P ierre Colin Dmitry Naumov Patrick Nedelec

24
XXXX eme Rencontres de Moriond Pierre COLIN March 2005 P ierre Colin Dmitry Naumov Patrick Nedelec RECONSTRUCTION OF EXTENSIVE AIR SHOWERS FROM SPACE • Stand alone method using only EAS induced light. General algorithms for any space project. ( EUSO, OWL, TUS, KLYPVE… )

description

RECONSTRUCTION OF EXTENSIVE AIR SHOWERS FROM SPACE. Stand alone method using only EAS induced light . General algorithms for any space project. ( EUSO, OWL, TUS, KLYPVE… ). P ierre Colin Dmitry Naumov Patrick Nedelec. Physics hopes. Purpose : Reconstruct initial UHECR parameters. - PowerPoint PPT Presentation

Transcript of P ierre Colin Dmitry Naumov Patrick Nedelec

Page 1: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Pierre ColinDmitry NaumovPatrick Nedelec

RECONSTRUCTION OF EXTENSIVE AIR SHOWERS

FROM SPACE

• Stand alone method using only EAS induced light.• General algorithms for any space project.

( EUSO, OWL, TUS, KLYPVE… )

Page 2: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Purpose: Reconstruct initial UHECR parameters

Energy (spectrum)

Direction (UHECR sources map)Particle type (proton, iron, neutrino, gamma, etc.)

Physics hopes

?

Page 3: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Angles (Zenithal θ and Azimuthal φ)Altitude of shower maximum: HmaxDepth of shower maximum: XmaxTotal energy released E

Shower parameters

Hmax

Xmax

UHECR :

Direction

Particle type

Energy

E

Page 4: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

UHECR

Detection from space

Extensive air shower

Air fluorescence (isotropic)

Space telescope

Cerenkov light(directional)

Ground scattering

Cloud

EUSO simulation

Fluorescence Cerenkov echo

SIGNAL = f(t)

Page 5: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Data fit

fit: 2 Gaussians: Fluorescence + Cerenkov

+ constant: Background noise • Monte Carlo data

- Global fit Fluorescence Cerenkov Background

Available information: for every GTU (Time Unit ~2.5 µs) Number of detected photons: Ni

Page 6: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

ReconstructionReconstruction

Get angles (θ,φ)

Get Hmax

Get Xmax

Get E

Monte Carlo Data

Signal analysis (Trigger conditions): 3 samples of events

Fluorescence events

Cerenkov events

Golden events

(Fluo+Cer)Reconstruction

Get angles (θ,φ)

Get Hmax

Get Xmax

Get E

TWO METHODS

Key parameterGolden eventFluorescence

event

Need Cerenkov echo

Only signal shape

Page 7: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Hmax reconstruction : Cerenkov method

For golden events :

We use Cerenkov echo

: Time between Cerenkov and fluorescence maximum

(Classical method)

Disadvantage: We need to know Hcer to reconstruct Hmax

: Relief, Cloud altitude (Lidar?)

max

2

cos 2 1

H c c R

c R n

AAAAAAAAAAAAAAAAAAAAAAAAAAAA

x

y

z

EUSO

α

ΔH

Cerenkov echo

Fluorescence

R

maxn

AAAAAAAAAAAAAA

ΔH = Hmax - Hcer

ΔH Hmax = ΔH + Hcer

Page 8: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Hmax reconstruction : Cerenkov method

Method not efficient for large angle (horizontal EAS)

Test of the method: no cloud events (Hcer = 0 )

Reconstructed Hmax vs Simulated Hmax Relative Erreur

Error<10% for <60°

Page 9: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

(Brand new method)For Fluorescence event:

Hmax reconstruction : Shape methodF

luor

esce

nce

Yie

ld (

ph/m

)

We use only Fluo signal

NeL Y N

L= EAS track length

= # emitted photon

Ne = # charged particles in EAS

Y = Fluorescence Light Yield

Y: smooth variation with altitude

In one GTU i: Li = LGTU csteNi η·Y·Ne·LGTU = # detected ph/GTU

Ni is quite independent of the altitude: Ni

NeNmax (η·Y)max·Nemax

·LGTU

Transmission η has also a smooth variation with altitude

Page 10: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Total shower lenght: L = LGTU = xtot / (h)

