OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of)...

100
Oxidative Stress in Bipolar Disorder: a Metaanalysis of Oxidative Stress Markers and an Investigation of the Hippocampus by Nicole C. Brown A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Pharmacology and Toxicology University of Toronto © Copyright by Nicole C. Brown (2014)

Transcript of OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of)...

Page 1: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

Oxidative  Stress  in  Bipolar  Disorder:  a  Meta-­‐analysis  of  Oxidative  Stress  Markers  and  an  Investigation  of  the  

Hippocampus  

  by    

Nicole  C.  Brown  

A  thesis  submitted  in  conformity  with  the  requirements  for  the  degree  of  Master  of  Science  

Department  of  Pharmacology  and  Toxicology  University  of  Toronto  

©  Copyright  by  Nicole  C.  Brown  (2014)  

Page 2: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  ii  

Oxidative  Stress  in  Bipolar  Disorder:  a  Meta-­‐analysis  of  Oxidative  

Stress  Markers  and  an  Investigation  of  the  Hippocampus  

Nicole  C.  Brown  

Master  of  Science  

Department  of  Pharmacology  and  Toxicology  University  of  Toronto  

2014    

Abstract  

Bipolar   disorder   is   a   prevalent   and   debilitating   disease,   however,   its   pathophysiology  

remains  unknown.  There   is   substantial   evidence  of   oxidative  damage   in  bipolar  disorder  

from  both  peripheral  and  post-­‐mortem  samples,  especially  in  the  prefrontal  cortex.  It  is  the  

objective   of   this   study   to   consolidate   research  measuring   oxidative   stress   biomarkers   in  

bipolar  disorder  through  a  meta-­‐analysis  and  to  determine  if  the  hippocampus  region  is  a  

specific   target   of   oxidative   damage   through   a   biochemical   study   using   post-­‐mortem  

samples.   Results   from   this   study   further   confirm   the   presence   of   oxidative   damage   in  

bipolar  disorder,  but  suggest  that  the  hippocampus  is  not  a  target.  We  have  also  shown  a  

global   increase   of   5-­‐hydroxymethylcytosine   in   the   hippocampus   of   patients   with  

schizophrenia,  suggesting  a  possible  alteration  in  the  demethylation  pathway.    Determining  

the   exact   targets   of   oxidative   stress   in   bipolar   disorder   may   lead   to   biomarker  

development,   better   treatment   and  diagnostic  options,   and  ultimately,   a  better  quality  of  

life  for  patients.    

Page 3: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  iii  

Acknowledgements  

 

First   and   foremost   I  would   like   to   thank  my   supervisors,   Dr.   Trevor   Young   and  Dr.   Ana  

Andreazza,   for  their  mentorship  and  for  all  of  the  opportunities  they  have  given  me.  I  am  

extremely   grateful   to   Dr.   Young   for   his   professional   guidance,   teaching  me   to   think   and  

write   logically,   and   to   “tell   a   story.”   I  would   like   to   express  my   deepest   gratitude   to   Dr.  

Andreazza  for  her  understanding,  encouragement,  and  for  both  professional  and  personal  

support.  Their  knowledge  and  expertise  has  helped  me  grow  as  a  scientist,  and  I  could  not  

have  hoped  for  better  supervisors.  

I  would  also   like  to  thank  my  advisor,  Dr.  Ali  Salahpour,   for  all  of  his  support  and  advice,  

especially   during  my   first   year   seminar.   Additionally,   I  would   like   to   recognize   all   of   the  

members  of  the  Young/Andreazza  lab  for  their  help,  both  inside  and  outside  of  the   lab.  A  

special   thank   you   to   Larisse,  Gustavo,   and  Helena,  who  welcomed  me   so  warmly  when   I  

moved  to  Toronto  and  began  my  Masters,  and  to  Mathew,  who  I  was  fortunate  enough  to  

work   with   over   the   summer   and   who   “read   my   mind”   during   experiments.   I   am   so  

fortunate  that  I  had  the  opportunity  to  work  in  such  a  kind  and  supportive  lab.    

Finally,   I   have   to   acknowledge   my   great   group   of   friends,   who   have   helped   keep   me  

positive,   especially   my   closest   “Toronto   friends”,   Kayla,   Dan,   and   Alex.   And   last,   but  

definitely  not  least,  I  want  to  thank  my  amazingly  supportive  parents  who  provided  me  the  

inspiration  and  encouragement  to  keep  following  my  heart  and  dreams,  even  when  it  took  

me  away  from  them.      

Page 4: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  iv  

Table  of  Contents    ABSTRACT  ..............................................................................................................................  II  

ACKNOWLEDGEMENTS  ..........................................................................................................  III  

TABLE  OF  CONTENTS  .............................................................................................................  IV  

LIST  OF  TABLES  ......................................................................................................................  VI  

LIST  OF  FIGURES  ...................................................................................................................  VII  

LIST  OF  ABBREVIATIONS  ......................................................................................................  VIII  

LIST  OF  APPENDICES  ...............................................................................................................  X  

 

CHAPTER  1.  INTRODUCTION  ...................................................................................................  1  

1.1     Overview  of  bipolar  disorder  .................................................................................................................................  1  

1.2     The  neurobiology  of  bipolar  disorder:  neuroimaging,  inflammation,  and  neurotrophic  factors  ..  5  1.2.1   Neuroimaging  studies  and  structural  abnormalities  ...............................................................................................  5  1.2.2     Inflammation  .............................................................................................................................................................................  7  1.2.3   Neurotrophic  factors  ..............................................................................................................................................................  8  1.2.4   Further  biological  abnormalities  ......................................................................................................................................  9  

1.3     The  neurobiology  of  bipolar  disorder:  oxidative  stress  and  mitochondrial  dysfunction  ..............  11  1.3.1   Mechanisms  of  oxidative  damage  in  brain  tissue  ...................................................................................................  11  1.3.2   Mitochondrial  dysfunction  in  bipolar  disorder  .......................................................................................................  14  1.3.3   Oxidative  stress  damage  in  patients  with  bipolar  disorder  ...............................................................................  17  1.3.4   Neuroprotective  effects  of  medication  ........................................................................................................................  18  1.3.5   Brief  overview  of  epigenetic  findings  in  bipolar  disorder  ..................................................................................  21  

1.4     The  use  of  biomarkers  in  psychiatric  disease  ...............................................................................................  22  

1.5   Aim  of  the  thesis  .......................................................................................................................................................  25  1.5.1   Statement  of  problem  .........................................................................................................................................................  25  1.5.2   Purpose  of  the  Study  and  Objective  ..............................................................................................................................  25  1.5.3   Statement  of  Research  Hypotheses  ..............................................................................................................................  26  

 

CHAPTER  2.  METHODS  AND  RESULTS  FOR  THE  META-­‐ANALYSIS  OF  OXIDATIVE  STRESS  

MARKERS  IN  BIPOLAR  DISORDER  ..........................................................................................  27  

2.1     Methods  for  the  meta-­‐analysis  of  oxidative  stress  markers  in  bipolar  disorder  ..............................  27  2.1.1     Search  strategy  ......................................................................................................................................................................  27  2.1.2   Selection  Criteria  ..................................................................................................................................................................  27  2.1.3     Statistical  Analysis  ...............................................................................................................................................................  28  

Page 5: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  v  

2.2     Results  for  the  meta-­‐analysis  of  oxidative  stress  markers  in  bipolar  disorder  ................................  29  2.2.1   Characteristics  of  included  studies  ...............................................................................................................................  29  2.2.2   Results  of  the  meta-­‐analysis  ............................................................................................................................................  30  2.2.3   Publication  bias  and  sensitivity  analysis  ....................................................................................................................  34  

 

CHAPTER  3.  MATERIALS,  METHODS,  AND  RESULTS  FOR  THE  MEASUREMENT  OF  OXIDATIVE  

STRESS  DAMAGE  IN  POST-­‐MORTEM  HIPPOCAMPUS  TISSUE  .................................................  35  

3.1   Materials  and  methods  for  the  measurement  of  oxidative  stress  damage  and  DNA  alterations  in  the  hippocampus  .................................................................................................................................................................  35  3.1.1   Postmortem  brain  tissue  samples  .................................................................................................................................  35  3.1.2   Tissue  homogenization  ......................................................................................................................................................  35  3.1.3   Mitochondrial  subunit  protein  levels  ..........................................................................................................................  36  3.1.4   Protein  oxidative  and  nitrosative  damage  .................................................................................................................  37  3.1.5   Lipid  peroxidation  ................................................................................................................................................................  37  3.1.6     DNA  methylation  and  hydroxymethylation  ..............................................................................................................  38  3.1.7   Statistical  analysis  ................................................................................................................................................................  39  

3.2   Results  of  the  measurement  of  oxidative  stress  damage  and  DNA  alterations  in    the  hippocampus  .................................................................................................................................................................  40  3.2.1     Patient  demographics,  family  history,  medications,  and  toxicology  ..............................................................  40  3.2.2   Hippocampus  may  not  be  a  target  for  mitochondrial  dysfunction  and  oxidative  damage  to  proteins  

and  lipids  ..................................................................................................................................................................................  42  3.2.3   Increased  levels  of  5-­‐hmC  in  hippocampus  from  patients  with  SCZ  but  not  in  BD  .................................  42  3.2.4   Toxicology  and  medication  effects  ................................................................................................................................  45  

 

CHAPTER  4.  DISCUSSION  .......................................................................................................  46  

4.1   Oxidative  stress  markers  in  patients  with  bipolar  disorder  .....................................................................  46  

4.2   Hippocampus  and  bipolar  disorder  ..................................................................................................................  50  

4.3   Limitations  of  this  study  ........................................................................................................................................  54    

CHAPTER  5.  CONCLUSIONS,  SIGNIFICANCE,  AND  FUTURE  DIRECTIONS  ..................................  57  

5.1   Overall  conclusions  from  this  study  and  significance  .................................................................................  57  

5.2   Future  directions  .....................................................................................................................................................  58    

REFERENCES  .........................................................................................................................  59  

APPENDIX  A  ..........................................................................................................................  85  

Page 6: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  vi  

List  of  Tables  

 

Table  1.1.   Neuroprotective   effects   of   lithium.   There   is   substantial   evidence  showing   chronic   lithium   treatment   has   many   neuroprotective  effects.    

20  

Table  2.1.   Pooled   statistics   and   meta-­‐analysis   of   standardized   mean   group  differences   for   oxidative   stress   markers   in   BD   compared   with  healthy  controls    

31  

Table  3.1.   Demographic   variables,   postmortem   interval,   pH,   and  medications  for  bipolar  disorder,  schizophrenia,  and  control  groups    

41  

   

Page 7: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  vii  

List  of  Figures  

 

Figure  1.1.   Factors   contributing   to   differences   in   neuronal   vulnerability   to  oxidative  stress    

13  

Figure  1.2.   Alterations   of   the   λ   subcomplex   of   mitochondrial   complex   I   in  bipolar  disorder    

16  

Figure  1.3.   Potential  benefits  of  determining  and  validating  an  oxidative  stress  biomarker  in  bipolar  disorder    

24  

Figure  1.4.   Potential  biomarkers  in  bipolar  disorder    

24  

Figure  2.1.   Forest  plots  of  standardized  mean  differences  and  95%  confidence  intervals   for   oxidative   stress   markers   in   patients   with   bipolar  disorder  compared  to  healthy  controls    

32-­‐33  

Figure  3.1.   Mitochondrial   protein   subunit   levels   for   NDUFS8,   NDUFV2,   and  NDUFS7   in   post-­‐mortem   hippocampus   of   patients   with   bipolar  disorder,  schizophrenia,  and  healthy  controls    

43  

Figure  3.2.   Protein   oxidation   and   protein   nitration   in   post-­‐mortem  hippocampus   of   patients   with   bipolar   disorder   or   schizophrenia,  and  healthy  controls    

43  

Figure  3.3.   Levels   of   lipid   peroxidation   in   post-­‐mortem   hippocampus   of  patients   with   bipolar   disorder   or   schizophrenia,   and   healthy  controls    

44  

Figure  3.4.   Levels   of   DNA  methylation   and   DNA   hydroxymethylation   in   post-­‐mortem   hippocampus   from   patients   with   bipolar   disorder   or  schizophrenia,  and  healthy  controls  

44  

 

   

Page 8: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  viii  

List  of  Abbreviations  

 

3-­‐NT   3-­‐nitrotyrosine  

4-­‐HNE   4-­‐hydroxynonenal  

5-­‐hmC   5-­‐hydroxymethlycytosine  

5-­‐mC   5-­‐methylcytosine  

ANOVA   Analysis  of  variance  

ATP   Adenosine  triphosphate  

Bcl-­‐2   B-­‐cell  lymphoma  2  

BD   Bipolar  disorder  

BDNF   Brain-­‐derived  neurotrophic  factor  

CREB   cAMP  response  element-­‐binding  protein  

CTL   Control  

DNMT   DNA  methyl-­‐transferase  

DNP   Dinitrophenyl  

DSM   Diagnostic  and  Statistical  Manual  of  Mental  Disorders  

DTI   Diffusion  tensor  imaging  

DTT   Dithiothreitol  

ECL   Enhanced  chemiluminescence  

EDTA   Ethylenediaminetetraacetic  acid  

FA   Fractional  anisotropy  

FMN   Flavin  mononucleotide  

GPx   Glutathione  peroxidase  

GWAS   Genome  wide  association  study  

HBTRC   Harvard  Brain  Tissue  Resource  Center  

HPA   Hypothalamic-­‐pituitary-­‐adrenal  

HRP   Horseradish  peroxidase  

ICD   International  Classification  of  Diseases  

IL   Interleukin  

Page 9: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  ix  

LPH   Lipid  hydroperoxides  

LSD   Least  significant  difference  

MBD   Methyl-­‐CpG-­‐binding  domain  

MDD   Major  depressive  disorder  

NOS   Not  otherwise  specified  

PAGE   Polyacrylamide  gel  electrophoresis  

PCC   Protein  carbonyl  content  

PMI   Post-­‐mortem  interval  

PVDF   Polyacrylamide  gel  electrophoresis  

REDOX   Reduction  and  oxidation  

RNS   Reactive  nitrogen  species  

ROS   Reactive  oxygen  species  

SCZ   Schizophrenia  

SDS   Sodium  dodecyl  sulfate    

SOD   Superoxide  dismutase  

TBARS   Thiobarbituric  acid  reactive  substances  

TET   Ten-­‐eleven  translocation  

TNF   Tumor  necrosis  factor  

   

 

   

Page 10: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  x  

List  of  Appendices  

 

Appendix  A   Table  A1.  Selected  characteristics  of  all  studies  included  in  the  meta-­‐analysis   of   oxidative   stress   markers   in   bipolar   disorder   patients  compared  to  healthy  controls,  sorted  by  sample  type.    

85  

   

Page 11: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  1  

Chapter  1.  Introduction  

1.1     OVERVIEW  OF  BIPOLAR  DISORDER  

Bipolar  disorder  (BD)  is  within  the  top  10  leading  causes  of  disability  worldwide,  is  chronic  

and  recurrent,  and  is  debilitating  to  both  individuals  and  their  families  (Murray  and  Lopez,  

1996).  It  is  a  mood  disorder  characterized  by  cycling  episodes  of  depression  and  mania,  an  

elevated   or   agitated   mood.   Mania   can   present   with   different   severities   ranging   from  

hypomania,  which  is  a  mildly  to  moderately  elevated  or  irritable  mood,  to  psychosis,  during  

which   the   individual   experiences   some   loss   of   contact   with   reality.   Although   BD   is  

considered  a  continuum,   there  are   three  subtypes  and  one  non-­‐specified  type  outlined   in  

the  DSM-­‐IV  (Diagnostic  and  Statistical  Manual  of  Mental  Disorders).  Briefly,  diagnosis  of  BD  

type  I  requires  one  or  more  manic  episodes,  BD  type  II  requires  at  least  one  hypomanic  and  

at  least  one  major  depressive  episode,  and  cyclothymia  requires  hypomanic  episodes  with  

depressive  episodes  that  do  not  meet  the  criteria  for  major  depressive  episodes.  Finally  the  

DSM-­‐IV   provides   another   category   called   BD-­‐NOS   (not   otherwise   specified)   when   the  

disorder  does  not   fall   into  one  of   the  other  subtypes.  The   length  of  cycles   in  BD  can  vary  

considerably  with  episodes  lasting  months  or  even  cycling  within  a  day  or  week.  Onset  and  

development  of  BD  can  occur  at  any  age;  however  50%  of  cases  are  diagnosed  by  age  25  

(Kessler   et   al.,   2005),   and   the   onset   of   BD   tends   to   occur   later   for  women   than   for  men  

(Arnold,  2003).  

BD   is   diagnosed   differentially   through   information   obtained   from   patient   self-­‐reports,  

structured   interviews,   family   interviews,   and   clinician  observation.  BD   can  be  difficult   to  

Page 12: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  2  

diagnose   because   of   symptom  overlap  with   other  mood   and  psychotic   disorders   such   as  

major   depressive   disorder   (MDD)   and   schizophrenia   (SCZ).   This   may   be   clinically  

significant  since  the  initial  presentation  of  BD  is  most  often  with  depressive  symptoms  and  

there  may   be   a   lag   of   months   or   years   before  mania   presents   and   a   diagnosis   of   BD   is  

determined  (Berk  et  al.,  2009).  During   this   lag,  a  misdiagnosis  of  depression  may   lead   to  

ineffective  treatment  and  potentially  worse  outcomes.  For  example,  a  misdiagnosis  of  BD  as  

unipolar   depression   may   lead   to   inappropriate   prescriptions,   such   as   the   use   of  

antidepressants   without   a   mood-­‐stabilizing   drug,   which   may   lead   to   mania   and   poor  

clinical  and  functional  outcomes  (Phillips  and  Kupfer,  2013).  Importantly,  there  is  a  current  

push  in  psychiatry  to  find  biological  markers  for  BD  (Frey  et  al.,  2013).  The  development  of  

a  biomarker  would  improve  diagnostic  accuracy  and  potentially  allow  intervention  at  early  

stages  of  the  illness,  which  may  be  critical  to  lowering  the  lifetime  illness  burden  (Perry  et  

al.,  1999,  Miklowitz  et  al.,  2013).  

Bipolar  disorder  has  a  very  high  burden  of  illness  with  healthcare  costs  that  are  up  to  four  

times  higher  than  those  of   individuals  without  mental   illness  (Altamura  et  al.,  2011).  The  

elevated   healthcare   costs   of   BD   can   be   largely   contributed   to   a   very   high   prevalence   of  

medical   comorbidities   (Goetzel   et   al.,   2003,   Simon,   2003,   Kupfer,   2005).   In   one   study   of  

1379  patients  with  BD  the  most  common  comorbid  medical   illnesses  were  metabolic  and  

endocrine  diseases  (13.6%),  diseases  of  the  circulatory  system  (13.0%),  and  diseases  of  the  

nervous  system  and  sense  organs  (10.7%)  (Beyer  et  al.,  2005).  There  are  significant  gender  

differences   with   the   comorbidity   of   medical   and   psychiatric   disorders;   medical  

comorbidities  in  women  have  more  adverse  effects  on  recovery  from  BD  (Arnold,  2003).  In  

addition  to  increased  medical  illness  in  patients  with  BD,  more  than  60%  of  patients  have  a  

Page 13: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  3  

psychopathological  comorbidity  (McElroy  et  al.,  2001,  Merikangas  et  al.,  2007).  BD  is  also  

very   highly   associated  with   suicide.   In   one   study   comparing   the   lifetime   rates   of   suicide  

attempt   between   subjects   with   BD   and   subjects   with   any   other   DSM-­‐III-­‐defined   Axis   I  

disorder   (i.e.   all   psychological   categories   except   mental   retardation   and   personality  

disorder),   the   authors   found   a   strong   relationship   of   suicide   attempts   in  BD   (29.2%  and  

4.2%,   respectively)(Chen   and   Dilsaver,   1996).   All   of   these   factors,   and   many   more,  

contribute   to   a   high   burden   of   illness   for   BD   including   decreased   quality   of   life   and  

decreased  life  expectancy  (Angst  et  al.,  2002,  Fagiolini  and  Goracci,  2009).  

BD   is   a   chronic   illness   that   requires   long-­‐term   and   multidisciplinary   treatment.  

Pharmacotherapy   is  a  main  treatment  option   for  BD,  however  psychosocial   interventions  

such  as   cognitive  behavior   therapy,   group  psychoeducation,   and   interpersonal   and   social  

rhythm   therapy  are  also   important  aspects  of  management   (Yatham  et   al.,   2005).  Due   to  

the   episodic   and   chronic   nature   of   BD,   treatment   is   based   on   the   current   state   of   the  

patient,   while   also   considering   maintenance   for   long-­‐term   success   (Malhi   et   al.,   2009).  

Mood  stabilizers,   including  lithium,  anticonvulsants,  and  atypical  antipsychotics,  are  often  

the  first  line  of  medication  for  BD.  In  acute  manic  episodes,  atypical  antipsychotics  such  as  

risperidone   and   olanzapine,  may   be   beneficial   alone   or  with   lithium.   Selective   serotonin  

reuptake   inhibitors   or   other   antidepressants  may   also  be  used   in   acute  depression,  with  

caution,  as  an  adjunct  to  lithium.  Although  there  are  a  number  of  pharmacological  options  

for  treatment,  there  is  still  an  urgent  need  for  more  effective  and  tolerable  medications  to  

improve  overall  functionality  of  patients  with  BD.  

Page 14: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  4  

It  is  clear  from  family  and  twin  studies  that  genetic  factors  play  a  role  in  BD  and  SCZ  (Frey  

et  al.,  2007).    Studies  have  determined  that  there  is  a  10-­‐fold  increased  risk  of  developing  

BD   if   a   first-­‐degree  relative   is  affected  and  heritability  estimates  are  between  60-­‐85%  as  

determined   by   monozygotic   twin   studies   (Smoller   and   Finn,   2003).   A   meta-­‐analysis   of  

whole   genome   linkage   studies   determined   that   the   strongest   evidence   for   susceptibility  

loci   is   on   13q   and   22q   for   BD   (Badner   and   Gershon,   2002).   Other   meta-­‐analyses   using  

genome  wide  association  studies  (GWAS)  have  found  regions  with  genes  implicated  in  the  

cell  cycle,  neurogenesis,  neuroplasticity,  and  neurosignaling  (Scott  et  al.,  2009,  Thompson  

et  al.,  2014).  Of  note,  genetic  epidemiology  findings  have  provided  evidence  of  many  shared  

genetic   risk   factors   between   BD,   SCZ,   and   MDD   (Craddock   and   Owen,   2005).   Despite  

decades  of  candidate  gene  association  studies  and  whole-­‐genome  linkage  scans,  which  have  

found  many  regions  of  significance,  no  particular  gene  or  alteration  can  explain  BD.  Very  

large  multi-­‐group   studies  have   shown   shared  polygenic   contribution   to   risk  between  BD  

and   SCZ,   illustrating   the   great   complexity   in   the   heritability   of   BD   (Psychiatric   GWAS  

Consortium  Bipolar  Disorder  Working  Group,  2011).  

