π‘₯

cos π‘₯+√3 sin π‘₯)

2

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

= (cotβˆ’1 (√3 βˆ’ π‘‘π‘Žπ‘›π‘₯

1 + √3 tan π‘₯))

2

= (cotβˆ’1 tan (πœ‹

3βˆ’ π‘₯))

2

= (cotβˆ’1 cot (πœ‹

2βˆ’ (

πœ‹

3βˆ’ π‘₯)) )

2

2𝑦 = (πœ‹

6+ π‘₯)

2

β‡’ 2𝑑𝑦

𝑑π‘₯= 2 (

πœ‹

6+ π‘₯) . 1 β‡’

𝑑𝑦

𝑑π‘₯=

πœ‹

6+ π‘₯

24. Find the value of c for which the following equations have non trival solutions:

𝑐π‘₯ βˆ’ 𝑦 βˆ’ 𝑧 = 0

βˆ’π‘π‘₯ + 𝑦 βˆ’ 𝑐𝑧 = 0

π‘₯ + 𝑦 βˆ’ 𝑐𝑧 = 0L

(A) 1

(B) 0

(C) βˆ’1

(D) 2

Solution: (C)

∡ System of equation has non trival solution

∴ βˆ† = |𝑐 βˆ’1 βˆ’1

βˆ’π‘ 1 βˆ’π‘1 1 βˆ’π‘

| = 0

β‡’ 𝑐(βˆ’π‘ + 𝑐) + 1(𝑐2 + 𝑐) βˆ’ 1(βˆ’π‘ βˆ’ 1) = 0

β‡’ 𝑐2 + 2𝑐 + 1 = 0

β‡’ (𝑐 + 1)2 = 0 β‡’ 𝑐 = βˆ’1

25. The sum of coefficient of even power of π‘₯ in (π‘₯ + √π‘₯3 βˆ’ 1)6

(π‘₯ βˆ’ √π‘₯3 βˆ’ 1)6

(A) 24

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

(B) 29

(C) 18

(D) 20

Solution: (A)

𝑠 = (π‘₯ + √π‘₯3 βˆ’ 1)6

+ (π‘₯ βˆ’ √π‘₯3 βˆ’ 1)6

= 2 ( 6𝐢0 π‘₯6 + 6𝐢2π‘₯2(π‘₯3 βˆ’ 1)+ 6𝐢4 π‘₯4(π‘₯3 βˆ’ 1)2 + 6𝐢6 (π‘₯3 βˆ’ 1)3)

= 2 ( 6𝐢0 π‘₯6 + 6𝐢2 (π‘₯5 βˆ’ π‘₯2)+ 6𝐢4 π‘₯4(π‘₯6 βˆ’ 2π‘₯3 + 1) +6𝐢6 (π‘₯9 βˆ’ 3π‘₯6 + 3π‘₯3 βˆ’ 1))

∴ Sum of coefficient of even power of π‘₯

= 2 ( 6𝐢0βˆ’ 6𝐢2+ 6𝐢4 + 𝐢4 βˆ’ 3βˆ’ 6𝐢6βˆ’ 6𝐢6)

= 2 (1 βˆ’ 15 + 15 + 15 βˆ’ 3 βˆ’ 1) = 24

26. If a plane passes through intersection of planes 2π‘₯ βˆ’ 𝑦 βˆ’ 4 = 0 and 𝑦 + 2𝑧 βˆ’ 4 = 0 and also passes through

the point (1,1,0) then the equation of plane is

(A) π‘₯ βˆ’ 𝑦 βˆ’ 𝑧 = 0

(B) π‘₯ βˆ’ 𝑦 = 0

(C) π‘₯ + 2𝑦 βˆ’ 𝑧 = 0

(D) π‘₯ βˆ’ 2𝑦 + 𝑧 = 0

Solution: (A)

Equation of plane passing through intersection of 2π‘₯ βˆ’ 𝑦 βˆ’ 4 = 0 and 𝑦 + 2𝑧 βˆ’ 4 = 0 is

β‡’ (2π‘₯ βˆ’ 𝑦 βˆ’ 4) + πœ† (𝑦 + 2𝑧 βˆ’ 4) = 0

β‡’ 2π‘₯ + 𝑦 (πœ† βˆ’ 1) + 2πœ†π‘§ βˆ’ 4 βˆ’ πœ† = 0

∡ it passes through (1,1,0)

∴ 2 Γ— 1 + πœ† βˆ’ 1 + 0 βˆ’ 4 βˆ’ 4πœ† = 0

β‡’ βˆ’3πœ† βˆ’ 3 = 0 β‡’ πœ† = βˆ’1

∴ Equation of plane 2π‘₯ βˆ’ 2𝑦 βˆ’ 2𝑧 = 0

β‡’ π‘₯ βˆ’ 𝑦 βˆ’ 𝑧 = 0

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

27. Let 𝐴 = [π‘π‘œπ‘ π›Ό βˆ’π‘ π‘–π‘›π›Όπ‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

] and 𝐴32 = [

0 βˆ’11 0

] then 𝛼 may be

(A) πœ‹

32

(B) πœ‹

64

(C) πœ‹

128

(D) 0

Solution: (B)

∡ 𝐴 = [π‘π‘œπ‘ π›Ό βˆ’π‘ π‘–π‘›π›Όπ‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

]

β‡’ 𝐴2 = [π‘π‘œπ‘ 2𝛼 βˆ’π‘ π‘–π‘›2𝛼𝑠𝑖𝑛2𝛼 π‘π‘œπ‘ 2𝛼

] β‡’ 𝐴3 = [

π‘π‘œπ‘ 3𝛼 βˆ’π‘ π‘–π‘›3𝛼𝑠𝑖𝑛3𝛼 π‘π‘œπ‘ 3𝛼

]

Similarly 𝐴32 = [π‘π‘œπ‘ 32𝛼 βˆ’π‘ π‘–π‘›32𝛼𝑠𝑖𝑛32𝛼 π‘π‘œπ‘ 32𝛼

]

Given 𝐴3 = [0 βˆ’11 0

] β‡’ [π‘π‘œπ‘ 32𝛼 βˆ’π‘ π‘–π‘›32𝛼𝑠𝑖𝑛32𝛼 π‘π‘œπ‘ 32𝛼

] = [

0 βˆ’11 0

]

On comparing π‘π‘œπ‘ 32𝛼 = 0 & 𝑠𝑖𝑛32𝛼 = 1

β‡’ 𝛼 =πœ‹

64

28. Given equation of a line is 3π‘₯ + 5𝑦 = 15 and a point 𝑃 on this line is equidistant from π‘₯ and 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠 in

which quadrant point 𝑃 lies.

(A) I

(B) III

(C) IV

(D) None of these

Solution: (A)

Let (π‘Ž, π‘Ž) be a point on the line 3π‘₯ + 5𝑦 = 15

JEE MAIN 8 APRIL 2019 SHIFT-1 MATHS

β‡’ 3π‘Ž + 5π‘Ž = 15

β‡’ π‘Ž =15

8

∴ Required point is (15

8 ,

15

8) which lies in I quadrant