Ntot = Ni η·Y·< Ne>·L η·Y·<Ne>· xtot / (h)

Xtot = L·(h)

L20=100 km

Hmax reconstruction : Shape method

L5 = 15 km

5 km 20 km

For horizontal showers:

00

1 avec 8

( )

h

HtotN e H km

h

Ntot varies dramatically with altitude:

Page 11: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Hmax reconstruction : Shape method

Approximation:<η·Y·Ne> = (η·Y)max ·< Ne>< (h) > = (Hmax)

Generalization for all angles :

(Hmax) Hmax

maxmax

max( )e GTU

tot e tot

N N LH

N N x

Nmax/Ntot (Hmax)

Thanks to η & Y smooth variation with altitude

Varies like ln(E)

Page 12: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Hmax reconstruction : Shape method

Good Method to reconstruct large angle EAS !

Reconstructed vs Simulated Hmax Relative Erreur

Test of the method:

Error<10% for >60°

Page 13: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Simulated Simulated

Direction reconstruction :

There is relationship between (i

x,iy) and (θ,φ) angle of EAS.

Rec

onst

ruct

Assuming infinite pixel resolution

Rec

onst

ruct

Θ

Available information: for every GTUPhoton incident angles: i

x, iy

Direction:

σ ~ 2°

Page 14: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Xmax reconstruction

(reconstructed Xmax – simulated Xmax) (Θ) in g/cm2

Hmax by Cerenkov echo Hmax by shape method

σ<5% for <50° σ ~ 10 %

Golden events fluorescence events

Page 15: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Energy reconstruction

m a x

m a x m a x4 et

N Y N L

m a xG I L m o d e l : 1 , 4 5 G e Ve

EN

E reconstructed by shape method (fluorescence)

for 1020 eV protonσ = 22%

Page 16: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Shape method good for UHE neutrinos!

protons

neutrinos

Neutrinos create mainly horizontal EAS without Cerenkov echo.

Page 17: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Conclusion

We can reconstruct any EAS : 0° to 90° or more ! This first trial is very promising.

We have developed two complementary methods to reconstruct EAS from space using UV light signal.

using Cerenkov echo• Efficient for “vertical” showers (<60°)• Need complementary information (echo altitude) using only signal shape• Efficient for “horizontal” showers (>60°)• UHE Neutrino astronomy from space is possible

Page 18: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

BONUS SLIDE

Page 19: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Simulated data

Available information: for every GTU(Time Unit ~2.5 µs)

Photon incident angles: i

x, iyNumber of detected photons: Ni

x

y

z

Space telescope

αx

αy

Extensive air shower

Hmax

ix, i

y EUSO simulation

Page 20: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

If we add pixel resolution:

EUSO event on focal plan (M36)

Error : more from detector than from method

EUSO simulation

Page 21: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Iron proton

SLAST simulation of Xmax(g/cm2)

Xmax reconstruction

Xmax change with RCUE type:

Xmax = f(E/A)(E/A is energy by nucleon)

Xmax for Golden events Xmax for fluorescence events

Test with 10 000 protons and 10 000 iron nuclei

Page 22: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Energy reconstruction

m a x

m a x m a x4 et

N Y N L

m a xG I L m o d e l : 1 , 4 5 G e Ve

EN

Y : Fluorescence yield (ph/m) Kakimoto Model

η : Atmosphere transmission Lowtran Model

ε : Detector efficiency

ΔΩ : Detector solid angle

Page 23: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

Energy reconstruction

Page 24: P ierre Colin Dmitry Naumov Patrick Nedelec

XXXXeme Rencontres de Moriond Pierre COLIN March 2005

UHECR

Air scattering

Detection from space

Extensive air shower

Air fluorescence (isotropic)

Space telescope

Cloud

Cerenkov light(directional)

Ground scattering

EUSO simulation

SIGNAL = f(t)