Due   to   the   biological   complexity   of   BD,   its   pathophysiology   is   not   known   however,  

abnormalities   can   be   observed   at   all   levels   of   physiology:   tissue,   cellular,  molecular,   and  

genetic.    

 

 

Page 15: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  5  

1.2     THE   NEUROBIOLOGY   OF   BIPOLAR   DISORDER:   NEUROIMAGING,   INFLAMMATION,  

AND  NEUROTROPHIC  FACTORS  

1.2.1   Neuroimaging  studies  and  structural  abnormalities  

Neuroimaging   studies   have   revealed   structural   differences   and   abnormalities   in   white  

matter   in  BD.  Diffusion   tensor   imaging   (DTI)   is   a  magnetic   resonance   imaging   technique  

used   to   evaluate   the   diffusion   of   water   in   vivo,   and   can   be   utilized   to   determine  

microstructural   differences   in   white   matter.   The   neural   axons   of   white   matter   have   an  

internal  fibrous  structure  that  allows  the  rapid  diffusion  of  water  parallel  to  the  tracts  but  

less  diffusion  perpendicularly;  diffusion  in  axons  is  anisotropic,  or  directionally  dependent.  

The  DTI  measure  of   fractional  anisotropy   (FA)  can  be  used   to  determine   the  direction  of  

water  diffusion  in  white  matter  axons.  Typically,  white  matter  neuropathology  causes  the  

anisotropy   to  decrease,  which  may  be   a   result   of   either   increased  perpendicular   (radial)  

diffusion,   or   reduced   parallel   (axial)   diffusion   (Alexander   et   al.,   2007).   The   biological  

alteration   leading   to  decreased  FA   is   generally   interpreted  as   changes   in   tract   coherence  

due   to   alterations   in   myelination,   density,   alignment,   or   diameter   of   the   white   matter  

fibres.  

A  meta-­‐analysis  of  whole  brain  DTI  in  BD  found  two  clusters  of  decreased  FA  on  the  right  

side  of   the  brain;   one   in   the   right  parahippocampal  white  matter   and   the   second   cluster  

was  close  to  the  right  anterior  and  subgenual  cingulate  cortex  (Vederine  et  al.,  2011).    SCZ  

is   also   associated  with  white  matter   abnormalities,   but   interestingly,   different   areas   are  

affected  (Ellison-­‐Wright  and  Bullmore,  2009).  The  clinical  implications  of  these  alterations  

Page 16: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  6  

are   not   yet   fully   understood   and,   furthermore,   larger   studies   with   more   subjects   are  

required   to   determine   the   effect   of   medications   and   disease   characteristics.   A   meta-­‐

analysis  looking  at  what  white  matter  tracts  were  most  often  implicated  by  changes  in  FA  

in   BD   found   changes   in   both   anterior   and   posterior   projection   fibres,   with   larger   tracts  

implicated   more   frequently.   These   authors   concluded   that   the   anterior   findings   are  

consistent   with   models   of   emotional   regulation   and   hypothesized   that   the   posterior  

findings  may  be  related  to  cognitive  deficits  (Nortje  et  al.,  2013).  Of  clinical  significance,  a  

recent  study  showed  a  strong  association  of  FA  abnormalities  with   increased  serum  lipid  

peroxidation   (Versace   et   al.,   2014).   Additionally,   post-­‐mortem   studies   have   shown  

reductions   in   the   number,   size,   and   density   of   glial   cells   as   well   as   downregulation   of  

myelination  and  oligodendrocyte  genes  (Hakak  et  al.,  2001,  Uranova  et  al.,  2001).  Together  

these  demonstrate  physiological   cellular   changes  of  white  matter   in  BD,  which  may  have  

pathological  implications.  

There   may   also   be   structural   changes   in   BD;   the   most   consistently   reported   findings  

include  conservation  of  total  cerebral  volume  with  regional  grey  and  white  matter  changes  

in  prefrontal,  limbic,  and  midline  networks,  noncontingent  ventriculomegaly,  and  increased  

white   matter   hyperintensities   (Emsell   and   McDonald,   2009).   Decreased   hippocampal  

volume   is   characteristic   of   both   schizophrenia   and   depression   (Wright   et   al.,   2000,  

Campbell   et   al.,   2004,   Videbech   and   Ravnkilde,   2004,   McDonald   et   al.,   2006)   however  

multiple  meta-­‐analysis   studies   have   not   shown   consistent   changes   in   BD   (Videbech   and  

Ravnkilde,   2004,   Fusar-­‐Poli   et   al.,   2012,   Thompson   et   al.,   2014).     Some   other   reported  

structural  findings  in  BD  include  lateral  ventricular  enlargement,  decreased  volume  of  the  

subgenual   cingulate   gyrus   and   amygdala,   and   decreased   grey   matter   in   parietal   lobe  

Page 17: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  7  

(Swayze  et  al.,  1990,  Moorhead  et  al.,  2007,  Koo  et  al.,  2008).  Of  interest,  many  studies  have  

demonstrated  the  effect  of  psychotropic  medication  on  these  structural  changes  in  affective  

disorders.   For   instance,   lithium   has   been   shown   to   increase   hippocampal   volumes   in  

patients   that   responded   clinically   to   treatment   (Bearden   et   al.,   2008,   Yucel   et   al.,   2008,  

Hajek   et   al.,   2014).   In   contrast,   antipsychotics   and   anticonvulsants   generally   had   no  

structural   effect   (Hafeman   et   al.,   2012).   The   normalizing   effect   of   lithium   further  

demonstrates   the   role   of   structural   abnormalities,   especially   to   the   hippocampus,   in   the  

pathophysiology  of  BD.  

 

1.2.2     Inflammation  

There   is  evidence   that   increased   inflammation  may  play  a   role   in   the  pathophysiology  of  

BD.   Inflammation   is  part  of  a  complex   immune  pathway  to  rid  cells  of   foreign  pathogens.  

The   process   is   highly   regulated   and   depends   on   the   balance   between   pro-­‐   and   anti-­‐

inflammatory   factors.   BD   patients   in   both   manic   and   depressive   states   have   increased  

plasma  levels  of  pro-­‐inflammatory  cytokines  such  as  IL-­‐2,  IL-­‐6,  IL-­‐8,  and  TNF-­‐α.  (O'Brien  et  

al.,   2006,   Kim   et   al.,   2007,   Brietzke   et   al.,   2009).   Furthermore,   increased   IL-­‐1β,   nuclear  

factor-­‐κB,  and  IL-­‐1R  proteins  have  been  reported  in  post-­‐mortem  frontal  cortex  of  patients  

with   BD   (Rao   et   al.,   2010).   These   alterations   are   also   associated  with   disease   state  with  

differences   in   cytokine   levels   arising   consistently   in   mania   or   depression   and   euthymia  

(Goldstein  et  al.,  2009).    

Page 18: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  8  

Importantly,  increased  cellular  inflammation  is  linked  to  mitochondrial  dysfunction  and  its  

consequent  oxidative  stress.  Inflammation  and  mitochondrial  activity  have  a  very  complex  

relationship:  increased  reactive  oxygen  species  (ROS)  from  mitochondrial  dysfunction  can  

activate  redox-­‐sensitive   inflammatory  pathways  and  pro-­‐inflammatory  factors  can   impair  

mitochondrial  function  (Vaamonde-­‐Garcia  et  al.,  2012,  Lopez-­‐Armada  et  al.,  2013).  

 

1.2.3   Neurotrophic  factors  

Neurotrophins  are  a  family  of  proteins  that  regulate  the  differentiation,  proliferation,  and  

survival  of  neuronal  cells.  Alterations  of  neurotrophic  factors  are  well  documented  in  BD,  

especially   decreased   levels   of   brain-­‐derived   neurotrophic   factor   (BDNF)   in   peripheral  

samples   (Chen   et   al.,   2001,   Cunha   et   al.,   2006,   Machado-­‐Vieira   et   al.,   2007b).   In   fact,   a  

polymorphism   in   the  BDNF  gene  region  (Val66Met)   is   frequently  shown  to  be  associated  

with   illness  severity   in  many  populations  (Min  et  al.,  2012,  Miller  et  al.,  2013,  Chen  et  al.,  

2014).   There   is   evidence   that   BDNF   levels   reflect   both   current   mood   state   and   overall  

illness  progression.  One  review  study  found  that  BDNF  levels  were  consistently  decreased  

in   manic   and   depressive   states,   but   not   during   euthymia,   and   furthermore,   reflected  

severity  of  the  episodes  (Fernandes  et  al.,  2011).  Comparing  BDNF  levels  in  patients  with  

different   illness   lengths   showed   a   decrease   of   BDNF   only   in   late-­‐stage   patients   (Kauer-­‐

Sant'Anna   et   al.,   2009).   There   is   also   a   lot   of   evidence   indicating   that   alterations   of  

neurotrophic  factors  may  underlie  hippocampus  atrophy  in  affective  disorders  (Frodl  et  al.,  

2007,   Schmidt   and   Duman,   2007,   Son   et   al.,   2014).   In   addition,   oxidative   stress  may   be  

linked   to   BDNF   activity   through   several   pathways   including   cAMP   response   element-­‐

Page 19: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  9  

binding  protein   (CREB),   the  NF-­‐κB   complex,  MEK–Bcl-­‐2  pathway   (apoptotic),   or   through  

endoplasmic   reticulum   stress   responses   (Kapczinski   et   al.,   2008,  Markham   et   al.,   2012).  

While   neurotrophic   factors   probably   play   a   role   in   pathophysiology   of   BD,   they   seem  

unlikely  to  be  a  causal  factor  but  may  be  more  important  in  its  neuroprogression  (Berk  et  

al.,  2011).    

 

1.2.4   Further  biological  abnormalities    

Many  signal  transduction  processes  may  be  involved  in  the  neurobiology  of  BD,  including  

calcium   signaling,   glutamatergic   and   dopaminergic   systems,   the   hypothalamic-­‐pituitary-­‐

adrenal  (HPA)  axis,  and  apoptotic  pathways.  Hyperactivity  of  the  HPA  axis   is  a  consistent  

finding   in  many   psychiatric   diseases   (Pariante   and  Miller,   2001).   The   complex   series   of  

interactions  between  the  hypothalamus,  anterior  pituitary  gland,  and  adrenal  cortex  are  a  

major  part  of  the  neuroendocrine  system  and  play  a  role  in  stress  response,  among  many  

other   body   processes.   Importantly,   several   brain   regions   involved   in   mood   regulation,  

including  the  prefrontal  cortex  and  the  hippocampus,  regulate  the  HPA  axis.  Patients  with  

bipolar   disorder   have   been   shown   to   have   an   increased   cortisol   response   to   the  

dexamethasone/corticotrophin-­‐releasing   hormone   test,   indicating   HPA   hyperactivity  

(Watson   et   al.,   2004,  Duffy   et   al.,   2012).   Furthermore,   decreased   levels   of   glucocorticoid  

receptor   mRNA   have   been   found   in   post-­‐mortem   brain   samples   (Webster   et   al.,   2002).  

These   abnormalities  may   be   secondary   to   stress   in   these   disorders,   and  might   not   be   a  

causal  factor  in  BD  development,  but  could  still  be  clinically  relevant  for  treatment.  

Page 20: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  10  

Alterations   to   apoptotic   and   cell-­‐death   pathways   are   well   documented   in   BD   and   are  

supported   by   genetic   studies.   There   is   increased   pro-­‐apoptotic   and   decreased   anti-­‐

apoptotic  gene  and  protein  expression  in  the  postmortem  brain  samples  from  patients  with  

BD   (Benes   et   al.,   2006,   Kim   et   al.,   2010).   The   balance   of   pro-­‐   and   anti-­‐apoptotic   gene  

expression  is  also  affected  by  lithium  treatment;  one  study  found  increased  anti-­‐apoptotic  

and   decreased   pro-­‐apoptotic   gene   expression   in   lithium   responders   one   month   after  

treatment  (Lowthert  et  al.,  2012).  Prior  to  apoptotic  cell  death  there  is  shrinkage  of  the  cell,  

which  may  be   the  basis  of   the  reduction  of  neuron  size  and  density   in  BD  (Gigante  et  al.,  

2011b).    

An   elevated   intracellular   calcium   level   is   one   of   the   earliest   reported   biological  

abnormalities  in  BD  and  since  then,  other  studies  have  implicated  components  of  calcium  

signaling  pathways  (Dubovsky  et  al.,  1989,  Tan  et  al.,  1990,  Hough  et  al.,  1999).  One  of  the  

strongest   findings   from  GWAS  are  polymorphisms  to  a  voltage-­‐gate  calcium  channel.  The  

Bipolar  Disorder  Working  Group  of  the  Psychiatric  GWAS  Consortium  combined  data  from  

16,731   samples   and   a   replication   sample   of   46,918   individuals   and   further   confirmed  

alterations   in   the   calcium   channel   CACNA1C   (Psychiatric   GWAS   Consortium   Bipolar  

Disorder  Working   Group,   2011).   Furthermore,   alterations   to   this   gene   region   have   been  

predictive  of  brain  activity,  especially  in  the  prefrontal  cortex,  hippocampus,  and  amygdala  

(Bigos  et  al.,  2010,  Jogia  et  al.,  2011).  Interestingly,  mitochondria  play  a  role  in  sequestering  

and   releasing   intracellular   calcium,   which   may   connect   to   endoplasmic   reticulum  

dysfunction,  altered  apoptotic  pathways,  altered  neuroplasticity,  and  impaired  adaptation  

to  stress  (Kato,  2008,  Quiroz  et  al.,  2008).  

Page 21: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  11  

In  addition  to  the  mechanisms  outlined  thus  far,  mitochondrial  dysfunction  and  oxidative  

stress   play   a   very   significant   role   in   BD   and   will   be   discussed   in   the   following   section.  

Clearly,   the   pathophysiology   BD   is   very   complex   with   many   interacting   systems   and  

pathways.   While   we   may   be   a   long   way   from   uncovering   every   factor   involved   in   BD  

development,   acquiring   a   further   understanding  of   biological   processes   in  BD   is   vital   for  

improved  medications,  diagnosis,  and  treatment.  

 

1.3     THE   NEUROBIOLOGY   OF   BIPOLAR   DISORDER:   OXIDATIVE   STRESS   AND  

MITOCHONDRIAL  DYSFUNCTION  

1.3.1   Mechanisms  of  oxidative  damage  in  brain  tissue  

Oxidation  is  a  ubiquitous  cellular  process  however  modifications  resulting  in  an  imbalance  

between  antioxidants  and  pro-­‐oxidants  can  cause  damage.  Reactive  oxygen  species  (ROS)  

and  reactive  nitrogen  species  (RNS)  are  signaling  molecules  that  can  cause  cellular  damage  

to   protein,   lipids,   and   DNA   when   in   abundance.   The   brain   is   especially   vulnerable   to  

oxidative  damage  due  to  its  high  energy  demand  and  reliance  on  oxidative  metabolism.  The  

susceptibility   is   augmented:   increased   oxidative   phosphorylation   leads   to   increased   ROS  

and   RNS   and   any   decrease   in   aerobic  metabolism   due   to   damage  will   affect   function   of  

these   high-­‐energy   demand   cells   further.   Importantly,   neurons   have   multifactorial  

differences  in  vulnerability  to  increased  oxidative  stress  as  shown  in  figure  1.1.    

Page 22: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  12  

Mitochondria  are  the  intracellular  organelles  responsible  for  the  oxidative  phosphorylation  

pathway.  This  pathway,  located  on  the  inner  mitochondrial  membrane,  supplies  more  than  

95%   of   the   total   cellular   energy   requirement   (Rezin   et   al.,   2009).   Briefly,   the   oxidative  

phosphorylation   pathway   creates   an   electrochemical   gradient   by   using   energy   from  

multiple   electron   transfer   (REDOX)   reactions   to   pump   protons   from   the   inner  

mitochondrial   matrix   to   the   intermembrane   space.   These   protons   then   flow   down   their  

electrochemical  gradient  to  provide  energy  for  ATP  production.  During  this  process,  some  

electrons  “leak”  from  the  pathway  to  form  ROS  and  RNS.  Importantly,  this  can  lead  directly  

to   the   formation   of   the   superoxide   radical   (O2•−)   through   the   one-­‐electron   reduction   of  

oxygen  (O2),  which  can  dismutate   to   form  hydrogen  peroxide  (H2O2)  and   further  react   to  

form  the  hydroxyl  radical  (HO•).  Although  the  production  of  ROS  and  RNS  is  necessary  and  

ubiquitous,  alterations   to  any  one  of   the  many  antioxidant  systems  may  have   impacts  on  

the  molecular  functions  from  subtle  changes  in  signaling  pathways  to  apoptosis  or  necrosis.  

Increased   oxidative   stress   can   damage   the   macromolecules   of   the   cell   with   many  

consequences.   For   example,   damage   to   proteins   may   affect   the   function   of   receptors,  

enzymes,   DNA   replication   and   repair   machinery,   etc.   Direct   damage   to   DNA   may   cause  

mutations   or   regulatory   alterations   and   damage   to   lipids   can   cause   impairment   to  

membrane  function.  Oxidative  damage  to  brain  tissue  is  a  factor  in  normal  aging  processes,  

neurodegenerative   diseases   such   as   Alzheimer’s,   and   in   many   psychiatric   illnesses  

including  BD  and  SCZ  (Barnham  et  al.,  2004,  Ng  et  al.,  2008,  Rezin  et  al.,  2009).  Increased  

oxidative  stress  has  damaging  effects  on  signal  transduction  and  cellular  resilience,  mainly  

through  damage  to  membrane  lipids,  proteins,  and  DNA/RNA.  

Page 23: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  13  

Figure  1.1.  Factors  contributing  to  differences  in  neuronal  vulnerability  to  oxidative  stress.  

Despite  being  exposed  to  the  same  levels  of  oxidative  stress,  some  neurons  will  survive  

while  others  die.  This  may  help  explain  regional  differences  in  the  brain.  Image  adapted  

from  Wang  and  Michaelis,  2010.    

 

 

 

 

 

Page 24: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  14  

1.3.2   Mitochondrial  dysfunction  in  bipolar  disorder  

Substantial   evidence   from  microarray   and   biochemical   studies   supports   the   presence   of  

mitochondrial  dysfunction  in  BD.  It  is  widely  known  that  mitochondrial  dysfunction  leads  

to   increased   oxidative   stress   (Cassarino   and   Bennett,   1999).   In   addition,   mitochondrial  

dysfunction   has   implications   for   many   other   cell   processes   that   may   contribute   to   the  

pathophysiology   of   BD,   including   calcium   regulation,   cellular   resiliency,   and   synaptic  

plasticity   (Quiroz   et   al.,   2008).   Expression   of   mRNA   encoding   mitochondrial   genes   is  

altered  in  BD;  studies  have  shown  decreased  gene  expression  in  both  the  prefrontal  cortex  

(Iwamoto  et  al.,  2005,  Gigante  et  al.,  2011a)  and  the  hippocampus  (Konradi  et  al.,  2004).    

Complex   I   is   the   entry   point   for   electrons   into   the   respiratory   chain   and   can   form  

superoxide  radicals  in  two  ways:  a  reduced  flavin  mononucleotide  (FMN)  site  on  complex  I  

during   decreased   respiration   reacts   with   O2   and   reverse   electron   transfer   due   to   high  

potential   energy   (Murphy,   2009).   The   superoxide   production   during   reverse   electron  

transfer  is  the  highest  that  occurs  in  the  mitochondria,  making  alterations  to  complex  I  of  

great   consequence.   The   altered  mRNA   expression   of   complex   I   subunits,   determined   by  

microarray   analysis,   are   mostly   involved   in   the   electron   transfer   process   further  

implicating  mitochondrial  complex  I  dysfunction  and  subsequent  oxidative  stress  (Scola  et  

al.,  2013).  A  summary  of  the  altered  subunits  in  the  λ  subcomplex  of  complex  I  is  shown  in  

figure  1.2.  

Importantly,  decreased  protein  levels  of  mitochondrial  complex  I  subunit  NDUFS7  in  post-­‐

mortem  prefrontal  cortex  samples  was  shown  in  our  lab  (Andreazza  et  al.,  2010,  Andreazza  

et   al.,   2013).  There  are  also   functional  mitochondrial   changes   in  BD,   including  decreased  

Page 25: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  15  

activity  and  morphological  deviations  (Cataldo  et  al.,  2010,  Gubert  et  al.,  2013).  Also  of  note  

is   the   association   of   psychiatric   illness   with   mitochondrial   disorders,   especially  

mitochondrial  encephalomyopathy  with  lactic  acidosis  and  stroke-­‐like  episodes  (Anglin  et  

al.,   2012).   Clearly,   mitochondrial   dysfunction   is   likely   an   important   factor   in   the  

pathophysiology  of  BD.  

   

Page 26: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  16  

Figure  1.2.  Alterations  of  the  λ  subcomplex  of  mitochondrial  complex  I  in  bipolar  disorder,  

found  by  microarray  analysis.  Importantly,  the  decreased  subcomplexes  are  involved  

directly  with  the  electron  transfer  process,  which  may  have  an  effect  on  oxidative  stress  in  

the  cell  when  the  electrons  cannot  flow  normally  through  the  pathway.  Adapted  from  Scola  

et  al.,  2013.  

 

 

Page 27: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  17  

1.3.3   Oxidative  stress  damage  in  patients  with  bipolar  disorder  

Oxidative   stress   damage   has   been   measured   in   both   peripheral   samples,   including  

leukocytes,   red  blood  cells,   and   serum,  and   in  post-­‐mortem  brain   samples,   especially   the  

prefrontal   cortex   region.   Multiple   studies   have   shown   increased   lipid   peroxidation,  

DNA/RNA   damage,   protein   damage,   and   altered   antioxidant   enzymes   in   blood   samples  

from  patients  with  BD  (Abdalla  et  al.,  1986,  Kuloglu  et  al.,  2002,  Savas  et  al.,  2002,  Yanik  et  

al.,  2004,  Savas  et  al.,  2006,  Andreazza  et  al.,  2007a,  Gergerlioglu  et  al.,  2007,  Selek  et  al.,  

2008,  Andreazza  et  al.,  2009,  Banerjee  et  al.,  2012,  Magalhaes  et  al.,  2012,  Raffa  et  al.,  2012,  

Soeiro-­‐de-­‐Souza   et   al.,   2013,   Versace   et   al.,   2014).   Although   there   are   conflicting   studies  

measuring  oxidative  stress  markers  in  BD,  a  2008  meta-­‐analysis  from  our  laboratory  found  

a  significant  increase  of  lipid  peroxidation  and  nitric  oxide  levels  (Andreazza  et  al.,  2008a).  

Many   studies   suggest   that   the   levels   of   oxidative   damage   in   BD  may   be   dependent   on   a  

multitude   of   factors,   including   current  mood   episode,   number   of  manic   episodes,   age   of  

onset,   length   of   illness,   and   medications   (Ozcan   et   al.,   2004,   Aliyazicioglu   et   al.,   2007,  

Andreazza  et  al.,  2007a,  Machado-­‐Vieira  et  al.,  2007b,  Kunz  et  al.,  2008,  Kapczinski  et  al.,  

2011).  

Oxidative   stress  has   also  been  examined   in  post-­‐mortem  brain   tissue   samples,   especially  

the  prefrontal  cortex.  Increased  lipid  peroxidation,  protein  carbonylation  and  nitration,  and  

DNA  damage  has  been  shown  in  prefrontal  cortex  (Andreazza  et  al.,  2010,  Gawryluk  et  al.,  

2011,  Gigante   et   al.,   2011a,  Andreazza   et   al.,   2013).   Lipid   peroxidation  was   shown   to   be  

increased   in   the   anterior   cingulate   cortex   (Wang   et   al.,   2009)   and   examinations   of   DNA  

damage   in  this  region  had  differing  results  (Benes  et  al.,  2003,  Buttner  et  al.,  2007).  Very  

Page 28: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  18  

few   studies   of   oxidative   damage   have   been   conducted   on   the   hippocampus   region.   One  

study  of  multiple  brain  areas   found   that   the  hippocampus  was   the  only   region  with   fully  

intact  DNA  (Mustak  et  al.,  2010)  and  another  found  a  modest  increase  of  oxidative  damage  

to  nucleic  acids  in  the  cytoplasm  of  cells  from  the  hippocampus,  suggesting  damage  to  RNA  

(Che  et  al.,  2010).  It  is  important  to  determine  the  exact  targets  of  oxidative  stress  damage  

in  BD  to  determine  its  pathophysiology.    

 

1.3.4   Neuroprotective  effects  of  lithium  

There  is  substantial  evidence  that  many  effective  medications  for  BD  have  neuroprotective  

properties,  especially   lithium.  Lithium  has  been  shown  to  activate  neurotrophic  signaling  

cascades,   in   particular   through   increasing   the   MAP   kinase   cascade   activity,   increasing  

levels  of  bcl-­‐2,  and  inhibiting  glycogen  synthase  kinase  (GSK)-­‐3β  (Manji  et  al.,  2003).  The  

neuroprotective   effects   of   lithium   are   outlined   in   table   1.1.   In   humans,   one   study   found  

increased  lipid  peroxidation  and  antioxidant  enzyme  activity  in  unmedicated,  first-­‐episode,  

manic  patients.  In  contrast,  manic  patients  treated  with  lithium  had  a  significant  reduction  

of  antioxidant  enzyme  activity  and  lipid  peroxidation  levels  (Machado-­‐Vieira  et  al.,  2007a).  

In   addition,   mice   studies   have   shown   a   positive   effect   of   lithium   on   hippocampal  

neurogenesis   (Chen   et   al.,   2000).   The   neuroprotective   effects   of   lithium  may   also   occur  

through   antioxidant   mechanisms.   For   example,   one   study   found   a   reduced   superoxide  

dismutase/catalase   ratio   in   healthy   volunteers   after   lithium   treatment,   which   suggests  

decreased   oxidative   stress   by   reducing   hydrogen  peroxide   levels   (Khairova   et   al.,   2012).  

Antidepressants   also   have   a   substantial   neuroprotective   effect;   multiple   studies   have  

Page 29: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  19  

shown  that  chronic  antidepressant  treatment  increases  neurogenesis  in  the  dentate  gyrus  

cells  of  the  hippocampus  (D'Sa  and  Duman,  2002,  Boldrini  et  al.,  2012).  The  antioxidant  and  

neuroprotective   properties   of   these   medications   further   link   oxidative   stress   to   the  

pathobiology   of   BD.   Furthermore,   the   effects   of   these   medications   on   the   hippocampus  

further   suggest   this   regions   involvement   in   BD   and   also   demonstrate   the   importance   of  

considering  medication  status  in  biological  human  studies.  

   

Page 30: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  20  

Table   1.1.   Neuroprotective   effects   of   lithium.   There   is   substantial   evidence   showing  chronic  lithium  treatment  has  many  neuroprotective  effects.    Protects  Cultured  Cells  of  Rodent  and  Human  neuronal  Origin  in  Vitro+  from:     Glutamate  

High  concentrations  of  calcium  MPP+  β-­‐amyloid  Aging-­‐induced  cell  death  HIV  regulatory  protein,  Tat  HIV  gp120  envelope  protein  Glucose  deprivation  Growth  factor  or  serum  deprivation  Toxic  levels  of  anticonvulsants  Platelet  activating  factor  (PAF)  Aluminum  toxicity  Low  potassium  concentrations  C2-­‐ceramide  Ouabain  GSK-­‐3β  &  staurosporine/heat  shock  β-­‐bungarotoxin  

 

Enhances  Regeneration  of  Retinal  Ganglion  Cells  Enhances  Hippocampal  Neurogenesis  in  Adult  Mice  Protects  Rodent  Brain  in  Vivo  from:     Cholingergic  lesions  

Radiation  injury  Middle  cerebral  artery  occlusion  (model  of  stroke)  HIV  gp120  envelope  protein  injection  (model  of  HIV-­‐associated  dementia)  Quinolinic  Acid  infusion  (model  of  Huntington’s  disease)  Aluminum  maltolate  

 

Human  Effects:     No  subgenual  PFC  gray  matter  volume  reductions  in  cross-­‐sectional  MRI  studies  

No  reductions  in  amygdala  glial  density  in  postmortem  cell  counting  studies  Increased  total  gray  matter  volumes  on  MRI  compared  to  untreated  BD  patients  in  cross-­‐sectional  studies  Increases  in  NAA  (marker  of  neuronal  viability)  levels  in  BD  patients  in  longitudinal  studies  Increased  gray  matter  volumes  in  BD  patients  in  longitudinal  studies  

 

 Abbreviations:   MPP+,   1-­‐methyl-­‐4-­‐phenylpyridinium   ion;   HIV,   human   immunodeficiency  virus;   GSK,   glucogen   synthase   kinase;   PFC,   prefrontal   cortex;   MRI,   magnetic   resonance  imaging;   BD,   bipolar   disorder;   NAA,   N-­‐acetylaspartate.   Table   adapted   from   Manji   et   al.,  2003.    

 

Page 31: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  21  

1.3.5   Brief  overview  of  epigenetic  findings  in  bipolar  disorder  

The  pathology  of  BD  has   genetic   components,   evidenced  by   family   and   twin   studies   that  

show   first-­‐degree   relatives   of   individuals   with   BD   have   a   10-­‐fold   increased   risk   of   the  

disorder   compared   to   first-­‐degree   relatives   of   unaffected   controls   (Smoller   and   Finn,  

2003).   Decades   of   gene   association   studies   have   not   revealed   the   genetic   epidemiology  

behind  BD  as  it  is  very  complex.  Furthermore,  epigenetic  modifications  may  contribute  to  

the  heritability  of  BD.  Briefly,  modifications  to  nucleotides  in  DNA  have  multiple  effects,  but  

importantly,   methylation   at   the   5’   position   of   cytosine,   catalyzed   by   DNA   methyl-­‐

transferases   (DNMTs),   decreases   gene   transcription   reducing   expression.   This   “gene  

silencing”  occurs  by   impeding   transcriptional  proteins   from  binding,  either  directly  or  by  

methyl-­‐CpG-­‐binding   domain   (MBD)   proteins.   MBDs   can   also   recruit   additional   proteins  

that   alter   chromatin   structure,   further   silencing   the   gene.   Hydroxylation   of   5-­‐

methylcytosine  (5-­‐mC),  forming  5-­‐hydroxymethylcytosine  (5-­‐hmC),  is  catalyzed  by  the  ten-­‐

eleven   translocation   (TET)   proteins.   This   hydroxylation   step   is   an   intermediate   to   DNA  

demethylation,   and   thus,   DNA   “activation”   (Guo   et   al.,   2011,   He   et   al.,   2011,   Klug   et   al.,  

2013).  Epigenetic  modifications,  such  as  5-­‐mC,  can  persist  in  germ  cells  and  can  be  passed  

down  to  offspring,  providing  a  mechanism  for  heritability  (Petronis,  2010).  

A  number  of  epigenetic  alterations  have  been  shown   in  BD.  Epigenetic  alterations   to   loci  

associated   with   mitochondrial   function,   brain   development,   and   stress   response,   were  

found  in  post-­‐mortem  frontal  cortex  of  patients  with  psychosis  and  either  SCZ  or  BD  (Mill  

et  al.,  2008,  Grayson  and  Guidotti,  2013).  It  has  also  been  shown  that  DNA  methylation  may  

be  different  in  monozygotic  twins  discordant  for  BD  (Kuratomi  et  al.,  2008).  Interestingly,  

Page 32: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  22  

oxidative  stress  may  be  associated  with  epigenetic  changes,  although  few  studies  have  been  

conducted  thus  far.  One  study  treated  human  neuroblastoma  cells  with  hydrogen  peroxide  

to   induce   oxidative   stress,   which   led   to   an   imbalance   between   DNA   methylation   and  

demethylation,   between   histone   acetylation   and   deacetylation,   and   was   also   associated  

with  the  activation  of  transcription  factors  (Gu  et  al.,  2013).  

 

 

1.4     THE  USE  OF  BIOMARKERS  IN  PSYCHIATRIC  DISEASE  

Biomarkers   are   measurements   that   quantify   biological   processes   and   aid   in   diagnosis,  

monitoring   illness,   and   response   to   treatment   (see   figure   1.3).   Psychiatry,   unlike   most  

other   fields   of  medicine,   lacks   specific   and   reliable   biomarkers   to   diagnose   and  monitor  

illness.   Although   clinician   observation   is   important   in  many   branches   of  medicine,  most  

also  utilize  diagnostic  tests.  BD  can  be  especially  difficult  to  diagnose  because  of  symptom  

overlap  with  other  mood  and  psychotic  disorders  such  as  major  depressive  disorder  and  

schizophrenia  and  patients  often  present  in  a  depressed  state  before  mania  first  occurs.  A  

recent  paper   from  the   International  Society   for  Bipolar  Disorders  Biomarkers  Task  Force  

provides   potential   candidates   for   biomarkers   in   BD,   including   oxidative   stress   markers  

(Frey  et  al.,  2013;  see  figure  1.4).  Thus  far,  oxidative  stress  markers  have  been  utilized  in  a  

research   setting,   however,   with   validation,   some  markers  may   become   useful   in   clinical  

settings.  To  be  used  as  a  clinical  biomarker,  certain  criteria  must  be  met  including:  1)  being  

chemically   stable,   not   prone   to   formation   or   loss   during   storage;   2)   reflective   of   disease  

Page 33: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  23  

onset/progression;   3)   obtained   by   non-­‐invasive   sampling;   4)   low   intra-­‐   and   inter-­‐

variability;   and  5)  measureable   by   accurate,   precise,   specific,   sensitive,   interference-­‐free,  

and  validated  assays  (Dalle-­‐Donne  et  al.,  2006,  Giustarini  et  al.,  2009).    

   

Page 34: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  24  

 

Figure  1.3.  Potential  benefits  of  determining  and  validating  an  oxidative  stress  biomarker  in  bipolar  disorder.  Adapted  from  Dalle-­‐Donne  et  al.,  2006.    

   

 

 

 

 

 

 

 

 

 

Figure  1.4.  Potential  biomarkers  in  bipolar  disorder.  Adapted  from  Frey  et  al.,  2013.    

Page 35: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  25  

1.5   AIM  OF  THE  THESIS  

1.5.1   Statement  of  problem    

Despite   the   prevalence   and   high   burden   of   illness   for   BD,   the   pathophysiology   of   this  

psychiatric  illness  remains  unknown.  It  is  vital  to  understand  the  biological  mechanisms  of  

BD   in  order   to  develop  better   treatments,   improve  diagnosis,  and  ultimately   increase   the  

quality  of  life  for  patients  and  their  families.  A  meta-­‐analysis  of  oxidative  stress  markers  in  

BD   is   vital   to   confirm   biological   differences.   Previous   meta-­‐analyses   of   oxidative   stress  

markers   in   BD   included   peripheral   samples   only,   however,   we   wanted   to   include   post-­‐

mortem   brain   samples   in   addition   to   increase   sample   size   and   to   potentially   reveal  

additional  oxidative  damage.  Most  research  conducted  on  oxidative  stress  markers   in  BD  

used  prefrontal  cortex  samples,  however,  it  is  necessary  to  determine  whether  other  brain  

regions   are   affected.   The   hippocampus   is   part   of   the   limbic   system,  which   is   involved   in  

learning,  memory  formation  and  emotional  regulation,  and  is  also  tightly  connected  to  the  

prefrontal   cortex   region.   There   is   evidence   from   neuroimaging   and   microarray   studies  

implicating  the  hippocampus  in  BD.  Importantly,  microarray  studies  on  samples  from  the  

Harvard  Brain  Tissue  Resource  Center   (HBTRC)   revealed  decreased  mRNA  expression  of  

several   mitochondrial   complex   I   and   complex   III   subunits,   suggesting   abnormal   energy  

metabolism.  Furthermore,  results  from  our  lab  found  increased  oxidative  stress  damage  to  

the  prefrontal  cortex  of  this  patient  cohort.    

1.5.2   Purpose  of  the  Study  and  Objective  

Page 36: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  26  

The  purpose  of  this  study  is  to  consolidate  recent  literature  of  oxidative  stress  in  BD  and  to  

investigate  mitochondrial  dysfunction  and  oxidative  stress  damage  to  proteins,  lipids,  and  

DNA  modifications  in  the  hippocampus.  Specifically,  two  objectives  were  defined:  

1. Consolidate   data   on   oxidative   stress   in   BD   by   conducting   a   meta-­‐analysis   on  

oxidative  stress  markers  in  both  peripheral  and  post-­‐mortem  brain  samples.    

2. Measure   oxidative   stress   markers   in   post-­‐mortem   hippocampus   samples   from  

patients  with  BD  or  SCZ,  and  healthy,  non-­‐psychiatric  controls.  

1.5.3   Statement  of  Research  Hypotheses  

1. Based   on   a   previous   meta-­‐analysis   from   our   laboratory   and   a   review   of   the  

literature,   we   hypothesized   that   increased   levels   of   nitric   oxide   and   lipid  

peroxidation  would  be  the  most  significant  marker  in  BD.    

2. The   hippocampus   has   been   implicated   in   the   pathophysiology   of   BD   and   results  

from   microarray   studies   suggest   abnormal   energy   metabolism.   Furthermore,  

biochemical   studies   in   the  prefrontal   cortex   region  of   this  patient   cohort   revealed  

increased  oxidative  stress  damage.  Based  on  this  evidence,  we  hypothesized  that  the  

hippocampus  region  would  be  a  target  of  oxidative  stress  damage  in  BD.    

 

   

Page 37: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  27  

Chapter  2.    Methods  and  results  for  the  meta-­‐analysis  of  oxidative  stress  

markers  in  bipolar  disorder  

2.1     METHODS  FOR  THE  META-­‐ANALYSIS  OF  OXIDATIVE   STRESS  MARKERS   IN  BIPOLAR  

DISORDER  

2.1.1     Search  strategy  

A   prospective   protocol   for   this   study   was   developed   a   priori   with   search   terms   and  

inclusion  criteria  chosen  in  an  attempt  to  include  all  relevant  publications.  Web  of  Science,  

BIOSIS,   and   MEDLINE   databases   were   searched   for   the   term   bipolar   disorder   with   the  

following:  oxidative  stress,  reactive  oxygen  species,  free  radicals,  antioxidant,  nitric  oxide,  

lipid   peroxidation,   TBARS,   protein   carbonyl,   3-­‐nitrotyrosine,   catalase,   glutathione,   DNA  

oxidation,   DNA   damage,   or   DNA   fragmentation.   References   cited   in   publications   found  

using  these  search  terms  were  also  reviewed  for  any  relevant  studies  not  already  identified  

and  all  searches  were  conducted  prior  to  May  2013  with  no  time  span  specified.    

 

2.1.2   Selection  Criteria  

One   reviewer   screened   all   abstracts   of   potentially   relevant   publications.   Studies   were  

included   if   they   met   the   following   criteria:   (1)   measured   levels   of   one   or   more   of   the  

following   oxidative   stress   markers   in   both   patients   with   bipolar   disorder   and   healthy  

controls:   superoxide   dismutase,   catalase,   glutathione   peroxidase,   protein   carbonyl,   3-­‐

Page 38: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  28  

nitrotyrosine,  nitric  oxide,  DNA/RNA  damage,  and  lipid  peroxidation;  (2)  were  reported  in  

an  original  research  paper  in  a  peer-­‐reviewed  journal;  and  (3)  if  they  adequately  described  

their   samples   (e.g.  diagnostic   criteria,   source  of   samples,   and  storage)  and  methods   such  

that   the   experiments   could   be   replicated   (or   included   appropriate   references).   Studies  

were  retained  regardless  of  the  measurement  method  or  sample  type  (peripheral  or  post-­‐

mortem   brain).   Additionally,   authors   were   contacted   for   mean   values   and   standard  

deviations  when   their  methods  were   appropriate   but   data  was   expressed   in   a   graph   or  

figure  only  (Andreazza  et  al.,  2009,  Wang  et  al.,  2009,  Che  et  al.,  2010,  Mustak  et  al.,  2010,  

Gawryluk  et  al.,  2011,  Gigante  et  al.,  2011a,  Andreazza  et  al.,  2013).  For  all  included  studies,  

the   disease   state   of   BD   patients,   number   of   drug-­‐free   patients,   sample   type,   type   of  

assay/measurement,  and  results  were  recorded.  

 

2.1.3     Statistical  Analysis  

The  meta-­‐analysis  of  pooled  standardized  mean  differences  was  conducted  using  Review  

Manager  software  (Version  5.2,  Copenhagen)  from  The  Cochrane  Collaboration.  The  effect  

sizes   for   the  standardized  mean  differences  were  expressed   through  Hedges’s  G  and  a  Z-­‐

score;   a   p-­‐value   of   <0.05   for   Z   was   considered   statistically   significant.   A   random-­‐effects  

model  was  used  and  studies  were  weighted  by   the  generic   inverse  variance  method.  The  

between-­‐study  heterogeneity  was  determined  using  the  Cochran  Q  statistic  and  expressed  

using   I2   and   τ2.   Publication   bias   was   assessed   by   visually   inspecting   funnel   plots   and  

applying  Egger’s   regression   test  with  p<0.1  as   statistically   significant   (Egger  et  al.,  1997)  

using  the  software  program  Comprehensive  Meta-­‐analysis  (Borenstein  et  al.,  2005).  A  one-­‐

Page 39: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  29  

study  removed  sensitivity  analysis  was  performed  for  each  oxidation  marker  by  manually  

excluding   each   study   included   in   the   analysis   to   determine   robustness.   In   cases   where  

patients  were  separated  into  subgroups  (i.e.  manic,  depressed,  or  euthymic),  the  means  and  

standard  deviations  were  pooled   to  compare  all  bipolar  groups  with  healthy  controls;  15  

out   of   27   studies   included   information   about   the   patient   disease   state.   All   comparisons  

were  two-­‐tailed  and  95%  confidence  intervals  are  expressed  where  applicable.  A  weighted  

linear  meta-­‐regression  was  conducted  using  SPSS  Statistics  for  Windows,  Version  22  (IBM)  

with  sample  type  as  a  comparator.  

 

 

2.2     RESULTS   FOR   THE   META-­‐ANALYSIS   OF   OXIDATIVE   STRESS   MARKERS   IN   BIPOLAR  

DISORDER  

2.2.1   Characteristics  of  included  studies    

In   total,   226   studies  were   screened  and  29   fit   the   selection   criteria.  Of   the  226   screened  

papers,   68  were   review   articles,   48  were   animal   or   cell   studies,   51   did   not  measure   an  

included   marker   of   oxidative   stress,   28   were   genetic   studies,   and   2   did   not   include   a  

healthy  control  group.  Twenty-­‐seven  studies  were  included  in  the  meta-­‐analysis  out  of  the  

29   that   fit   the   selection   criteria;   2   studies   were   excluded   due   to   missing   means   and  

standard  deviations  (Benes  et  al.,  2003,  Buttner  et  al.,  2007).  All  diagnoses,  except  for  one,  

were  established  based  on  DSM-­‐IV  criteria;  the  one  exception  was  published  by  Abdalla  et  

Page 40: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  30  

al.   in   1986   and   used   ICD-­‐9   (International   Classification   of   Diseases)   criteria,   which   was  

deemed  appropriate  for  inclusion.  After  pooling  the  included  studies,  there  were  a  total  of  

995  unique  BD  patients  and  928  healthy  controls.  Appendix  A  outlines  the  characteristics  

of   these   studies   including   the  disease   state  of  BD  patients,   number  of  drug-­‐free  patients,  

sample  type,  type  of  assay,  and  overall  results.  

 

2.2.2   Results  of  the  meta-­‐analysis  

A  total  of  8  oxidative  stress  markers  were  included  in  this  analysis:  superoxide  dismutase,  

catalase,  glutathione  peroxidase,  protein  carbonyl,  3-­‐nitrotyrosine,  nitric  oxide,  DNA/RNA  

damage,  and  lipid  peroxidation.  Table  2.1  outlines  the  pooled  statistics  and  meta-­‐analysis  

for  the  oxidative  stress  markers  in  patients  with  BD  and  controls.  In  total,  3  out  of  these  8  

oxidative  stress  markers  showed  a  statistically  significant  change  in  BD  patients  compared  

to   healthy   controls:   lipid   peroxidation,   nitric   oxide   level,   and   DNA/RNA   damage.   Forest  

plots   of   all   standardized   mean   differences   and   95%   confidence   intervals   are   shown   in  

figure  2.1.    

   

Page 41: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  31  

Table  2.1.  Pooled  statistics  and  meta-­‐analysis  of  standardized  mean  group  differences  for  oxidative  stress  markers  in  BD  compared  with  healthy  controls    

Marker   Number  of  studies  

Total  N     Effect     Heterogeneity  BD   CTL     Hedges’s  g  (95%  CI)   Z   P(Z)     τ  2   I2  

Lipid  peroxidation  *   12   517   426     1.62  (1.02,  2.22)   5.31   <  0.00001     1.07   93%  

Nitric  oxide  *   6   203   153     0.93  (0.05,  1.82)   2.06   0.04     1.13   93%  

DNA/RNA  damage  *   4   117   113     3.13  (1.42,  4.84)   3.59   0.0003     3.14   94%  

Superoxide  dismutase  

12   440   376     0.12  (-­‐0.82,  1.07)   0.26   0.80     2.71   97%  

Catalase   5   200   154     -­‐1.58  (-­‐3.46,  0.30)   -­‐  1.65   0.10     4.42   98%  

Protein  carbonyl   5   199   255     0.62  (-­‐0.40,  1.64)   1.19   0.23     1.28   96%  

Glutathione  peroxidase  

8   272   273     -­‐0.05  (-­‐0.47,  0.36)   0.26   0.80     0.27   79%  

3-­‐Nitrotyrosine     3   90   100     1.17  (-­‐0.16,  2.50)   1.72   0.09     1.28   93%  

 Abbreviations:  BD,  Bipolar  disorder;  CTL,  Controls  *  Statistically  significant  (P<0.05)  

Page 42: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  32  

 

Page 43: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  33  

Figure  2.1.  Forest  plots  of  standardized  mean  differences  and  95%  confidence  intervals  for  oxidative  stress  markers  in  patients  with  bipolar  disorder  compared  to  healthy  controls    1  4-­‐hydroxynonenal  2  Lipid  hydroperoxides  3  Single-­‐stranded  DNA  breaks  4  Double-­‐stranded  DNA  breaks      Note:   Mustak   20103  and   Mustak   20104   used   the   same   study   population   and   Andreazza  20131  and   Andreazza   20132   used   the   same   study   population.   In   the   meta-­‐analysis   each  study   was   weighted   as   one,   despite   having   two   relevant   measurements,   to   prevent   one  sample  population  from  being  overrepresented.    

 

   

Page 44: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  34  

2.2.3   Publication  bias,  sensitivity  analysis,  and  meta-­‐regression  

Given  the  small  number  of  studies,  we  performed  a  one-­‐study  removed  sensitivity  analysis  

by   excluding   each   study   individually.   The   Z-­‐Value   remained   significant   for   DNA/RNA  

damage  and  lipid  peroxidation  and  the  effect  size  for  superoxide  dismutase  and  glutathione  

peroxidase  remained  essentially  unchanged  in  direction  and  magnitude  after  the  removal  

of   each   study   individually.   The   sensitivity   analysis   of   protein   carbonyl,   3-­‐nitrotyrosine,  

catalase,   and   nitric   oxide   showed   that   these   results   are   not   very   robust   and   should   be  

interpreted   cautiously:   (1)   for   protein   carbonyl,   the   removal   of   Andreazza   et   al.   (2009)  

caused  the  Z-­‐Value  to  increase  from  1.19  (p=0.23)  to  2.13  (p=0.03);  (2)  for  3-­‐nitrotyrosine,  

the  removal  of  Andreazza  et  al.  (2013)  caused  the  Z-­‐Value  to  increase  from  1.72  (p=0.09)  to  

4.32  (p=0.000015);  (3)  for  catalase,  the  removal  of  Machado-­‐Vieira  et  al.  (2007)  caused  the  

Z-­‐Value   to   decrease   from   -­‐1.65   (p=0.10)   to   -­‐3.26   (p=0.024);   and   (4)   for   nitric   oxide,   the  

removal  of  Ozcan  et  al.   (2004)  caused  the  Z-­‐value   to   increase   from  2.06  (p=0.04)   to  5.39  

(p<0.00001).   Publication   bias,   measured   by   Egger’s   regression   test,   was   negative   for   all  

markers:   superoxide  dismutase   (95%  CI=-­‐38.7   to  6.0;  p=0.13),   catalase   (95%  CI=-­‐43.0   to  

24.9;   p=0.45),   glutathione   peroxidase   (95%   CI=-­‐9.8   to   7.4;   p=0.74),   lipid   peroxidation  

(95%  CI=-­‐7.2  to  8.5;  p=0.87),  protein  carbonyl  (95%  CI=-­‐50.7  to  58.4;  p=0.79),  nitric  oxide  

(95%   CI=-­‐53.7   to   55.9;   p=0.95),   3-­‐nitrotyrosine   (95%   CI=-­‐146.4   to   130.6;   p=0.60),   and  

DNA/RNA  damage  (95%  CI=-­‐2.7  to  14.4;  p=0.12).  A  weighted  linear  regression  analysis  did  

not   reveal   an   interaction   of   sample   type  with   any   significant  marker   of   oxidative   stress:  

lipid   peroxidation   (β=-­‐0.119,   p=0.781),   nitric   oxide   (β=1.109,   p=0.297),   or   DNA/RNA  

damage  (β=-­‐0.054,  p=0.575).    

Page 45: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  35  

Chapter  3.    Materials,  methods,  and  results  for  the  measurement  of  

oxidative  stress  damage  in  post-­‐mortem  hippocampus  tissue  

3.1   MATERIALS   AND   METHODS   FOR   THE   MEASUREMENT   OF   OXIDATIVE   STRESS  

DAMAGE  AND  DNA  ALTERATIONS  IN  THE  HIPPOCAMPUS  

3.1.1   Postmortem  brain  tissue  samples  

Hippocampus   samples   were   generously   donated   by   the   Harvard   Brain   Tissue   Resource  

Center   (HBTRC)   and   all   patients   provided   consent   to   HBTRC   prior   to   death.   The   46  

participants  were  divided   into   three  groups:  19  non-­‐psychiatric   controls,  15  SCZ,   and  12  

BD.   Two   senior   psychiatrists,   using   DSM-­‐IV   criteria,   confirmed   all   diagnoses  

retrospectively   through   patient   records.   Demographic   information,   post-­‐mortem   interval  

(hours   prior   to   freezing   at   -­‐80°C;   PMI),   brain   pH,   and   toxicology   at   time   of   death   were  

known.   Medications   prescribed   within   a   year   of   death,   family   psychiatric   history,   and  

comorbidities   were   determined   through   patient   records.   Medications   were   divided   into  

four   groups:   lithium,   other   mood   stabilizers,   antidepressants,   or   antipsychotics.  

Antipsychotics  were  further  divided  into  either  typical  or  atypical.  The  investigators  were  

blind   to  diagnosis   and   all   other   variables   throughout   all   experiments   and  measurements  

with  the  random  numeric  code  lifted  only  after  all  analysis  was  completed.  

 

3.1.2   Tissue  homogenization  

Page 46: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  36  

Whole   tissue   homogenates   were   prepared   as   described   by   Smith   (1967)   with   minor  

modifications.  Briefly,  hippocampus  tissues  were  homogenized   in  buffer  (0.25  M  sucrose,  

2mM   EDTA,   10mM   Tris   HCl;   pH   7.2)   at   a   ratio   of   10   µL/mg   of   tissue.   Samples   were  

homogenized   using   sonification   (5   seconds   at   25%   amplitude;   Branson   Ultrasonics  

Corporation,  CT,  USA)  then  centrifuged  at  1000g  and  4°C  for  10  minutes.  The  supernatant  

was  kept  on  ice  and  the  pellet  was  resuspended  in  buffer,  mechanically  homogenized,  and  

recentrifuged.   Supernatants   were   combined   and   protein   concentration   was   determined  

using  the  Bradford  assay  (Bradford  reagent,  Sigma-­‐Aldrich,  MO,  USA).  

 

3.1.3   Mitochondrial  subunit  protein  levels  

Protein   levels   of   complex   I   subunits   NDUFS7,   NDUFS8,   and   NDUFV2   were   determined  

through  Western   blotting   followed   by   immunoblotting.  Whole   tissue   homogenates   were  

mixed  with  SDS-­‐PAGE  sample  buffer  (50mM  Tris  HCl  (pH  6.8),  100mM  DTT,  2%  SDS,  0.1%  

bromophenol  blue,  10%  glycerol)   to   a   concentration  of  10  μg   tissue/15  μL  buffer.  These  

samples   were   loaded   on   12%   acrylamide   sodium   dodecyl   sulfate-­‐polyacrylamide  

electrophoresis  gels,  separated,  and  transferred  to  PVDF  membranes.  Blots  were  incubated  

with   the   primary   antibody   for   2   hours   at   room   temperature   (NDUFS7   [Santa   Cruz  

Biotechnology,  #98644],  1:400  dilution;  NDUFS8  [Abcam  #67106],  1:640  dilution;  NDUFV2  

[Abcam   #96117],   1:1000   dilution),   followed   by   a   secondary   antibody   conjugated   to  

horseradish   peroxidase   (1   hour   at   room   temperature).   Immunoreactive   bands   were  

detected  with  Amersham  ECL  Prime  Western  Blotting  Detection  Reagent   (GE  Healthcare  

Page 47: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  37  

Life   Sciences,  Ohio,  USA)   and   analyzed  densitometrically   using  VersaDoc   (Bio-­‐Rad,  USA).  

Blots   were   normalized   by   immunoblotting   with   anti-­‐β-­‐actin   antibody,   an   established  

loading  control.  

 

3.1.4   Protein  oxidative  and  nitrosative  damage  

Protein   oxidation   damage  was   determined   by  measuring   protein   carbonyl   content   using  

the   OxyBlot   Protein   Oxidation   Detection   kit   (Millipore   Co,   USA,   #S7150)   with  

modifications.   Briefly,   protein   side   chains   were   derivatized   with   2,4-­‐

dinitrophenylhydrazone   (DNP-­‐hydrazone)   through   the   reaction   of   2,4-­‐

dinitrophenylhydrazine  (DNPH)  with  carbonyl  groups.  The  DNP-­‐derivatized  proteins  were  

spotted  onto  PVDF  membrane  and  immunoblotted  with  a  primary  antibody  specific  to  the  

DNP   moiety,   followed   by   HRP-­‐conjugated   secondary   antibody,   and   detection   with   ECL  

reagent.   Nitrosative   damage   to   proteins   was   determined   by   measuring   the   levels   of   3-­‐

nitrotyrosine   using   Western   blotting   as   described   above   (anti-­‐3-­‐nitrotyrosine   antibody,  

Abcam  #7048;  1:500  dilution).  Blots  were  normalized  using  MemCode  Reversible  Protein  

Stain  Kit  for  PVDF  Membranes  (Thermo  Scientific  Pierce  Protein  Biology  Products,  Illinois,  

USA).  

 

3.1.5   Lipid  peroxidation  

Page 48: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  38  

The   level   of   lipid   peroxidation  was   determined   by  measuring   total   lipid   hydroperoxides  

and  4-­‐hydroxynonenal,  a  degradation  product.  Total  hydroperoxides  were  measured  using  

a   colorimetric   kit   (Lipid  Hydroperoxide   (LPO)  Assay  Kit,   Cayman  Chemical,   San  Antonio,  

USA)   according   to   manufacturer’s   instructions.   Briefly,   lipid   hydroperoxides   were  

extracted  from  samples  using  a  methanol/chloroform  mixture  (0°C,  1500g,  5  minutes)  and  

incubated  with  chromogen  at  room  temperature.  The  absorbance  was  read  at  500  nm  and  

compared  to  a  standard  curve.  4-­‐hydroxynonenal  was  measured  using  OxiSelect  HNE-­‐His  

Adduct  ELISA  Kit   (Cell  Biolabs,   Inc.,  USA)  according   to  manufacturer’s   instructions.  HNE-­‐

His   adducts   are   probed   with   an   anti-­‐HNE-­‐His   antibody   followed   by   HRP   conjugated  

secondary  antibody  and  chemiluminescence  detection.  

 

3.1.6     DNA  methylation  and  hydroxymethylation    

DNA  methylation  and  hydroxymethylation  were  determined  through  the  measurement  of  

5-­‐mC   and   5-­‐hmC,   respectively.   Both   were   measured   using   an   immuno-­‐dot   blot   method  

adapted   from  Ko   et   al.   (2010)   and  Yang   et   al.   (2013).   Genomic  DNA  was   extracted   from  

whole  hippocampus  tissue  using  GenElute  Mammalian  Genomic  DNA  Miniprep  Kit  (Sigma-­‐

Aldrich,  MO,  USA),  according   to  manufacturer’s   instructions.  The  CpGenome  5-­‐mC  and  5-­‐

hmC  DNA  Standard  Set  containing  positive  controls  of  100%  5-­‐mC  or  5-­‐hmC  and  a  negative  

control  containing  unmodified  cytosine  was  used  (Millipore,  MA,  USA),  and  a  DNA  curve  to  

standardize   technique   was   completed.   50   ng   genomic   DNA   in   Tris-­‐EDTA   buffer   and  

denaturation  solution  was  spotted  onto  PVDF  membranes  and  allowed  to  dry,  followed  by  

DNA  UV   cross-­‐linking   (120,000  microjoules  per   cm2   for  5  minutes;  CL-­‐1000,  Ultra-­‐Violet  

Page 49: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  39  

Products).  The  blots  were   then   incubated   for  2  hours  at   room  temperature  with  primary  

antibody   specific   for   5-­‐mC   (Millipore   clone   33D3;   1:1000   dilution)   or   5-­‐hmC   (Millipore  

clone  AB3/63.3;  1:100  dilution).  This  was   followed  by  a  40  minute   incubation  with  HRP-­‐

conjugated  secondary  antibody  and  detection  with  Amersham  ECL  Prime  Western  Blotting  

Detection  Reagent  (GE  Healthcare  Life  Sciences,  Ohio,  USA).  Membranes  were  imaged  using  

VersaDoc  system  (Bio-­‐Rad,  USA)  and  relative   levels  of  5-­‐mC  and  5-­‐hmC  were  determined  

densitometrically  using  Image  Lab  software  (Bio-­‐Rad,  USA).  

 

3.1.7   Statistical  analysis  

All   statistical   analyses   were   performed   using   SPSS   Statistics   for   Windows,   Version   22  

(IBM).   Data   distribution   was   determined   by   Kolmogorav-­‐Smirnov   test.   The   variables  

NDUFS7  (Z=  0.203;  p=0.000),  NDUFS8  (Z=  0.241;  p=  0.000),  NDUFV2  (Z=  0.179;  p=  0.001),  

and  5-­‐mC  (Z=  0.140;  p=  0.027),  did  not  follow  Gaussian  distribution;  lipid  hydroperoxides  

(Z=  0.102;  p=  0.200),  4-­‐hydroxynonenal  (Z=  0.105;  p=  0.200),  protein  carbonyl  content  (Z=  

0.082;   p=  0.200),   3-­‐nitrotyrosine   (Z=0.111;   p=  0.200),   and  5-­‐hmC   (Z=  110;   p=0.200)   did  

have   a   normal   distribution.   To   determine   between-­‐group   differences   we   used   one-­‐way  

ANOVA  followed  by  LSD  post-­‐hoc  test  for  parametric  variables  and  Kruskal-­‐Wallis  test  for  

non-­‐parametric  variables.  Differences  were  considered  significant  at  p≤0.05.  To  determine  

whether   there   was   an   effect   of   age,   pH,   and   PMI   on   the   results,   Pearson’s   correlation  

coefficient   for   parametric   variables   and   Spearman’s   Rank   Correlation   for   nonparametric  

variables   were   used.   One-­‐way   ANOVA   was   used   to   determine   the   relation   of   age   with  

biochemical   data.   Since   there   was   no   correlation   between   any   of   these   factors   with  

Page 50: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  40  

biochemical  data,  we  did  not  do  further  analysis.  Medication  effects  were  determined  using  

one-­‐way   ANOVA   for   parametric   variables   and   Kruskal-­‐Wallis   test   for   non-­‐parametric  

variables.  

 

 

3.2   RESULTS   OF   THE   MEASUREMENT   OF   OXIDATIVE   STRESS   DAMAGE   AND   DNA  

ALTERATIONS  IN  THE  HIPPOCAMPUS  

3.2.1     Patient  demographics,  family  history,  medications,  and  toxicology  

Patient  demographic  and  medication  information  can  be  found  in  table  3.1.  Subjects  in  the  

study   included   participants   with   BD   (n=12),   SCZ   (n=15),   and   non-­‐psychiatric   controls  

(n=19).  Age  ranged   from  18-­‐87,  PMI   from  13  hours   to  38  hours,  and  pH   from  5.6   to  7.0;  

there   were   no   significant   differences   between   groups   for   these   variables.   Psychiatric  

medications   prescribed   at   time   of   death  were   known   and   included   lithium   (n=6),  mood  

stabilizers  (n=5),  antidepressants  (n=4),  and  antipsychotics  (n=20).    

   

Page 51: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  41  

Table  3.1.  Demographic  variables,  postmortem  interval,  pH,  and  medications  for  bipolar  disorder,  schizophrenia,  and  control  groups    

  Bipolar  disorder  (n=12)  

Schizophrenia    (n=15)  

Healthy  controls  (n=19)  

 

Age,  mean  (SEM)  [range]   58.5  (6.5)  [18-­‐86]   62.4  (3.5)  [46-­‐87]   59.5  (3.6)  [18-­‐80]   F2,46  =  0.185;  p  =  0.8321  

Gender,  No.  (%)             Male   3  (25.0)   11  (73.3)   14  (73.7)       Female   9  (75.0)   4  (26.7)   5  (26.3)    

PMI,  mean  (SEM)  [range]   20.67  (1.26)  [13-­‐27]   23.07  (1.78)  [16-­‐38]   22.16  (0.74)  [16-­‐30]   F2,46  =  0.727;  p  =  0.4891  

pH,  mean  (SEM)  [range]   6.33  (0.08)  [5.6-­‐6.7]   6.45  (0.08)  [5.72-­‐7.0]   6.45  (0.05)  [6.11-­‐6.86]   F2,46  =  0.987;  p  =  0.3811  

Medication,  No.  (%)             Lithium   5  (41.7)   1  (6.7)         Mood-­‐stabilizers   3  (25.0)   2  (13.3)         Antidepressants   2  (16.7)   2  (13.3)         Antipsychotics  (any)   9  (75.0)   11  (73.3)           Atypical   1  (8.3)   2  (13.3)           Typical   5  (41.7)   8  (53.3)           Unknown   3  (25.0)   1  (6.7)      

 Abbreviations:  PMI,  postmortem  interval;  SEM,  standard  error  of  the  mean    1One-­‐way  ANOVA  

     

Page 52: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  42  

3.2.2   Hippocampus  may  not  be  a  target  for  mitochondrial  dysfunction  and  oxidative  

damage  to  proteins  and  lipids  

We   assessed   the   levels   of   mitochondrial   complex   I   subunits   NDUFS7,   NDUFS8,   and  

NDUFV2,  in  homogenized  tissue  from  the  hippocampus  and  found  no  differences  between  

SCZ,   BD,   or   control   groups.   These   results   are   shown   in   figure   3.1.   Two   indicators   of  

oxidative  damage  to  proteins  were  evaluated:  3-­‐nitrotyrosine  and  protein  carbonyl  levels.  

Lipid   damage   was   evaluated   by   measuring   total   lipid   hydroperoxides,   and   4-­‐

hydroxynonenal,  which  is  a  product  of   lipid  peroxidation.  In  the  hippocampus  we  did  not  

find   any   differences   between   groups   for   3-­‐nitrotyrosine,   protein   carbonyl,   4-­‐

hydroxynonenal,   or   total   lipid   hydroperoxides.   Results   for   protein   damage   are   shown   in  

figure  3.2  and  for  lipid  damage  in  figure  3.3.  

 

3.2.3   Increased  levels  of  5-­‐hmC  in  hippocampus  from  patients  with  SCZ  but  not  in  

BD  

As   an   exploratory   analysis,   we   evaluated   the   levels   of   global   methylation   and  

hydroxymethylation.   We   found   significant   differences   between   groups   for   5-­‐hmC  

(F2,43=4.397;  p=0.018),  with  a  significant   increase  in  SCZ  (p=0.028)  compared  to  controls.  

There  were  no  between-­‐group  differences  for  5-­‐mC;  these  results  are  shown  in  figure  3.4.  

After  controlling  for  covariates  (age,  PMI,  pH,  and  gender),  the  results  for  5-­‐hmC  remained  

significant.  

   

Page 53: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  43  

 

Figure   3.1.   Mitochondrial   protein   subunit   levels   for   NDUFS8   (A),   NDUFV2   (B),   and  NDUFS7   (C)   in   post-­‐mortem   hippocampus   of   patients   with   bipolar   disorder   (BD),  schizophrenia  (SCZ),  and  healthy  controls  (CTL).  Between-­‐group  differences  were  analyzed  using  Kruskall-­‐Wallis  test.    

 

Figure   3.2.   Protein   oxidation   (protein   carbonyl   content;   A)   and   protein   nitration   (3-­‐nitrotyrosine,  3-­‐NT;  B)  in  post-­‐mortem  hippocampus  of  patients  with  bipolar  disorder  (BD)  or  schizophrenia  (SCZ),  and  healthy  controls  (CTL).          

A   B   C  

A   B  

Page 54: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  44  

Figure   3.3.   Levels   of   lipid   peroxidation   in   post-­‐mortem   hippocampus   of   patients   with  bipolar   disorder   (BD)   or   schizophrenia   (SCZ),   and   healthy   controls   (CTL).   (A)   4-­‐hydroxynonenal  (4-­‐HNE)  levels;  and  (B)  total  lipid  hydroperoxides.  

 

Figure   3.4.   Levels   of   DNA   methylation   (5-­‐methylcytosine,   5-­‐mC;   A)   and   DNA  hydroxymethylation   (5-­‐hydroxymethylcytosine,   5-­‐hmC;   B)   in   post-­‐mortem   hippocampus  from   patients   with   bipolar   disorder   (BD)   or   schizophrenia   (SCZ),   and   healthy   controls  (CTL).    Between-­‐group  differences  were  determined  using  Kruskal-­‐Wallis  test  for  5-­‐mC  and  one-­‐way  ANOVA  followed  by  LSD  post-­‐hoc  test  for  5-­‐hmC;  *p<0.05.        

A   B  

A   B  *  

Page 55: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  45  

3.2.4   Toxicology  and  medication  effects    

We   examined   the   effect   of   prescribed   medications   and   toxicology   at   the   time   of   death.  

Medication   effects  were   determined   using   one-­‐way  ANOVA   for   parametric   variables   and  

Kruskal-­‐Wallis  test  for  non-­‐parametric  variables.  No  medication  effects  were  found  for  any  

measured  variable.  Toxicology  at  the  time  of  death  was  also  known  and  explored.  We  did  

not   find   differences   between   subjects   who   were   positive   for   opiates   (n=10),  

benzodiazepines   (n=3),   barbiturates   (n=3),   or   amphetamines   (n=2),   compared   to   those  

with  no  substance  detected  (n=28).  

 

   

Page 56: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  46  

Chapter  4.  Discussion  

4.1   OXIDATIVE  STRESS  MARKERS  IN  PATIENTS  WITH  BIPOLAR  DISORDER  

A  meta-­‐analysis  was  conducted  to  consolidate  and  examine  many  different  studies  

measuring  oxidative  stress  markers  in  BD.  A  total  of  twenty-­‐seven  papers  were  included  in  

the  meta-­‐analysis,  which  comprised  of  971  unique  patients  with  BD  and  886  healthy  

controls.  Eight  markers  were  analyzed:  superoxide  dismutase,  catalase,  protein  carbonyl,  

glutathione  peroxidase,  3-­‐nitrotyrosine,  lipid  peroxidation,  nitric  oxide,  and  DNA/RNA  

damage.  The  meta-­‐analysis  of  standardized  means  was  conducted  using  a  random-­‐effects  

model  with  generic  inverse  weighting.  The  results  of  the  meta-­‐analysis  further  supports  the  

presence  of  oxidative  damage  in  BD;  specifically,  our  analysis  showed  overall  increased  

lipid  peroxidation,  increased  DNA/RNA  damage,  and  increased  levels  of  nitric  oxide  in  BD  

patients  compared  to  healthy  controls.    

In  the  meta-­‐analysis,  there  is  a  very  strong  effect  size  of  lipid  peroxidation  in  BD  compared  

to  healthy  controls  and  this  increased  lipid  peroxidation  is  shown  consistently  in  both  

serum  and  post-­‐mortem  brain  samples.  Lipids  are  very  prone  to  oxidative  damage  due  to  

their  large  size  and  high  number  of  unsaturated  bonds.  Oxidative  damage  to  these  lipids  

disrupts  cell  membranes  and  the  end  products  of  peroxidation  are  toxic.  Since  lipids  

account  for  about  70%  of  the  dry  weight  of  myelin,  the  main  component  of  white  matter,  

this  damage  may  play  a  role  in  the  pathophysiology  of  BD.  Interestingly,  a  recent  paper  

examined  whether  peripheral  lipid  peroxidation  levels  were  associated  with  white  matter  

abnormalities  and  showed  that  59%  and  51%  of  fractional  anisotropy  and  radial  diffusivity  

Page 57: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  47  

differences,  respectively,  could  be  explained  by  variation  in  lipid  hydroperoxide  levels  

(Versace  et  al.,  2014).  There  is  evidence  that  lipid  peroxidation  in  serum  is  decreased  with  

medication  (Aliyazicioglu  et  al.,  2007);  however,  this  was  not  accounted  for  in  this  analysis  

and  yet  the  effect  size  was  strong  despite  this  potentially  lowering  effect  of  medication.  

Lipid  peroxidation  is  a  promising  potential  marker  since  it  can  be  measured  in  serum  and  

holds  promise  to  reflect  brain  alterations.  If  validated,  there  is  a  possibility  for  markers  of  

lipid  peroxidation  to  be  used  as  a  prognostic  biomarker  along  with  neuroimaging  tests.  

Furthermore,  the  widely  used  TBARS  or  LPH  assays  for  quantification  do  not  require  

specialized  skills  or  equipment  beyond  that  in  a  normal  diagnostic  laboratory.  

There   are  many  pathways   through  which   increased  oxidative   stress   can  damage  DNA  or  

RNA   including   scission   or   breaks   and   base   modifications;   these   two   types   of   oxidative  

damage  were  included  in  this  analysis.  This  is  the  first  time  a  meta-­‐analysis  has  examined  

DNA  and  RNA  oxidative  damage   in  BD  and  our  results  show  damage  was   increased   in  all  

studies,  which  includes  post-­‐mortem  brain  samples  and  peripheral  samples  (Andreazza  et  

al.,  2007b,  Che  et  al.,  2010,  Mustak  et  al.,  2010,  Soeiro-­‐de-­‐Souza  et  al.,  2013).  This  increase  

in  DNA  scission  and  base  hydroxylation  may  lead  to  increased  cell  necrosis  and  subsequent  

inflammation  of  nearby  tissues  (Kim  et  al.,  2001).  Oxidative  stress  to  cells  may  also  induce  

epigenetic   changes   through   different   mechanisms   including   DNA   hypomethylation   and  

histone   acetylation   (Gu   et   al.,   2013).   Two   of   the   included   studies   measured   base  

modifications   in   DNA   and   RNA   (Che   et   al.,   2010,   Soeiro-­‐de-­‐Souza   et   al.,   2013).   The   two  

important  nucleoside  oxidation  targets  are  guanosine  and  cytosine.  Guanosine  is  the  most  

readily   oxidizable   base   and   its   hydroxylation   to   8-­‐hydroxy-­‐2-­‐deoxyguanosine   is   often  

considered   an   indicator   of   overall   DNA   and  RNA   damage.   Cytoplasmic   RNA   is   especially  

Page 58: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  48  

vulnerable   to   this   hydroxylation,   and   damage   to  mRNA   causes   improper   translation   and  

protein   aggregation   (Shan   et   al.,   2003).   Hydroxylation   of   guanosine   bases   may   also  

promote  hypomethylation   through   conformation   changes   in   the  DNA   that  may   affect   the  

ability  of  methyl  binding  proteins  to  recognize  their  CpG  island  target.  The  oxidation  of  5-­‐

mC  to  5-­‐hmC  is  an  important  step  for  epigenetic  regulation  and  is  normally  controlled  by  

the  enzyme  TET  oxidase  (Matarese  et  al.,  2011).  This  hydroxylation  step  ultimately  leads  to  

DNA  demethylation  and,  therefore,  often  an  increase  in  gene  expression  (Klug  et  al.,  2013).  

Upon  review  of   the   literature,   it   appears   that  DNA/RNA  oxidation  damage   is  very   region  

specific  in  post-­‐mortem  brain  samples.  For  example,  the  2010  study  by  Mustak  et  al.  found  

increased  single-­‐  and  double-­‐stranded  breaks  to  genomic  DNA  in  the  parietal,  temporal  and  

occipital  lobes,  thalamus,  cerebellum,  hypothalamus,  medulla,  pons,  and  frontal  cortex,  but  

not   in   the   hippocampus   of   bipolar   patients.   Another   study   that   used   post-­‐mortem  

hippocampus  suggested  that  damage  in  this  region  occurs  predominantly  in  the  cytoplasm  

of  cells  and  thus  affects  RNA  more  than  DNA  (Che  et  al.,  2010).  One  study,  not  included  in  

this  meta-­‐analysis,  measured  the  methylation  patterns  of  monozygotic  twins  discordant  for  

BD  and  found  differences   in  4  of   the  10  explored  regions  (Kuratomi  et  al.,  2008).  Clearly,  

these   oxidative   modifications   to   DNA   and   RNA   may   impact   the   heritability   of   bipolar  

disorder  and  should  be  further  investigated.      

The   two   products   of   oxidative   protein   damage   included   in   this   meta-­‐analysis,   3-­‐

nitrotyrosine   and   protein   carbonyl   content,   were   not   significant.   3-­‐Nitrotyrosine   is   a  

product   of   protein   nitrosative   damage   that   occurs   when   peroxynitrite/carbon   dioxide-­‐

derived   radicals   attack   the   hydroxyl   group   of   tyrosine   residues.   Similarly,   protein  

carbonylation  occurs  when  peroxide  or  oxygen  radicals  attack  amine  groups  in  amino  acid  

Page 59: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  49  

side-­‐chains,  often  through  a  metal-­‐cation  catalyzed  reaction.  Oxidative  damage  to  proteins  

in   BD   is   likely   very   transient   due   to   the   cell’s   ability   to   remove   these   products   and,  

therefore,   it   is   vital   to   study   patients   at   different   stages   of   the   illness   and   in   different  

disease   phases   in   order   to   fully   determine   the   role   protein   damage   may   play   in   BD.  

Nitration  of  proteins  is  dependent  on  levels  of  nitric  oxide  and  an  increase  of  nitric  oxide  in  

BD   patients   was   found   in   our   meta-­‐analysis.   Nitric   oxide   is   a   widely   used   signaling  

molecule   in   the   nervous   system;   however,   it   can   react   with   the   free   oxygen   radical,  

superoxide,   to   form   the   more   unstable   peroxynitrite.   When   the   antioxidant   system   is  

overwhelmed,   peroxynitrite   and   its   derivatives   may   cause   damage   to   cellular   lipids,  

proteins,  and  nucleic  acids.  The   increased  nitric  oxide   levels   in  BD  patients  are  discussed  

further   in   the   previous   meta-­‐analysis   (Andreazza   et   al.,   2008a)   and   no   relevant   papers  

have  since  been  published.  

The   antioxidant   enzymes   examined   in   the   meta-­‐analysis   (glutathione   peroxidase,  

superoxide   dismutase   and   catalase)   did   not   show   any   overall   significant   changes   in   BD  

compared  to  healthy  controls,  however,  it  still  remains  a  possibility  that  there  are  changes  

to   larger   antioxidant   systems.   Superoxide   dismutase   breaks   the   highly   reactive   and  

damaging   superoxide   anion   into   molecular   oxygen   and   hydrogen   peroxide   through   a  

copper-­‐catalyzed   redox   reaction.   The   enzymes   glutathione   peroxidase   and   catalase   can  

then  remove  hydrogen  peroxide   from  cells   through   further  reduction.  Two  studies   found  

that   the   ratio   of   superoxide   dismutase   to   glutathione   peroxidase   and   catalase   was  

increased  in  manic  and  depressed  patients  but  not  in  euthymic  patients  (Andreazza  et  al.,  

2007a,  Andreazza   et   al.,   2007b).   Consistent  with   these   observations,   the  mood   stabilizer  

lithium   that   is   typically   effective   in   BD   patients,   significantly   decreased   the   superoxide  

Page 60: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  50  

dismutase/catalase  ratio  in  healthy  subjects  (Khairova  et  al.,  2012).  Furthermore,  a  genetic  

study   showed   a   significant   interaction   between   superoxide   dismutase   and   glutathione  

peroxidase   haplotypes   which   increased   risk   for   BD   (Fullerton   et   al.,   2010).   All   these  

antioxidant   enzymes   (superoxide   dismutase,   catalase,   and   glutathione   peroxidase)   form  

complicated  relationships,  and  despite  not  being  independently  significant  in  this  analysis,  

they  may  still  play  an  important  role  in  the  overall  pathophysiology  of  BD.  

In   summary,   the   results   of   this   meta-­‐analysis   further   confirm   the   presence   of   oxidative  

stress  in  BD  patients.  Compared  to  healthy  controls,  BD  patients  had  higher  levels  of  nitric  

oxide,   more   DNA   and   RNA   damage,   and   increased   lipid   peroxidation.   Determining   the  

cause  and  effects  of  BD  and  its  biological  progression  will  lead  to  more  effective  treatments  

and  care.  Furthermore,  through  the  use  of  very  large  studies  or  meta-­‐analyses,  a  biomarker  

may   be   detected   to   aid   in   the   diagnosis   and   treatment   of   BD.   The   large   effect   size   and  

robustness  of  increased  lipid  peroxidation  in  BD  patients  shown  in  this  meta-­‐analysis  make  

it  a  good  candidate  as  a  potential  biomarker  for  BD.  Limitations  are  discussed  below.  

 

4.2   HIPPOCAMPUS  AND  BIPOLAR  DISORDER  

Determining  the  exact  brain  regions  affected  by  oxidative  stress   in  BD  and  SCZ   is  vital   to  

improve  treatment  and  outcomes.  There  is  substantial  evidence  showing  oxidative  damage  

to  proteins,   lipids,   and  DNA   in   the  prefrontal   cortex  of  patients  with  BD  and  SCZ.   In   this  

study  we  investigated  the  involvement  of  oxidative  stress  in  the  hippocampus  and  found  no  

between-­‐group   differences   in   the   oxidation   of   proteins   or   lipids.   Of   particular   note,  

Page 61: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  51  

however,  we  found  preliminary  evidence  of  increased  global  hydroxymethylation  to  DNA  in  

patients   with   SCZ.   These   results   suggest   that   hippocampus   is   not   a   target   region   for  

oxidative  damage  to  proteins  and  lipids,  however  DNA  modification  in  this  region  may  be  

important.    

Microarray   studies   have   shown  many   alterations   in   genes   expression   related   to   energy  

metabolism  and  oxidative  stress  in  patients  with  BD  or  SCZ,  although  there  are  differences  

between  the  two  diseases  (Hakak  et  al.,  2001,  Vawter  et  al.,  2002,  Prabakaran  et  al.,  2004,  

Iwamoto  et  al.,  2005,  Sun  et  al.,  2006,  Choi  et  al.,  2011).  Alterations  in  the  mRNA  expression  

of  mitochondrial  complex  I  subunits  is  especially  relevant  since  complex  I  is  a  major  source  

of   ROS.   In   fact,   even   partial   inhibition   of   complex   I   leads   to   increased   ROS   in   neurons  

(Tretter  et  al.,  2004,  Fariss  et  al.,  2005).  Previous  work  from  our   laboratory,  on  the  same  

patient   cohort   from   the   HBTRC,   found   decreased   protein   levels   of   NDUFS7,   a   complex   I  

subunit,  in  the  prefrontal  cortex  of  patients  with  BD  (Andreazza  et  al.,  2010,  Andreazza  et  

al.,  2013).  Although  decreased  mRNA  expression  of  multiple  complex  I  subunits  has  been  

shown  in  hippocampus  samples  from  the  HBTRC  (Konradi  et  al.,  2004),  our  quantification  

of  protein   levels   in   this   region  did  not   indicate  any  alterations.  Additionally,   results   from  

our   laboratory   on   the   prefrontal   cortex   of   this   patient   cohort   found   increased   protein  

carbonylation   in   BD,   increased   3-­‐nitrotyrosine   in   BD   and   SCZ,   and   increased   4-­‐

hydroxynonenal   in  SCZ  and  BD  (Andreazza  et  al.,  2013).  We  did  not   find  any  evidence  of  

protein  or  lipid  damage  in  the  hippocampus,  however.  

Since   this   is   the   first   time   oxidative   damage   to   proteins   and   lipids  were   explored   in   the  

hippocampus  of  patients  with  BD  and  SCZ,  we  looked  at  the  literature  for  relevant  animal  

Page 62: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  52  

studies.  Animal  studies  that  link  psychiatric  distress  to  oxidative  damage  have  shown  that  

the  hippocampus  may  be  less  susceptible  than  other  brain  areas  such  as  prefrontal  cortex  

(Lucca  et  al.,  2009,  Wang  et  al.,  2009).  One  study  found  that  although  there  was  increased  

ROS   generated   in   the   hippocampus   of   rats   exposed   to   chronic  mild   stress,   there  was   no  

oxidative  damage,  which  was   in  contrast   to   the  cortex  region  (Lucca  et  al.,  2009).   In  rats  

with   amphetamine-­‐induced  mania   there   was   increased   DNA   damage,   lipid   peroxidation,  

and   an   inhibition   of   mitochondrial   respiratory   chain   complexes   in   the   hippocampus;  

however,   some   of   these   effects   were   prevented   or   reversed   with   mood   stabilizers.  

Interestingly,   the   therapeutic   effects   of   the  mood   stabilizers   lithium   and   valproate  were  

dependent  on  the  brain  region  (Frey  et  al.,  2006,  Andreazza  et  al.,  2008b,  Feier  et  al.,  2013).  

These   findings   are   not   replicated   in   humans   and   it   is   unknown   exactly   how   the   human  

hippocampus  responds  to  oxidative  stress.  Additionally,  oxidative  and  nitrosative  damage  

increases   in  neurons  over   time,  as   shown   in   the  many  studies  where  age  correlates  with  

these  measures  (Venkateshappa  et  al.,  2012).  However,  the  hippocampus  region  is  subject  

to  high  cell  turnover  and  is  a  region  of  high  neurogenesis  in  humans  (Eriksson  et  al.,  1998),  

therefore   this   damage   may   not   accumulate   as   it   does   in   other   regions.   A   commonly  

reported   finding   in  BD   and   SCZ   is   changes   in   the   gene   expression   and  proteins   levels   of  

BDNF,  a  mediator  of  hippocampal  plasticity  (Chen  et  al.,  2001,  Neves-­‐Pereira  et  al.,  2005,  

Palomino   et   al.,   2006,   Frodl   et   al.,   2007).   There   is   also   significant   evidence   that  

antidepressant  therapies  work  by  increasing  neurogenesis  in  the  hippocampus  (Santarelli  

et  al.,  2003).  Similarly,  nitric  oxide,  which  we  determined  to  be  increased  in  BD  in  the  meta-­‐

analysis,  may  also  be  involved  with  hippocampal  neurogenesis  (Zhang  et  al.,  2001).  These  

factors  could  indicate  that  although  there  are  no  measurable  oxidative  changes  to  proteins  

Page 63: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  53  

or  lipids  in  hippocampus,  this  may  be  due  to  damage  being  repaired  more  efficiently  than  

in  other  brain  regions  through  increased  cell  turnover;  there  remains  a  possibility  that  the  

neuroplasticity  in  the  hippocampus  may  mitigate  oxidative  damage.  

It  is  clear  from  family  and  twin  studies  that  genetic  factors  play  a  role  in  BD  and  SCZ  (Frey  

et   al.,   2007),   however   the   genetic   causes   remain   unknown.   Modifications,   such   as  

methylation  or  hydroxymethylation   to   cytosine,   play   a   role   in   gene   expression.    5-­‐hmC   is  

formed  by  the  oxidation  of  5-­‐mC,  catalyzed  by  TET  enzymes,  and  leading  to  demethylation  

of   cytosine   (He  et   al.,   2011,   Ito   et   al.,   2011,  Kohli   and  Zhang,  2013).  Very   little   is   known  

about   these   modifications   in   psychiatric   disorders,   however,   one   recent   study   showed  

increased  TET-­‐1  mRNA  expression  and   increased  5-­‐hmC   in   the   inferior  parietal   lobule  of  

psychotic   patients   (Dong   et   al.,   2012).   Here,   we   report   increased   5-­‐hmC   in   the  

hippocampus   of   patients   with   SCZ,   but   not   BD.   This   evidence   further   supports   the  

association  of  hydroxymethylation  to  psychosis  since  these  features  are  more  common  in  

SCZ,   however   future   studies   are   necessary   to   evaluate   the   levels   TET   enzymes   in   the  

hippocampus  from  patients  with  BD  and  SCZ.    

Psychiatric   illnesses,   including   BD   and   SCZ,   are   diagnosed   based   on   patient   reports   and  

observed   behavior.   Unlike   other   fields   of   medicine,   there   are   currently   no   biological  

markers   for  diagnosing  and  marking  disease  progression.  Knowing   the  specific  biological  

alterations   that   occur   in   BD   and   SCZ  will   lead   to   better  medications   and   a   lower   illness  

burden  for  patients.  This  is  especially  significant  considering  that  a  very  large  proportion  of  

BD   patients   develop   a   chronic   and   refractory   course   and   years   lost   to   disability   exceed  

those   from  cancer  patients   (Altamura  et  al.,  2011).  Therefore,  determining   the  molecular  

Page 64: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  54  

mechanism  underlying  BD  and  SCZ,  and  identifying  their  affected  brain  regions,   is  crucial  

for  a  more  complete  understanding  of  these  psychiatric  illnesses.  Importantly,  in  this  study,  

we  have  shown  that  proteins  and   lipids   in   the  hippocampus  are  not  a   target  of  oxidative  

damage  in  BD  or  SCZ  but  DNA  modifications  in  this  region  may  be  a  contributing  factor  to  

the  pathophysiology  of  SCZ.    

In  summary,  we  have  demonstrated  that  the  hippocampus,  unlike  the  prefrontal  cortex  

region,  may  not  be  subjected  to  increased  oxidative  stress  damage  in  patients  with  BD  or  

SCZ.  However,  we  found  increased  5-­‐hmC  in  the  hippocampus  of  patients  with  SCZ,  

suggesting  alterations  to  the  demethylation  pathway.  Limitations  of  this  study  are  

discussed  below.  

 

 

4.3   LIMITATIONS  OF  THIS  STUDY  

The   main   limitations   of   the   results   from   the   meta-­‐analysis   are   the   high   degree   of  

heterogeneity   between   studies   and   the   small   number   of   studies   used   in   the   analysis   of  

protein  carbonyl  content,  RNA/DNA  damage,  and  3-­‐nitrotyrosine.  The  sensitivity  analysis  

also  revealed  that  the  results  of  the  analysis  for  catalase,  nitric  oxide,  3-­‐nitrotyrosine,  and  

protein   carbonyl   content   are   not   very   robust.   For   catalase,   the   one   study   removed  

sensitivity  analysis  showed  that  the  lack  of  statistical  significance  was  weak;  removing  the  

study  by  Machado-­‐Vieira  et  al.  (2007)  caused  the  negative  effect  size  to  become  significant  

which  would   indicate   that   BD   patients   have   a   lower   activity   of   peripheral   catalase.   One  

Page 65: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  55  

potential   cause  of   this   sensitivity  could  be   the   large  drug-­‐free  population   in   the  study  by  

Machado-­‐Vieira  et  al.   (2007)  and   this   result  may   indicate   the  effect  of  medication  use  on  

catalase  activity.  In  the  sensitivity  analysis  of  nitric  oxide,  removal  of  the  study  by  Ozcan  et  

al.   (2004)   caused   a   drastic   increase   in   effect   size   and   significance   level.   There   are   no  

apparent  differences  in  methods  used  since  all  included  studies  used  the  Greiss  reaction  to  

measure   nitric   oxide   however   there   is   a   lot   of   heterogeneity   between   patient   samples  

which  is  likely  the  main  contributor  to  the  sensitivity  of  this  analysis.  The  sensitivity  in  the  

results  from  3-­‐nitrotyrosine  is  likely  due  to  the  small  number  of  studies  and  the  sensitivity  

in   protein   carbonyl   content   to   the   heterogeneity   between   patient   populations.   The  

considerable  between-­‐study  heterogeneity  in  this  meta-­‐analysis  may  be  a  reflection  of  the  

heterogeneity   in   BD   itself.   Few   papers   report   length   of   illness,   age   of   onset,   number   of  

mood   episodes,   illness  phase,   or  BD  phenotype;   however,   there   is   considerable   evidence  

that   these   are   important   factors   in   the   level   of   oxidative   stress   (Andreazza   et   al.,   2007a,  

Andreazza  et  al.,  2009,  Kapczinski  et  al.,  2011).  There  is  also  evidence  that  drug  treatment  

may   partly   alleviate   increased   oxidative   stress,   which   is   unaccounted   for   in   this   meta-­‐

analysis   due   to   few  papers   reporting   drug   status   (Ozcan   et   al.,   2004,   Aliyazicioglu   et   al.,  

2007,   Frey   et   al.,   2007,   Machado-­‐Vieira   et   al.,   2007a).   Laboratory   methodology   is   also  

another  source  of  heterogeneity  between  studies  in  this  meta-­‐analysis.  In  addition,  studies  

were   conducted   in   different   geographical   locations,   which  may   add   confounding   factors  

such   as   diet.   Due   to   these   limitations,   interpretations   of   this   meta-­‐analysis   must   be  

considered  cautiously.  

The  use  of  postmortem  brain  samples  is   invaluable  in  psychiatric  research  since  it  allows  

direct  measurement   of   the   affected   tissue.   There   are   potential   confounding   factors  with  

Page 66: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  56  

these   samples,   however,   such   as   PMI,   pH,   and   storage   conditions.   In   general,   DNA   is  

relatively  resistant   to  post-­‐mortem  degradation,  however  protein  nitration  and  oxidation  

may   be   affected   by   PMI   or   pH   (Ferrer   et   al.,   2008).   To   control   for   these   factors,   we  

correlated  our  data  with  PMI   and  pH  and   found  no   effect.  Additionally,   in   this   study,  we  

used  whole   tissue   homogenates   to  measure   protein   and   lipid   damage,   however   damage  

may  be  specific  to  certain  cell  types  or  fractions.  A  recent  study  in  the  prefrontal  cortex  of  

this   same   patient   cohort   found   differences   specific   to   either   the   synaptosomal-­‐   or  

mitochondria-­‐enriched   fraction   (Andreazza   et   al.,   2013).   Furthermore,   there   is   evidence  

that  CA1  and  CA3  pyramidal  neurons  in  the  hippocampus  respond  to  oxidative  stress  very  

differently.   Multiple   studies   have   found   that   when   hippocampus   cells   are   exposed   to   a  

superoxide-­‐generating   compound,   CA1   neurons   are   selectively   destroyed   while   CA3  

neurons  mostly  survive  (Wilde  et  al.,  1997,  Wang  and  Michaelis,  2010).  Nonetheless,  most  

studies  in  the  literature  use  whole  tissue.  It  is  also  important  to  consider  the  strong  effect  

of  medications   on   oxidative   parameters   and  neurogenesis   in   the   hippocampus.   Although  

medication   information  was   known  and   correlated   to   the   biochemical  measures  with  no  

significance,  it   is  important  to  note  that  our  sample  did  not  include  drug-­‐free  patients.  To  

confirm  that  proteins  and  lipids  in  the  hippocampus  are  not  affected  by  oxidative  stress,  a  

study  with  a  larger  drug-­‐free  population  is  necessary.    

 

   

Page 67: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  57  

Chapter  5.  Conclusions,  significance,  and  future  directions  

5.1   OVERALL  CONCLUSIONS  FROM  THIS  STUDY  AND  SIGNIFICANCE  

The  principal   objectives  of   this   study  were   to   investigate  oxidative   stress  markers   in  BD  

through   a   meta-­‐analysis   of   published   studies   and   quantitatively   measure   oxidative  

biomarkers   in   post-­‐mortem   hippocampal   tissue.   Our   hypothesis   that   the   meta-­‐analysis  

would  confirm  the  presence  of  increased  nitric  oxide  and  lipid  peroxidation  in  BD  has  been  

validated  by  our  significant  results.  In  addition,  our  analysis  revealed  a  significant  increase  

of  DNA/RNA  damage  in  BD,  a  new  finding.  Our  hypothesis  that  the  hippocampus  would  be  

a   target   of   oxidative   damage   to   proteins   and   lipids   was   not   supported   by   our   results,  

however  we  did  find  an  increase  of  5-­‐hmC  in  patients  with  SCZ.  Although  the  results  were  

negative,   it   is   important   to   determine   which   brain   regions   are   affected   to   determine  

neurological  alterations  in  BD.  Although  the  hippocampus  has  often  been  implicated  in  BD  

through  microarray  and  neuroimaging  studies,  this  is  the  first  study  to  measure  oxidative  

damage  to  proteins  and  lipids  in  this  region.  Overall,  this  study  has  further  supported  the  

increased  levels  of  peripheral  oxidative  stress  damage  in  BD,  especially  to  lipids  and  DNA,  

and  has  demonstrated  that  the  hippocampus  may  not  be  a  target  of  oxidative  alterations.  

Furthermore,   we   have   shown   increased   levels   of   5-­‐hmC   in   the   hippocampus   of   patients  

with  SCZ,  suggesting  a  possible  alteration  to  the  demethylation  pathway.  

 

 

Page 68: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  58  

5.2   FUTURE  DIRECTIONS  

Possible  future  directions  of  this  study  include:  

• The  quantification  of  5-­‐mC  and  5-­‐hmC  in  the  prefrontal  cortex    

• Histological  fractionation  of  the  hippocampus  and  further  examination  of  oxidative  

stress  markers  

• Determining  the  gene-­‐specific  alterations  of  5-­‐hmC  in  SCZ    

• Investigating  oxidative  stress  markers  in  other  brain  regions  

• Exploring  lipid  peroxidation  as  a  potential  biomarker  in  BD  

Ultimately   this   study,   together   with   ongoing   studies   in   our   laboratory,   will   guide   the  

development   of   better   diagnostic   and   treatment   tools   to   improve   the   quality   of   life   for  

patients  with  BD.  

 

   

Page 69: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  59  

References  

Abdalla   DSP,   Monteiro   HP,   Oliveira   JAC,   Bechara   EJH   (1986)   Activities   of   superoxide-­‐

dismutase   and   glutathione-­‐peroxidase   in   schizophrenic   and   manic-­‐depressive  

patients.  Clinical  Chemistry  32:805-­‐807.  

Alexander   AL,   Lee   JE,   Lazar   M,   Field   AS   (2007)   Diffusion   tensor   imaging   of   the   brain.  

Neurotherapeutics  4:316-­‐329.  

Aliyazicioglu   R,   Kural   B,   Colak  M,   Karahan   SC,   Ayvaz   S,   Deger   O   (2007)   Treatment  with  

lithium,   alone   or   in   combination   with   olanzapine,   relieves   oxidative   stress   but  

increases   atherogenic   lipids   in   bipolar   disorder.   Tohoku   Journal   Experimental  

Medicine  213:79-­‐87.  

Altamura  AC,  Serati  M,  Albano  A,  Paoli  RA,  Glick   ID,  Dell'Osso  B  (2011)  An  epidemiologic  

and   clinical   overview   of   medical   and   psychopathological   comorbidities   in   major  

psychoses.  European  Archives  of  Psychiatry  and  Clinical  Neuroscience  261:489-­‐508.  

Andreazza  AC,  Cassini  C,  Rosa  AR,  Leite  MC,  de  Almeida  LMV,  Nardin  P,  Cunha  ABN,  Cereser  

KM,   Santin  A,   Gottfried  C,   Salvador  M,  Kapczinski   F,   Goncalves   CA   (2007a)   Serum  

S100B  and  antioxidant  enzymes  in  bipolar  patients.  Journal  of  Psychiatric  Research  

41:523-­‐529.  

Andreazza   AC,   Frey   BN,   Erdtmann   B,   Salvador   M,   Rombaldi   F,   Santin   A,   Goncalves   CA,  

Kapczinski  F  (2007b)  DNA  damage  in  bipolar  disorder.  Psychiatry  Research  153:27-­‐

32.  

Andreazza  AC,  Kapczinski  F,  Kauer-­‐Sant'Anna  M,  Walz  JC,  Bond  DJ,  Goncalves  CA,  Young  LT,  

Yatham  LN  (2009)  3-­‐Nitrotyrosine  and  glutathione  antioxidant  system  in  patients  in  

Page 70: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  60  

the  early  and  late  stages  of  bipolar  disorder.  Journal  of  Psychiatry  and  Neuroscience  

34:263-­‐271.  

Andreazza  AC,  Kauer-­‐Sant'Anna  M,  Frey  BN,  Bond  DJ,  Kapczinski  F,  Young  LT,  Yatham  LN  

(2008a)   Oxidative   stress  markers   in   bipolar   disorder:   A  meta-­‐analysis.   Journal   of  

Affective  Disorders  111:135-­‐144.  

Andreazza   AC,   Kauer-­‐Sant'Anna   M,   Frey   BN,   Stertz   L,   Zanotto   C,   Ribeiro   L,   Giasson   K,  

Valvassori  SS,  Reus  GZ,  Salvador  M,  Quevedo  J,  Goncalves  CA,  Kapczinski  F  (2008b)  

Effects  of  mood  stabilizers  on  DNA  damage  in  an  animal  model  of  mania.  Journal  of  

Psychiatry  and  Neuroscience  33:516-­‐524.  

Andreazza   AC,   Shao   L,   Wang   JF,   Young   LT   (2010)   Mitochondrial   complex   I   activity   and  

oxidative  damage  to  mitochondrial  proteins  in  the  prefrontal  cortex  of  patients  with  

bipolar  disorder.  Archives  of  General  Psychiatry  67:360-­‐368.  

Andreazza  AC,  Wang  JF,  Salmasi  F,  Shao  L,  Young  LT  (2013)  Specific  subcellular  changes  in  

oxidative  stress  in  prefrontal  cortex  from  patients  with  bipolar  disorder.  Journal  of  

Neurochemistry  127:552-­‐561.  

Anglin  RE,  Garside  SL,  Tarnopolsky  MA,  Mazurek  MF,  Rosebush  PI  (2012)  The  psychiatric  

manifestations   of   mitochondrial   disorders:   a   case   and   review   of   the   literature.  

Journal  of  Clinical  Psychiatry  73:506-­‐512.  

Angst  F,  Stassen  HH,  Clayton  PJ,  Angst  J  (2002)  Mortality  of  patients  with  mood  disorders:  

follow-­‐up  over  34-­‐38  years.  Journal  of  Affective  Disorders  68:167-­‐181.  

Arnold   LM   (2003)   Gender   differences   in   bipolar   disorder.   Psychiatric   Clinics   of   North  

America  26:595-­‐620.  

Page 71: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  61  

Badner   JA,   Gershon   ES   (2002)   Meta-­‐analysis   of   whole-­‐genome   linkage   scans   of   bipolar  

disorder  and  schizophrenia.  Molecular  Psychiatry  7:405-­‐411.  

Banerjee  U,  Dasgupta  A,  Rout   JK,   Singh  OP   (2012)  Effects   of   lithium   therapy  on  Na+-­‐K+-­‐

ATPase   activity   and   lipid   peroxidation   in   bipolar   disorder.   Progress   in   Neuro-­‐

Psychopharmacology  and  Biological  Psychiatry  37:56-­‐61.  

Barnham  KJ,  Masters  CL,  Bush  AI  (2004)  Neurodegenerative  diseases  and  oxidative  stress.  

Nature  Reviews  Drug  Discovery  3:205-­‐214.  

Bearden   CE,   Thompson   PM,   Dutton   RA,   Frey   BN,   Peluso   MA,   Nicoletti   M,   Dierschke   N,  

Hayashi  KM,  Klunder  AD,  Glahn  DC,  Brambilla  P,  Sassi  RB,  Mallinger  AG,  Soares   JC  

(2008)   Three-­‐dimensional  mapping   of   hippocampal   anatomy   in   unmedicated   and  

lithium-­‐treated  patients  with  bipolar  disorder.  Neuropsychopharmacology  33:1229-­‐

1238.  

Benes  FM,  Matzilevich  D,  Burke  RE,  Walsh  J  (2006)  The  expression  of  proapoptosis  genes  is  

increased   in   bipolar   disorder,   but   not   in   schizophrenia.   Molecular   Psychiatry  

11:241-­‐251.  

Benes   FM,   Walsh   J,   Bhattacharyya   S,   Sheth   A,   Berretta   S   (2003)   DNA   fragmentation  

decreased  in  schizophrenia  but  not  bipolar  disorder.  Archives  of  General  Psychiatry  

60:359-­‐364.  

Berk  M,   Kapczinski   F,   Andreazza   AC,   Dean  OM,   Giorlando   F,  Maes  M,   Yucel  M,   Gama   CS,  

Dodd  S,  Dean  B,  Magalhaes  PV,  Amminger  P,  McGorry  P,  Malhi  GS  (2011)  Pathways  

underlying  neuroprogression   in  bipolar  disorder:   focus  on   inflammation,  oxidative  

stress   and  neurotrophic   factors.  Neuroscience  and  Biobehavioral  Reviews  35:804-­‐

817.  

Page 72: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  62  

Berk  M,  Malhi  GS,  Hallam  K,  Gama  CS,  Dodd  S,  Andreazza  AC,  Frey  BN,  Kapczinski  F  (2009)  

Early   intervention   in   bipolar   disorders:   clinical,   biochemical   and   neuroimaging  

imperatives.  Journal  of  Affective  Disorders  114:1-­‐13.  

Beyer   J,   Kuchibhatla  M,  Gersing  K,  Krishnan  KR   (2005)  Medical   comorbidity   in   a   bipolar  

outpatient  clinical  population.  Neuropsychopharmacology  30:401-­‐404.  

Bigos  KL,  Mattay  VS,  Callicott   JH,  Straub  RE,  Vakkalanka  R,  Kolachana  B,  Hyde  TM,  Lipska  

BK,  Kleinman  JE,  Weinberger  DR  (2010)  Genetic  variation  in  CACNA1C  affects  brain  

circuitries  related  to  mental  illness.  Archives  of  General  Psychiatry  67:939-­‐945.  

Boldrini   M,   Hen   R,   Underwood   MD,   Rosoklija   GB,   Dwork   AJ,   Mann   JJ,   Arango   V   (2012)  

Hippocampal   angiogenesis   and   progenitor   cell   proliferation   are   increased   with  

antidepressant  use  in  major  depression.  Biological  Psychiatry  72:562-­‐571.  

Brietzke  E,  Stertz  L,  Fernandes  BS,  Kauer-­‐Sant'Anna  M,  Mascarenhas  M,  Vargas  AE,  Chies  JA,  

Kapczinski   F   (2009)   Comparison   of   cytokine   levels   in   depressed,   manic   and  

euthymic   patients   with   bipolar   disorder.   Journal   of   Affective   Disorders   116:214-­‐

217.  

Buttner  N,  Bhattacharyya  S,  Walsh  J,  Benes  FM  (2007)  DNA  fragmentation  is   increased  in  

non-­‐GABAergic  neurons  in  bipolar  disorder  but  not  in  schizophrenia.  Schizophrenia  

Research  93:33-­‐41.  

Campbell  S,  Marriott  M,  Nahmias  C,  MacQueen  GM  (2004)  Lower  hippocampal  volume   in  

patients  suffering  from  depression:  a  meta-­‐analysis.  American  Journal  of  Psychiatry  

161:598-­‐607.  

Cassarino   DS,   Bennett   JP   (1999)   An   evaluation   of   the   role   of   mitochondria   in  

neurodegenerative   diseases:   mitochondrial   mutations   and   oxidative   pathology,  

Page 73: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  63  

protective  nuclear  responses,  and  cell  death   in  neurodegeneration.  Brain  Research  

Reviews  29:1-­‐25.  

Cataldo  AM,  McPhie  DL,  Lange  NT,  Punzell  S,  Elmiligy  S,  Ye  NZ,  Froimowitz  MP,  Hassinger  

LC,   Menesale   EB,   Sargent   LW,   Logan   DJ,   Carpenter   AE,   Cohen   BM   (2010)  

Abnormalities   in   mitochondrial   structure   in   cells   from   patients   with   bipolar  

disorder.  American  Journal  of  Pathology  177:575-­‐585.  

Che   Y,  Wang   JF,   Shao   L,   Young   T   (2010)   Oxidative   damage   to   RNA   but   not   DNA   in   the  

hippocampus   of   patients   with   major   mental   illness.   Journal   of   Psychiatry   &  

Neuroscience  35:296-­‐302.  

Chen  B,  Dowlatshahi  D,  MacQueen  GM,  Wang  JF,  Young  LT  (2001)  Increased  hippocampal  

BDNF   immunoreactivity   in   subjects   treated   with   antidepressant   medication.  

Biological  Psychiatry  50:260-­‐265.  

Chen   G,   Rajkowska   G,   Du   F,   Seraji-­‐Bozorgzad   N,   Manji   HK   (2000)   Enhancement   of  

hippocampal  neurogenesis  by  lithium.  Journal  of  Neurochemistry  75:1729-­‐1734.  

Chen  SL,  Lee  SY,  Chang  YH,  Chen  SH,  Chu  CH,  Wang  TY,  Chen  PS,  Lee  IH,  Yang  YK,  Hong  JS,  

Lu   RB   (2014)   The   BDNF   Val66Met   polymorphism   and   plasma   brain-­‐derived  

neurotrophic   factor   levels   in   Han   Chinese   patients   with   bipolar   disorder   and  

schizophrenia.   Progress   in   Neuro-­‐Psychopharmacology   and   Biological   Psychiatry  

51C:99-­‐104.  

Chen   YW,   Dilsaver   SC   (1996)   Lifetime   rates   of   suicide   attempts   among   subjects   with  

bipolar   and   unipolar   disorders   relative   to   subjects   with   other   Axis   I   disorders.  

Biological  Psychiatry  39:896-­‐899.  

Page 74: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  64  

Choi  KH,  Higgs  BW,  Wendland  JR,  Song  J,  McMahon  FJ,  Webster  MJ  (2011)  Gene  expression  

and  genetic  variation  data  implicate  PCLO  in  bipolar  disorder.  Biological  Psychiatry  

69:353-­‐359.  

Cunha  ABM,  Frey  BN,  Andreazza  AC,  Goi  JlD,  Rosa  AR,  Gon√ßalves  CA,  Santin  A,  Kapczinski  

F  (2006)  Serum  brain-­‐derived  neurotrophic  factor  is  decreased  in  bipolar  disorder  

during  depressive  and  manic  episodes.  Neuroscience  Letters  398:215-­‐219.  

D'Sa   C,   Duman   RS   (2002)   Antidepressants   and   neuroplasticity.   Bipolar   Disorders   4:183-­‐

194.  

Dalle-­‐Donne  I,  Rossi  R,  Colombo  R,  Giustarini  D,  Milzani  A  (2006)  Biomarkers  of  oxidative  

damage  in  human  disease.  Clinical  Chemistry  52:601-­‐623.  

Dong   E,   Gavin   DP,   Chen   Y,   Davis   J   (2012)   Upregulation   of   TET1   and   downregulation   of  

APOBEC3A  and  APOBEC3C  in  the  parietal  cortex  of  psychotic  patients.  Translational  

Psychiatry  2:e159.  

Dubovsky   SL,   Christiano   J,   Daniell   LC,   Franks   RD,   Murphy   J,   Adler   L,   Baker   N,   Harris   A  

(1989)   Increased   platelet   intracellular   calcium   concentration   in   patients   with  

bipolar  affective  disorders.  Archives  of  General  Psychiatry  46:632-­‐638.  

Duffy  A,  Lewitzka  U,  Doucette  S,  Andreazza  A,  Grof  P  (2012)  Biological  indicators  of  illness  

risk   in   offspring   of   bipolar   parents:   targeting   the   hypothalamic-­‐pituitary-­‐adrenal  

axis  and  immune  system.  Early  Intervention  in  Psychiatry  6:128-­‐137.  

Egger   M,   Smith   GD,   Schneider   M,   Minder   C   (1997)   Bias   in   meta-­‐analysis   detected   by   a  

simple,  graphical  test.  BMJ  315:629-­‐634.  

Ellison-­‐Wright   I,   Bullmore   E   (2009)  Meta-­‐analysis   of   diffusion   tensor   imaging   studies   in  

schizophrenia.  Schizophrenia  Research  108:3-­‐10.  

Page 75: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  65  

Emsell   L,   McDonald   C   (2009)   The   structural   neuroimaging   of   bipolar   disorder.  

International  Reviews  of  Psychiatry  21:297-­‐313.  

Eriksson  PS,  Perfilieva  E,  Bjork-­‐Eriksson  T,  Alborn  AM,  Nordborg  C,  Peterson  DA,  Gage  FH  

(1998)   Neurogenesis   in   the   adult   human   hippocampus.   Nature   Medicine   4:1313-­‐

1317.  

Fagiolini   A,   Goracci   A   (2009)   The   effects   of   undertreated   chronic   medical   illnesses   in  

patients  with  severe  mental  disorders.  Journal  of  Clinical  Psychiatry  70  Suppl  3:22-­‐

29.  

Fariss   MW,   Chan   CB,   Patel   M,   Van   Houten   B,   Orrenius   S   (2005)   Defining   mitochondrial  

targets   to   combat   the   pleiotropic   effects   of   toxic   oxidative   stress.   Molecular  

Interventions  5:94-­‐111.  

Feier   G,   Valvassori   SS,   Varela   RB,   Resende   WR,   Bavaresco   DV,   Morais   MO,   Scaini   G,  

Andersen  ML,  Streck  EL,  Quevedo  J  (2013)  Lithium  and  valproate  modulate  energy  

metabolism   in   an   animal   model   of   mania   induced   by   methamphetamine.  

Pharmacology,  Biochemistry  and  Behavior  103:589-­‐596.  

Fernandes  BS,   Gama  CS,   Cereser  KM,   Yatham  LN,   Fries  GR,   Colpo  G,   Lucena  Dd,  Kunz  M,  

Gomes  FA,  Kapczinski  F  (2011)  Brain-­‐derived  neurotrophic  factor  as  a  state-­‐marker  

of   mood   episodes   in   bipolar   disorders:   A   systematic   review   and  meta-­‐regression  

analysis.  Journal  of  Psychiatric  Research  45:995-­‐1004.  

Ferrer   I,   Martinez   A,   Boluda   S,   Parchi   P,   Barrachina   M   (2008)   Brain   banks:   benefits,  

limitations   and   cautions   concerning   the   use   of   post-­‐mortem   brain   tissue   for  

molecular  studies.  Cell  Tissue  Bank  9:181-­‐194.  

Page 76: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  66  

Frey  BN,  Andreazza  AC,  Houenou  J,   Jamain  Sp,  Goldstein  BI,  Frye  MA,  Leboyer  M,  Berk  M,  

Malhi  GS,  Lopez-­‐Jaramillo  C,  Taylor  VH,  Dodd  S,  Frangou  S,  Hall  GB,  Fernandes  BS,  

Kauer-­‐Sant‚ÄôAnna  M,   Yatham   LN,   Kapczinski   F,   Young   LT   (2013)   Biomarkers   in  

bipolar   disorder:   A   positional   paper   from   the   International   Society   for   Bipolar  

Disorders  Biomarkers  Task  Force.  Australian  and  New  Zealand  Journal  of  Psychiatry  

47:321-­‐332.  

Frey   BN,   Andreazza   AC,   Kunz   M,   Gomes   FA,   Quevedo   J,   Salvador   M,   Goncalves   CA,  

Kapczinski  F  (2007)  Increased  oxidative  stress  and  DNA  damage  in  bipolar  disorder:  

a   twin-­‐case   report.   Progress   in   Neuro-­‐Psychopharmacology   and   Biological  

Psychiatry  31:283-­‐285.  

Frey   BN,   Valvassori   SS,   Reus   GZ,   Martins   MR,   Petronilho   FC,   Bardini   K,   Dal-­‐Pizzol   F,  

Kapczinski  F,  Quevedo   J   (2006)  Effects  of   lithium  and  valproate  on  amphetamine-­‐

induced   oxidative   stress   generation   in   an   animal   model   of   mania.   Journal   of  

Psychiatry  and  Neuroscience  31:326-­‐332.  

Frodl  T,  Schuele  C,  Schmitt  G,  Born  C,  Baghai  T,  Zill  P,  Bottlender  R,  Rupprecht  R,  Bondy  B,  

Reiser   M,   Moeller   HJ,   Meisenzahl   EM   (2007)   Association   of   the   brain-­‐derived  

neurotrophic  factor  Val66Met  polymorphism  with  reduced  hippocampal  volumes  in  

major  depression.  Archives  of  General  Psychiatry  64:410-­‐416.  

Fullerton  JM,  Tiwari  Y,  Agahi  G,  Heath  A,  Berk  M,  Mitchell  PB,  Schofield  PR  (2010)  Assessing  

oxidative   pathway   genes   as   risk   factors   for   bipolar   disorder.   Bipolar   Disorders  

12:550-­‐556.  

Page 77: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  67  

Fusar-­‐Poli   P,  Howes  O,  Bechdolf  A,  Borgwardt   S   (2012)  Mapping   vulnerability   to  bipolar  

disorder:  a  systematic  review  and  meta-­‐analysis  of  neuroimaging  studies.  Journal  of  

Psychiatry  and  Neuroscience  37:170-­‐184.  

Gawryluk   JW,   Wang   JF,   Andreazza   AC,   Shao   L,   Young   LT   (2011)   Decreased   levels   of  

glutathione,   the   major   brain   antioxidant,   in   post-­‐mortem   prefrontal   cortex   from  

patients   with   psychiatric   disorders.   The   International   Journal   of  

Neuropsychopharmacology  14:123-­‐130.  

Gergerlioglu  HS,  Savas  HA,  Bulbul  F,  Selek  S,  Uz  E,  Yumru  M  (2007)  Changes  in  nitric  oxide  

level   and   superoxide   dismutase   activity   during   antimanic   treatment.   Progress   in  

Neuro-­‐Psychopharmacology  and  Biological  Psychiatry  31:697-­‐702.  

Gigante  AD,  Andreazza  AC,  Lafer  B,  Yatham  LN,  Beasley  CL,  Young  LT  (2011a)  Decreased  

mRNA  expression   of   uncoupling  protein   2,   a  mitochondrial   proton   transporter,   in  

post-­‐mortem   prefrontal   cortex   from   patients   with   bipolar   disorder   and  

schizophrenia.  Neuroscience  Letters  505:47-­‐51.  

Gigante  AD,  Young  LT,  Yatham  LN,  Andreazza  AC,  Nery  FG,  Grinberg  LT,  Heinsen  H,  Lafer  B  

(2011b)   Morphometric   post-­‐mortem   studies   in   bipolar   disorder:   possible  

association   with   oxidative   stress   and   apoptosis.   International   Journal   of  

Neuropsychopharmacology  14:1075-­‐1089.  

Giustarini  D,  Dalle-­‐Donne  I,  Tsikas  D,  Rossi  R  (2009)  Oxidative  stress  and  human  diseases:  

Origin,  link,  measurement,  mechanisms,  and  biomarkers.  Critical  Reviews  in  Clinical  

Laboratory  Sciences  46:241-­‐281.  

Page 78: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  68  

Goetzel  RZ,  Hawkins  K,  Ozminkowski  RJ,  Wang  S  (2003)  The  health  and  productivity  cost  

burden  of  the  "top  10"  physical  and  mental  health  conditions  affecting  six  large  U.S.  

employers  in  1999.  Journal  of  Occupational  and  Environmental  Medicine  45:5-­‐14.  

Goldstein   BI,   Kemp   DE,   Soczynska   JK,   McIntyre   RS   (2009)   Inflammation   and   the  

phenomenology,  pathophysiology,  comorbidity,  and  treatment  of  bipolar  disorder:  A  

systematic  review  of  the  literature.  Journal  of  Clinical  Psychiatry  70:1078-­‐1090.  

Grayson   DR,   Guidotti   A   (2013)   The   Dynamics   of   DNA  Methylation   in   Schizophrenia   and  

Related  Psychiatric  Disorders.  Neuropsychopharmacology  38:138-­‐166.  

Group  PGCBDW  (2011)  Large-­‐scale  genome-­‐wide  association  analysis  of  bipolar  disorder  

identifies  a  new  susceptibility  locus  near  ODZ4.  Nature  Genetics  43:977-­‐983.  

Gu  X,  Sun  J,  Li  S,  Wu  X,  Li  L  (2013)  Oxidative  stress  induces  DNA  demethylation  and  histone  

acetylation  in  SH-­‐SY5Y  cells:  potential  epigenetic  mechanisms  in  gene  transcription  

in  Abeta  production.  Neurobiology  of  Aging  34:1069-­‐1079.  

Gubert  C,  Stertz  L,  Pfaffenseller  B,  Panizzutti  BS,  Rezin  GT,  Massuda  R,  Streck  EL,  Gama  CS,  

Kapczinski  F,  Kunz  M  (2013)  Mitochondrial  activity  and  oxidative  stress  markers  in  

peripheral  blood  mononuclear  cells  of  patients  with  bipolar  disorder,  schizophrenia,  

and  healthy  subjects.  Journal  of  Psychiatric  Research  47:1396-­‐1402.  

Guo  JU,  Su  Y,  Zhong  C,  Ming  GL,  Song  H  (2011)  Hydroxylation  of  5-­‐methylcytosine  by  TET1  

promotes  active  DNA  demethylation  in  the  adult  brain.  Cell  145:423-­‐434.  

Hafeman  DM,  Chang  KD,  Garrett  AS,  Sanders  EM,  Phillips  ML  (2012)  Effects  of  medication  

on  neuroimaging  findings  in  bipolar  disorder:  an  updated  review.  Bipolar  Disorders  

14:375-­‐410.  

Page 79: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  69  

Hajek  T,  Bauer  M,  Simhandl  C,  Rybakowski  J,  O'Donovan  C,  Pfennig  A,  Konig  B,  Suwalska  A,  

Yucel   K,   Uher  R,   Young   LT,  Macqueen  G,   Alda  M   (2014)  Neuroprotective   effect   of  

lithium   on   hippocampal   volumes   in   bipolar   disorder   independent   of   long-­‐term  

treatment  response.  Psychological  Medicine  44:507-­‐517.  

Hakak  Y,  Walker   JR,  Li  C,  Wong  WH,  Davis  KL,  Buxbaum   JD,  Haroutunian  V,  Fienberg  AA  

(2001)   Genome-­‐wide   expression   analysis   reveals   dysregulation   of   myelination-­‐

related   genes   in   chronic   schizophrenia.   Proceedings   of   the   National   Academy   of  

Sciences  of  the  United  States  of  America  98:4746-­‐4751.  

He  YF,  Li  BZ,  Li  Z,  Liu  P,  Wang  Y,  Tang  Q,  Ding  J,  Jia  Y,  Chen  Z,  Li  L,  Sun  Y,  Li  X,  Dai  Q,  Song  

CX,  Zhang  K,  He  C,  Xu  GL  (2011)  Tet-­‐mediated  formation  of  5-­‐carboxylcytosine  and  

its  excision  by  TDG  in  mammalian  DNA.  Science  333:1303-­‐1307.  

Hough   C,   Lu   SJ,   Davis   CL,   Chuang   DM,   Post   RM   (1999)   Elevated   basal   and   thapsigargin-­‐

stimulated  intracellular  calcium  of  platelets  and  lymphocytes  from  bipolar  affective  

disorder   patients   measured   by   a   fluorometric   microassay.   Biological   Psychiatry  

46:247-­‐255.  

Ito  S,  Shen  L,  Dai  Q,  Wu  SC,  Collins  LB,  Swenberg  JA,  He  C,  Zhang  Y  (2011)  Tet  proteins  can  

convert   5-­‐methylcytosine   to   5-­‐formylcytosine   and   5-­‐carboxylcytosine.   Science  

333:1300-­‐1303.  

Iwamoto  K,  Bundo  M,  Kato  T  (2005)  Altered  expression  of  mitochondria-­‐related  genes   in  

postmortem  brains  of  patients  with  bipolar  disorder  or  schizophrenia,  as  revealed  

by  large-­‐scale  DNA  microarray  analysis.  Human  Molecular  Genetics  14:241-­‐253.  

Page 80: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  70  

Jogia   J,   Ruberto   G,   Lelli-­‐Chiesa   G,   Vassos   E,   Maieru   M,   Tatarelli   R,   Girardi   P,   Collier   D,  

Frangou  S  (2011)  The  impact  of  the  CACNA1C  gene  polymorphism  on  frontolimbic  

function  in  bipolar  disorder.  Molecular  Psychiatry  16:1070-­‐1071.  

Kapczinski  F,  Dal-­‐Pizzol  F,  Teixeira  AL,  Magalhaes  PV,  Kauer-­‐Sant'Anna  M,  Klamt  F,  Moreira  

JC,   de   Bittencourt   Pasquali   MA,   Fries   GR,   Quevedo   J,   Gama   CS,   Post   R   (2011)  

Peripheral  biomarkers  and  illness  activity  in  bipolar  disorder.  Journal  of  Psychiatric  

Research  45:156-­‐161.  

Kapczinski   F,   Frey   BN,   Andreazza   AC,   Kauer-­‐Sant'Anna   M,   Cunha   AB,   Post   RM   (2008)  

Increased  oxidative  stress  as  a  mechanism  for  decreased  BDNF  levels  in  acute  manic  

episodes.  Revista  Brasileira  de  Psiquiatria  30:243-­‐245.  

Kato   T   (2008)   Role   of   mitochondrial   DNA   in   calcium   signaling   abnormality   in   bipolar  

disorder.  Cell  Calcium  44:92-­‐102.  

Kauer-­‐Sant'Anna  M,  Kapczinski  F,  Andreazza  AC,  Bond  DJ,  Lam  RW,  Young  LT,  Yatham  LN  

(2009)   Brain-­‐derived   neurotrophic   factor   and   inflammatory   markers   in   patients  

with   early-­‐   vs.   late-­‐stage   bipolar   disorder.   International   Journal   of  

Neuropsychopharmacology  12:447-­‐458.  

Kessler   RC,   Berglund   P,   Demler   O,   Jin   R,   Merikangas   KR,   Walters   EE   (2005)   Lifetime  

prevalence   and   age-­‐of-­‐onset   distributions   of   DSM-­‐IV   disorders   in   the   National  

Comorbidity  Survey  Replication.  Archives  of  General  Psychiatry  62:593-­‐602.  

Khairova  R,  Pawar  R,  Salvadore  G,  Juruena  MF,  de  Sousa  RT,  Soeiro-­‐de-­‐Souza  MG,  Salvador  

M,   Zarate   CA,  Gattaz  WF,  Machado-­‐Vieira  R   (2012)  Effects   of   lithium  on  oxidative  

stress  parameters  in  healthy  subjects.  Molecular  Medicine  Reports  5:680-­‐682.  

Page 81: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  71  

Kim   HJ,   Soh   Y,   Jang   JH,   Lee   JS,   Oh   YJ,   Surh   YJ   (2001)   Differential   cell   death   induced   by  

salsolinol   with   and   without   copper:   possible   role   of   reactive   oxygen   species.  

Molecular  Pharmacology  60:440-­‐449.  

Kim  HW,  Rapoport  SI,  Rao  JS  (2010)  Altered  expression  of  apoptotic   factors  and  synaptic  

markers   in   postmortem   brain   from   bipolar   disorder   patients.   Neurobiology   of  

Disease  37:596-­‐603.  

Kim  YK,  Jung  HG,  Myint  AM,  Kim  H,  Park  SH  (2007)  Imbalance  between  pro-­‐inflammatory  

and  anti-­‐inflammatory  cytokines  in  bipolar  disorder.   Journal  of  Affective  Disorders  

104:91-­‐95.  

Klug  M,  Schmidhofer  S,  Gebhard  C,  Andreesen  R,  Rehli  M  (2013)  5-­‐Hydroxymethylcytosine  

is   an   essential   intermediate   of   active   DNA   demethylation   processes   in   primary  

human  monocytes.  Genome  Biology  14:R46.  

Ko  M,  Huang  Y,   Jankowska  AM,  Pape  UJ,  Tahiliani  M,  Bandukwala  HS,  An   J,   Lamperti  ED,  

Koh   KP,   Ganetzky   R,   Liu   XS,   Aravind   L,   Agarwal   S,   Maciejewski   JP,   Rao   A   (2010)  

Impaired  hydroxylation  of  5-­‐methylcytosine  in  myeloid  cancers  with  mutant  TET2.  

Nature  468:839-­‐843.  

Kohli   RM,   Zhang   Y   (2013)   TET   enzymes,   TDG   and   the   dynamics   of   DNA   demethylation.  

Nature  502:472-­‐479.  

Konradi   C,   Eaton   M,   MacDonald   ML,   Walsh   J,   Benes   FM,   Heckers   S   (2004)   Molecular  

evidence   for   mitochondrial   dysfunction   in   bipolar   disorder.   Archives   of   General  

Psychiatry  61:300-­‐308.  

Koo  MS,  Levitt   JJ,   Salisbury  DF,  Nakamura  M,   Shenton  ME,  McCarley  RW  (2008)  A   cross-­‐

sectional  and  longitudinal  magnetic  resonance  imaging  study  of  cingulate  gyrus  gray  

Page 82: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  72  

matter   volume   abnormalities   in   first-­‐episode   schizophrenia   and   first-­‐episode  

affective  psychosis.  Archives  of  General  Psychiatry  65:746-­‐760.  

Kuloglu   M,   Ustundag   B,   Atmaca   M,   Canatan   H,   Tezcan   AE,   Cinkilinc   N   (2002)   Lipid  

peroxidation   and   antioxidant   enzyme   levels   in   patients   with   schizophrenia   and  

bipolar  disorder.  Cell  Biochemistry  and  Function  20:171-­‐175.  

Kunz  M,  Gama  CS,  Andreazza  AC,  Salvador  M,  Cereser  KM,  Gomes  FA,  Belmonte-­‐de-­‐Abreu  

PS,   Berk   M,   Kapczinski   F   (2008)   Elevated   serum   superoxide   dismutase   and  

thiobarbituric  acid  reactive  substances  in  different  phases  of  bipolar  disorder  and  in  

schizophrenia.   Progress   in   Neuro-­‐Psychopharmacology   and   Biological   Psychiatry  

32:1677-­‐1681.  

Kupfer   DJ   (2005)   The   increasing   medical   burden   in   bipolar   disorder.   Journal   of   the  

American  Medical  Association  293:2528-­‐2530.  

Kuratomi   G,   Iwamoto   K,   Bundo   M,   Kusumi   I,   Kato   N,   Iwata   N,   Ozaki   N,   Kato   T   (2008)  

Aberrant   DNA   methylation   associated   with   bipolar   disorder   identified   from  

discordant  monozygotic  twins.  Molecular  Psychiatry  13:429-­‐441.  

Lopez-­‐Armada   MJ,   Riveiro-­‐Naveira   RR,   Vaamonde-­‐Garcia   C,   Valcarcel-­‐Ares   MN   (2013)  

Mitochondrial  dysfunction  and  the   inflammatory  response.  Mitochondrion  13:106-­‐

118.  

Lowthert  L,  Leffert  J,  Lin  A,  Umlauf  S,  Maloney  K,  Muralidharan  A,  Lorberg  B,  Mane  S,  Zhao  

H,  Sinha  R,  Bhagwagar  Z,  Beech  R   (2012)   Increased  ratio  of  anti-­‐apoptotic   to  pro-­‐

apoptotic   Bcl2   gene-­‐family   members   in   lithium-­‐responders   one   month   after  

treatment  initiation.  Biology  of  Mood  &  Anxiety  Disorders  2:15.  

Page 83: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  73  

Lucca  G,  Comim  CM,  Valvassori  SS,  Reus  GZ,  Vuolo  F,  Petronilho  F,  Gavioli  EC,  Dal-­‐Pizzol  F,  

Quevedo  J  (2009)  Increased  oxidative  stress  in  submitochondrial  particles  into  the  

brain  of   rats  submitted   to   the  chronic  mild  stress  paradigm.   Journal  of  Psychiatric  

Research  43:864-­‐869.  

Machado-­‐Vieira  R,  Andreazza  AC,  Viale  CI,  Zanatto  V,  Cereser  V,  Vargas  RD,  Kapczinski  F,  

Portela  LV,  Souza  DO,  Salvador  M,  Gentil  V  (2007a)  Oxidative  stress  parameters   in  

unmedicated  and   treated  bipolar   subjects  during   initial  manic   episode:  A  possible  

role  for  lithium  antioxidant  effects.  Neuroscience  Letters  421:33-­‐36.  

Machado-­‐Vieira   R,   Dietrich   MO,   Leke   R,   Cereser   VH,   Zanatto   V,   Kapczinski   F,   Souza   DO,  

Portela  LV,  Gentil  V  (2007b)  Decreased  Plasma  Brain  Derived  Neurotrophic  Factor  

Levels  in  Unmedicated  Bipolar  Patients  During  Manic  Episode.  Biological  Psychiatry  

61:142-­‐144.  

Magalhaes   PV,   Jansen   K,   Pinheiro   RT,   Colpo   GD,   da   Motta   LL,   Klamt   F,   da   Silva   RA,  

Kapczinski  F  (2012)  Peripheral  oxidative  damage   in  early-­‐stage  mood  disorders:  a  

nested   population-­‐based   case-­‐control   study.   International   Journal   of  

Neuropsychopharmacology  15:1043-­‐1050.  

Malhi  GS,  Adams  D,  Berk  M   (2009)  Medicating  mood  with  maintenance   in  mind:   bipolar  

depression  pharmacotherapy.  Bipolar  Disorders  11  Suppl  2:55-­‐76.  

Manji   HK,   Quiroz   JA,   Sporn   J,   Payne   JL,   Denicoff   K,   A.   Gray   N,   Zarate   Jr   CA,   Charney   DS  

(2003)   Enhancing   neuronal   plasticity   and   cellular   resilience   to   develop   novel,  

improved   therapeutics   for   Difficult-­‐to-­‐Treat   depression.   Biological   Psychiatry  

53:707-­‐742.  

Page 84: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  74  

Markham  A,  Cameron  I,  Bains  R,  Franklin  P,  Kiss  JP,  Schwendimann  L,  Gressens  P,  Spedding  

M   (2012)   Brain-­‐derived   neurotrophic   factor-­‐mediated   effects   on   mitochondrial  

respiratory   coupling   and   neuroprotection   share   the   same   molecular   signalling  

pathways.  European  Journal  of  Neuroscience  35:366-­‐374.  

Matarese  F,  Carrillo-­‐de  Santa  Pau  E,  Stunnenberg  HG  (2011)  5-­‐Hydroxymethylcytosine:  a  

new  kid  on  the  epigenetic  block?  Molecular  Systems  Biology  7:562.  

McDonald  C,  Marshall  N,  Sham  PC,  Bullmore  ET,  Schulze  K,  Chapple  B,  Bramon  E,  Filbey  F,  

Quraishi  S,  Walshe  M,  Murray  RM  (2006)  Regional  brain  morphometry   in  patients  

with   schizophrenia   or   bipolar   disorder   and   their   unaffected   relatives.   American  

Journal  of  Psychiatry  163:478-­‐487.  

McElroy  SL,  Altshuler  LL,  Suppes  T,  Keck  PE,   Jr.,  Frye  MA,  Denicoff  KD,  Nolen  WA,  Kupka  

RW,   Leverich   GS,   Rochussen   JR,   Rush   AJ,   Post   RM   (2001)   Axis   I   psychiatric  

comorbidity  and  its  relationship  to  historical   illness  variables   in  288  patients  with  

bipolar  disorder.  American  Journal  of  Psychiatry  158:420-­‐426.  

Merikangas  KR,  Akiskal  HS,  Angst  J,  Greenberg  PE,  Hirschfeld  RM,  Petukhova  M,  Kessler  RC  

(2007)   Lifetime   and   12-­‐month   prevalence   of   bipolar   spectrum   disorder   in   the  

National   Comorbidity   Survey   replication.   Archives   of   General   Psychiatry   64:543-­‐

552.  

Miklowitz   DJ,   Schneck   CD,   Singh   MK,   Taylor   DO,   George   EL,   Cosgrove   VE,   Howe   ME,  

Dickinson   LM,   Garber   J,   Chang   KKD   (2013)   Early   Intervention   for   Symptomatic  

Youth  at  Risk  for  Bipolar  Disorder:  A  Randomized  Trial  of  Family-­‐Focused  Therapy.  

Journal  of  the  American  Academy  of  Child  and  Adolescent  Psychiatry  52:121-­‐131.  

Page 85: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  75  

Mill   J,   Tang   T,   Kaminsky   Z,   Khare   T,   Yazdanpanah   S,   Bouchard   L,   Jia   P,   Assadzadeh   A,  

Flanagan  J,  Schumacher  A,  Wang  SC,  Petronis  A  (2008)  Epigenomic  Profiling  Reveals  

DNA-­‐Methylation   Changes   Associated   with   Major   Psychosis.   American   Journal   of  

Human  Genetics  82:696-­‐711.  

Miller   S,   Hallmayer   J,   Wang   PW,   Hill   SJ,   Johnson   SL,   Ketter   TA   (2013)   Brain-­‐derived  

neurotrophic   factor   val66met   genotype   and   early   life   stress   effects   upon   bipolar  

course.  Journal  of  Psychiatric  Research  47:252-­‐258.  

Min   HJ,   Cho   HS,   Kim   SJ,   Seok   JH,   Lee   E,   Jon   DI   (2012)   Association   of   the   Brain-­‐derived  

Neurotrophic   Factor   Gene   and   Clinical   Features   of   Bipolar   Disorder   in   Korea.  

Clinical  Psychopharmacology  and  Neuroscience  10:163-­‐167.  

Moorhead   TW,   McKirdy   J,   Sussmann   JE,   Hall   J,   Lawrie   SM,   Johnstone   EC,   McIntosh   AM  

(2007)   Progressive   gray   matter   loss   in   patients   with   bipolar   disorder.   Biological  

Psychiatry  62:894-­‐900.  

Murphy   MP   (2009)   How   mitochondria   produce   reactive   oxygen   species.   Biochemical  

Journal  417:1-­‐13.  

Murray  CJL,  Lopez  AD  (1996)  The  Global  Burden  of  Disease:  a  comprehensive  assessment  

of   mortality   and   disability   from   diseases,   injuries,   and   risk   factors   in   1990   and  

projected  to  2020.  Cambridge,  MA:  Harvard  School  of  Public  Health  (Global  Burden  

of  Disease  and  Injury  Series,  vol.  I).  

Mustak  MS,  Hegde  ML,  Dinesh  A,  Britton  GB,  Berrocal  R,  Subba  Rao  K,  Shamasundar  NM,  

Rao   KS,   Sathyanarayana   Rao   TS   (2010)   Evidence   of   altered   DNA   integrity   in   the  

brain  regions  of  suicidal  victims  of  Bipolar  Depression.  Indian  Journal  of  Psychiatry  

52:220-­‐228.  

Page 86: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  76  

Neves-­‐Pereira   M,   Cheung   J,   Pasdar   A,   Zhang   F,   Breen   G,   Yates   P,   Sinclair   M,   Crombie   C,  

Walker   N,   St   Clair   DM   (2005)   BDNF   gene   is   a   risk   factor   for   schizophrenia   in   a  

Scottish  population.  Molecular  Psychiatry  10:208-­‐212.  

Ng  F,  Berk  M,  Dean  O,  Bush  AI   (2008)  Oxidative  stress   in  psychiatric  disorders:  evidence  

base   and   therapeutic   implications.   International   Journal   of  

Neuropsychopharmacology  11:851-­‐876.  

Nortje   G,   Stein   DJ,   Radua   J,   Mataix-­‐Cols   D,   Horn   N   (2013)   Systematic   review   and   voxel-­‐

based  meta-­‐analysis  of  diffusion  tensor  imaging  studies  in  bipolar  disorder.  Journal  

of  Affective  Disorders  150:192-­‐200.  

O'Brien   SM,   Scully   P,   Scott   LV,   Dinan   TG   (2006)   Cytokine   profiles   in   bipolar   affective  

disorder:  Focus  on  acutely  ill  patients.  Journal  of  Affective  Disorders  90:263-­‐267.  

Ozcan  ME,  Gulec  M,  Ozerol  E,   Polat  R,  Akyol  O   (2004)  Antioxidant   enzyme  activities   and  

oxidative   stress   in   affective   disorders.   International   Clinical   Psychopharmacology  

19:89-­‐95.  

Palomino   A,   Vallejo-­‐Illarramendi   A,   Gonzalez-­‐Pinto   A,   Aldama   A,   Gonzalez-­‐Gomez   C,  

Mosquera  F,  Gonzalez-­‐Garcia  G,  Matute  C  (2006)  Decreased  levels  of  plasma  BDNF  

in   first-­‐episode   schizophrenia   and   bipolar   disorder   patients.   Schizophrenia  

Research  86:321-­‐322.  

Pariante  CM,  Miller  AH  (2001)  Glucocorticoid  receptors  in  major  depression:  relevance  to  

pathophysiology  and  treatment.  Biological  Psychiatry  49:391-­‐404.  

Perry  A,  Tarrier  N,  Morriss  R,  McCarthy  E,  Limb  K  (1999)  Randomised  controlled   trial  of  

efficacy   of   teaching   patients   with   bipolar   disorder   to   identify   early   symptoms   of  

relapse  and  obtain  treatment.  BMJ  318:149-­‐153.  

Page 87: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  77  

Petronis  A  (2010)  Epigenetics  as  a  unifying  principle  in  the  aetiology  of  complex  traits  and  

diseases.  Nature  465:721-­‐727.  

Phillips  ML,  Kupfer  DJ  (2013)  Bipolar  disorder  diagnosis:  challenges  and  future  directions.  

Lancet  381:1663-­‐1671.  

Prabakaran  S,  Swatton  JE,  Ryan  MM,  Huffaker  SJ,  Huang  JT,  Griffin  JL,  Wayland  M,  Freeman  

T,  Dudbridge  F,  Lilley  KS,  Karp  NA,  Hester  S,  Tkachev  D,  Mimmack  ML,  Yolken  RH,  

Webster  MJ,  Torrey  EF,  Bahn  S  (2004)  Mitochondrial  dysfunction  in  schizophrenia:  

evidence   for   compromised   brain   metabolism   and   oxidative   stress.   Molecular  

Psychiatry  9:684-­‐697,  643.  

Quiroz   JA,   Gray   NA,   Kato   T,  Manji   HK   (2008)  Mitochondrially  mediated   plasticity   in   the  

pathophysiology   and   treatment   of   bipolar   disorder.   Neuropsychopharmacology  

33:2551-­‐2565.  

Raffa  M,   Barhoumi   S,   Atig   F,   Fendri   C,   Kerkeni   A,  Mechri   A   (2012)   Reduced   antioxidant  

defense   systems   in   schizophrenia   and   bipolar   I   disorder.   Progress   in   Neuro-­‐

Psychopharmacology  and  Biological  Psychiatry  39:371-­‐375.  

Rao   JS,   Harry   GJ,   Rapoport   SI,   Kim   HW   (2010)   Increased   excitotoxicity   and  

neuroinflammatory   markers   in   postmortem   frontal   cortex   from   bipolar   disorder  

patients.  Molecular  Psychiatry  15:384-­‐392.  

Rezin  GT,  Amboni  G,  Zugno  AI,  Quevedo  J,  Streck  EL  (2009)  Mitochondrial  Dysfunction  and  

Psychiatric  Disorders.  Neurochemical  Research  34:1021-­‐1029.  

Santarelli  L,  Saxe  M,  Gross  C,  Surget  A,  Battaglia  F,  Dulawa  S,  Weisstaub  N,  Lee  J,  Duman  R,  

Arancio  O,  Belzung  C,  Hen  R  (2003)  Requirement  of  hippocampal  neurogenesis  for  

the  behavioral  effects  of  antidepressants.  Science  301:805-­‐809.  

Page 88: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  78  

Savas  HA,  Gergerlioglu  HS,  Armutcu  F,  Herken  H,  Yilmaz  HR,  Kocoglu  E,  Selek  S,  Tutkun  H,  

Zoroglu  SS,  Akyol  O  (2006)  Elevated  serum  nitric  oxide  and  superoxide  dismutase  in  

euthymic   bipolar   patients:   Impact   of   past   episodes.   World   Journal   of   Biological  

Psychiatry  7:51-­‐55.  

Savas  HA,  Herken  H,   Yurekli  M,  Uz  E,   Tutkun  H,   Zoroglu   SS,  Ozen  ME,   Cengiz  B,  Akyol  O  

(2002)  Possible  role  of  nitric  oxide  and  adrenomedullin  in  bipolar  affective  disorder.  

Neuropsychobiology  45:57-­‐61.  

Schmidt   HD,   Duman   RS   (2007)   The   role   of   neurotrophic   factors   in   adult   hippocampal  

neurogenesis,   antidepressant   treatments   and   animal   models   of   depressive-­‐like  

behavior.  Behavioural  Pharmacology  18:391-­‐418.  

Scola  G,  Kim  HK,  Young  LT,  Andreazza  AC  (2013)  A  Fresh  Look  at  Complex  I  in  Microarray  

Data:  Clues  to  Understanding  Disease-­‐Specific  Mitochondrial  Alterations   in  Bipolar  

Disorder.  Biological  Psychiatry  73:e4-­‐e5.  

Scott  LJ,  Muglia  P,  Kong  XQ,  Guan  W,  Flickinger  M,  Upmanyu  R,  Tozzi  F,  Li  JZ,  Burmeister  M,  

Absher   D,   Thompson   RC,   Francks   C,   Meng   F,   Antoniades   A,   Southwick   AM,  

Schatzberg  AF,  Bunney  WE,  Barchas   JD,   Jones  EG,  Day  R,  Matthews  K,  McGuffin  P,  

Strauss   JS,   Kennedy   JL,  Middleton   L,   Roses   AD,  Watson   SJ,   Vincent   JB,  Myers   RM,  

Farmer   AE,   Akil   H,   Burns   DK,   Boehnke   M   (2009)   Genome-­‐wide   association   and  

meta-­‐analysis  of  bipolar  disorder  in   individuals  of  European  ancestry.  Proceedings  

of  the  National  Academy  of  Sciences  106:7501-­‐7506.  

Selek   S,   Savas  HA,  Gergerlioglu  HS,  Bulbul   F,  Uz  E,   Yumru  M   (2008)  The   course   of   nitric  

oxide   and   superoxide   dismutase   during   treatment   of   bipolar   depressive   episode.  

Journal  of  Affective  Disorders  107:89-­‐94.  

Page 89: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  79  

Shan  X,  Tashiro  H,  Lin  CL  (2003)  The  identification  and  characterization  of  oxidized  RNAs  

in  Alzheimer's  disease.  The  Journal  of  Neuroscience  23:4913-­‐4921.  

Simon   GE   (2003)   Social   and   economic   burden   of   mood   disorders.   Biological   Psychiatry  

54:208-­‐215.  

Smith   AL   (1967)   Preparation,   properties   and   conditions   for   assay   of   mitochondria:  

slaughterhouse  material,  small  scale.  Methods  in  Enzymology  10:81-­‐86.  

Smoller   JW,   Finn   CT   (2003)   Family,   twin,   and   adoption   studies   of   bipolar   disorder.  

American  Journal  of  Medical  Genetics  Part  C  Seminars  in  Medical  Genetics  123C:48-­‐

58.  

Soeiro-­‐de-­‐Souza  MG,  Andreazza  AC,  Carvalho  AF,  Machado-­‐Vieira  R,  Young  LT,  Moreno  RA  

(2013)   Number   of   manic   episodes   is   associated   with   elevated   DNA   oxidation   in  

bipolar   I   disorder.   International   Journal   of   Neuropsychopharmacology   16:1505-­‐

1512.  

Son  Y,  Yang  M,  Kim  JS,  Kim  J,  Kim  SH,  Kim  JC,  Shin  T,  Wang  H,  Jo  SK,  Jung  U,  Moon  C  (2014)  

Hippocampal  dysfunction  during   the   chronic  phase   following   a   single   exposure   to  

cranial  irradiation.  Experimental  Neurology  254:134-­‐144.  

Sun   X,   Wang   JF,   Tseng   M,   Young   LT   (2006)   Downregulation   in   components   of   the  

mitochondrial  electron  transport  chain  in  the  postmortem  frontal  cortex  of  subjects  

with  bipolar  disorder.  Journal  of  Psychiatry  and  Neuroscience  31:189-­‐196.  

Swayze  VW,  2nd,  Andreasen  NC,  Alliger  RJ,  Ehrhardt   JC,  Yuh  WT   (1990)  Structural  brain  

abnormalities  in  bipolar  affective  disorder.  Ventricular  enlargement  and  focal  signal  

hyperintensities.  Archives  of  General  Psychiatry  47:1054-­‐1059.  

Page 90: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  80  

Tan   CH,   Javors   MA,   Seleshi   E,   Lowrimore   PA,   Bowden   CL   (1990)   Effects   of   lithium   on  

platelet   ionic   intracellular   calcium   concentration   in   patients   with   bipolar   (manic-­‐

depressive)  disorder  and  healthy  controls.  Life  Sciences  46:1175-­‐1180.  

Thompson  PM,  Stein  JL,  Medland  SE,  Hibar  DP,  Vasquez  AA,  Renteria  ME,  Toro  R,  Jahanshad  

N,   Schumann   G,   Franke   B,   Wright   MJ,   Martin   NG,   Agartz   I,   Alda   M,   Alhusaini   S,  

Almasy  L,  Almeida  J,  Alpert  K,  Andreasen  NC,  Andreassen  OA,  Apostolova  LG,  Appel  

K,  Armstrong  NJ,  Aribisala  B,  Bastin  ME,  Bauer  M,  Bearden  CE,  Bergmann  O,  Binder  

EB,   Blangero   J,   Bockholt   HJ,   Boen   E,   Bois   C,   Boomsma   DI,   Booth   T,   Bowman   IJ,  

Bralten  J,  Brouwer  RM,  Brunner  HG,  Brohawn  DG,  Buckner  RL,  Buitelaar  J,  Bulayeva  

K,  Bustillo  JR,  Calhoun  VD,  Cannon  DM,  Cantor  RM,  Carless  MA,  Caseras  X,  Cavalleri  

GL,  Chakravarty  MM,  Chang  KD,  Ching  CR,  Christoforou  A,  Cichon  S,  Clark  VP,  Conrod  

P,  Coppola  G,  Crespo-­‐Facorro  B,  Curran  JE,  Czisch  M,  Deary  IJ,  de  Geus  EJ,  den  Braber  

A,   Delvecchio   G,   Depondt   C,   de   Haan   L,   de   Zubicaray   GI,   Dima   D,   Dimitrova   R,  

Djurovic   S,   Dong   H,   Donohoe   G,   Duggirala   R,   Dyer   TD,   Ehrlich   S,   Ekman   CJ,  

Elvsashagen  T,  Emsell  L,  Erk  S,  Espeseth  T,  Fagerness  J,  Fears  S,  Fedko  I,  Fernandez  

G,   Fisher   SE,   Foroud  T,   Fox  PT,   Francks  C,   Frangou   S,   Frey  EM,   Frodl  T,   Frouin  V,  

Garavan  H,  Giddaluru  S,  Glahn  DC,  Godlewska  B,  Goldstein  RZ,  Gollub  RL,  Grabe  HJ,  

Grimm  O,  Gruber  O,  Guadalupe  T,  Gur  RE,  Gur  RC,  Goring  HH,  Hagenaars  S,  Hajek  T,  

Hall  GB,  Hall  J,  Hardy  J,  Hartman  CA,  Hass  J,  Hatton  SN,  Haukvik  UK,  Hegenscheid  K,  

Heinz  A,  Hickie  IB,  Ho  BC,  Hoehn  D,  Hoekstra  PJ,  Hollinshead  M,  Holmes  AJ,  Homuth  

G,  Hoogman  M,  Hong  LE,  Hosten  N,  Hottenga  JJ,  Hulshoff  Pol  HE,  Hwang  KS,  Jack  CR,  

Jr.,   Jenkinson  M,  Johnston  C,  Jonsson  EG,  Kahn  RS,  Kasperaviciute  D,  Kelly  S,  Kim  S,  

Kochunov   P,   Koenders   L,   Kramer   B,   Kwok   JB,   Lagopoulos   J,   Laje   G,   Landen   M,  

Page 91: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  81  

Landman  BA,  Lauriello  J,  Lawrie  SM,  Lee  PH,  Le  Hellard  S,  Lemaitre  H,  Leonardo  CD,  

Li   CS,   Liberg   B,   Liewald   DC,   Liu   X,   Lopez   LM,   Loth   E,   Lourdusamy   A,   Luciano  M,  

Macciardi   F,   Machielsen   MW,   Macqueen   GM,   Malt   UF,   Mandl   R,   Manoach   DS,  

Martinot  JL,  Matarin  M,  Mather  KA,  Mattheisen  M,  Mattingsdal  M,  Meyer-­‐Lindenberg  

A,   McDonald   C,   McIntosh   AM,   McMahon   FJ,   McMahon   KL,   Meisenzahl   E,   Melle   I,  

Milaneschi  Y,  Mohnke  S,  Montgomery  GW,  Morris  DW,  Moses  EK,  Mueller  BA,  Munoz  

Maniega  S,  Muhleisen  TW,  Muller-­‐Myhsok  B,  Mwangi  B,  Nauck  M,  Nho  K,  Nichols  TE,  

Nilsson  LG,  Nugent  AC,  Nyberg  L,  Olvera  RL,  Oosterlaan   J,  Ophoff  RA,   Pandolfo  M,  

Papalampropoulou-­‐Tsiridou   M,   Papmeyer   M,   Paus   T,   Pausova   Z,   Pearlson   GD,  

Penninx  BW,  Peterson  CP,  Pfennig  A,  Phillips  M,  Pike  GB,  Poline  JB,  Potkin  SG,  Putz  B,  

Ramasamy  A,  Rasmussen  J,  Rietschel  M,  Rijpkema  M,  Risacher  SL,  Roffman  JL,  Roiz-­‐

Santianez  R,  Romanczuk-­‐Seiferth  N,  Rose  EJ,  Royle  NA,  Rujescu  D,  Ryten  M,  Sachdev  

PS,  Salami  A,  Satterthwaite  TD,  Savitz  J,  Saykin  AJ,  Scanlon  C,  Schmaal  L,  Schnack  HG,  

Schork   AJ,   Schulz   SC,   Schur   R,   Seidman   L,   Shen   L,   Shoemaker   JM,   Simmons   A,  

Sisodiya   SM,   Smith   C,   Smoller   JW,   Soares   JC,   Sponheim   SR,   Sprooten   E,   Starr   JM,  

Steen   VM,   Strakowski   S,   Strike   L,   Sussmann   J,   Samann   PG,   Teumer   A,   Toga   AW,  

Tordesillas-­‐Gutierrez  D,  Trabzuni  D,  Trost   S,  Turner   J,  Van  den  Heuvel  M,   van  der  

Wee   NJ,   van   Eijk   K,   van   Erp   TG,   van   Haren   NE,   van   't   Ent   D,   van   Tol   MJ,   Valdes  

Hernandez   MC,   Veltman   DJ,   Versace   A,   Volzke   H,   Walker   R,   Walter   H,   Wang   L,  

Wardlaw  JM,  Weale  ME,  Weiner  MW,  Wen  W,  Westlye  LT,  Whalley  HC,  Whelan  CD,  

White   T,   Winkler   AM,   Wittfeld   K,   Woldehawariat   G,   Wolf   C,   Zilles   D,   Zwiers   MP,  

Thalamuthu   A,   Schofield   PR,   Freimer   NB,   Lawrence   NS,   Drevets   W   (2014)   The  

Page 92: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  82  

ENIGMA   Consortium:   large-­‐scale   collaborative   analyses   of   neuroimaging   and  

genetic  data.  Brain  Imaging  and  Behavior  ePub  ahead  of  print.  

Tretter   L,   Sipos   I,   Adam-­‐Vizi   V   (2004)   Initiation   of   neuronal   damage   by   complex   I  

deficiency   and   oxidative   stress   in   Parkinson's   disease.   Neurochemical   Research  

29:569-­‐577.  

Uranova  N,  Orlovskaya  D,  Vikhreva  O,  Zimina  I,  Kolomeets  N,  Vostrikov  V,  Rachmanova  V  

(2001)   Electron   microscopy   of   oligodendroglia   in   severe   mental   illness.   Brain  

Research  Bulletin  55:597-­‐610.  

Vaamonde-­‐Garcia  C,  Riveiro-­‐Naveira  RR,  Valcarcel-­‐Ares  MN,  Hermida-­‐Carballo  L,  Blanco  FJ,  

Lopez-­‐Armada   MJ   (2012)   Mitochondrial   dysfunction   increases   inflammatory  

responsiveness   to   cytokines   in   normal   human   chondrocytes.   Arthritis   and  

Rheumatism  64:2927-­‐2936.  

Vawter  MP,  Crook  JM,  Hyde  TM,  Kleinman  JE,  Weinberger  DR,  Becker  KG,  Freed  WJ  (2002)  

Microarray  analysis  of  gene  expression  in  the  prefrontal  cortex  in  schizophrenia:  a  

preliminary  study.  Schizophrenia  Research  58:11-­‐20.  

Vederine   F,   Wessa   M,   Leboyer   M,   Houenou   J   (2011)   A   meta-­‐analysis   of   whole-­‐brain  

diffusion   tensor   imaging   studies   in   bipolar   disorder.   Progress   in   Neuro-­‐

Psychopharmacology  and  Biological  Psychiatry  35:1820-­‐1826.  

Venkateshappa   C,   Harish   G,   Mahadevan   A,   Srinivas   Bharath   MM,   Shankar   SK   (2012)  

Elevated   oxidative   stress   and   decreased   antioxidant   function   in   the   human  

hippocampus   and   frontal   cortex   with   increasing   age:   implications   for  

neurodegeneration  in  Alzheimer's  disease.  Neurochemical  Research  37:1601-­‐1614.  

Page 93: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  83  

Versace  A,  Andreazza  AC,  Young  LT,  Fournier  JC,  Almeida  JR,  Stiffler  RS,  Lockovich  JC,  Aslam  

HA,   Pollock   MH,   Park   H,   Nimgaonkar   VL,   Kupfer   DJ,   Phillips   ML   (2014)   Elevated  

serum   measures   of   lipid   peroxidation   and   abnormal   prefrontal   white   matter   in  

euthymic   bipolar   adults:   toward   peripheral   biomarkers   of   bipolar   disorder.  

Molecular  Psychiatry  19:200-­‐208.  

Videbech  P,  Ravnkilde  B   (2004)  Hippocampal  volume  and  depression:  a  meta-­‐analysis  of  

MRI  studies.  American  Journal  of  Psychiatry  161:1957-­‐1966.  

Wang   JF,   Shao   L,   Sun   X,   Young   LT   (2009)   Increased   oxidative   stress   in   the   anterior  

cingulate   cortex   of   subjects   with   bipolar   disorder   and   schizophrenia.   Bipolar  

Disorders  11:523-­‐529.  

Wang  XK,  Michaelis  EK   (2010)   Selective  neuronal   vulnerability   to   oxidative   stress   in   the  

brain.  Frontiers  in  Aging  Neuroscience  2:12.  

Watson   S,   Gallagher   P,   Ritchie   JC,   Ferrier   IN,   Young   AH   (2004)   Hypothalamic-­‐pituitary-­‐

adrenal  axis  function  in  patients  with  bipolar  disorder.  British  Journal  of  Psychiatry  

184:496-­‐502.  

Webster  MJ,  Knable  MB,  O'Grady  J,  Orthmann  J,  Weickert  CS  (2002)  Regional  specificity  of  

brain  glucocorticoid  receptor  mRNA  alterations  in  subjects  with  schizophrenia  and  

mood  disorders.  Molecular  Psychiatry  7:985-­‐994,  924.  

Wilde  GJ,  Pringle  AK,  Wright  P,  Iannotti  F  (1997)  Differential  vulnerability  of  the  CA1  and  

CA3   subfields   of   the   hippocampus   to   superoxide   and   hydroxyl   radicals   in   vitro.  

Journal  of  Neurochemistry  69:883-­‐886.  

Page 94: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  84  

Wright  IC,  Rabe-­‐Hesketh  S,  Woodruff  PW,  David  AS,  Murray  RM,  Bullmore  ET  (2000)  Meta-­‐

analysis  of  regional  brain  volumes  in  schizophrenia.  American  Journal  of  Psychiatry  

157:16-­‐25.  

Yang  H,  Liu  Y,  Bai  F,  Zhang  JY,  Ma  SH,  Liu  J,  Xu  ZD,  Zhu  HG,  Ling  ZQ,  Ye  D,  Guan  KL,  Xiong  Y  

(2013)  Tumor  development  is  associated  with  decrease  of  TET  gene  expression  and  

5-­‐methylcytosine  hydroxylation.  Oncogene  32:663-­‐669.  

Yanik  M,  Vural  H,  Tutkun  H,  Zoroglu  SS,  Sava  HA,  Herken  H,  Kocyigit  A,  Keles  H,  Akyol  O  

(2004)  The  role  of  the  arginine-­‐nitric  oxide  pathway  in  the  pathogenesis  of  bipolar  

affective   disorder.   European   Archives   of   Psychiatry   and   Clinical   Neuroscience  

254:43-­‐47.  

Yatham   LN,   Kennedy   SH,   O'Donovan   C,   Parikh   S,   MacQueen   G,   McIntyre   R,   Sharma   V,  

Silverstone   P,   Alda   M,   Baruch   P,   Beaulieu   S,   Daigneault   A,   Milev   R,   Young   LT,  

Ravindran   A,   Schaffer   A,   Connolly   M,   Gorman   CP   (2005)   Canadian   Network   for  

Mood   and   Anxiety   Treatments   (CANMAT)   guidelines   for   the   management   of  

patients   with   bipolar   disorder:   consensus   and   controversies.   Bipolar   Disorders   7  

Suppl  3:5-­‐69.  

Yucel  K,  Taylor  VH,  McKinnon  MC,  Macdonald  K,  Alda  M,  Young  LT,  MacQueen  GM  (2008)  

Bilateral  hippocampal  volume  increase  in  patients  with  bipolar  disorder  and  short-­‐

term  lithium  treatment.  Neuropsychopharmacology  33:361-­‐367.  

Zhang  R,  Zhang  L,  Zhang  Z,  Wang  Y,  Lu  M,  LaPointe  M,  Chopp  M  (2001)  A  nitric  oxide  donor  

induces  neurogenesis  and  reduces  functional  deficits  after  stroke  in  rats.  Annals  of  

Neurology  50:602-­‐611.  

 

Page 95: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  85  

Appendix  A  

Table  A1.  Selected  characteristics  of  all  studies  included  in  the  meta-­‐analysis  of  oxidative  stress  markers  in  bipolar  disorder  patients  compared  to  healthy  controls,  sorted  by  sample  type.    

Reference  Number  (patients/  controls)  

Bipolar  patients     Sample  

Marker   Assay   Results  of  BD  compared  to  healthy  controls  Manic   Depressed   Euthymic   First-­‐

episode  Drug-­‐free     Peripheral  

Post-­‐mortem  brain  

Sample  Type:  Blood                        

Abdalla  et  al.,  1986  

20/58   NA   NA   NA   NA   NA     RBC   -­‐   SOD   Nitroblue  tetrazolium  

 

Increased  

                    GPx   nmol  NADPH  oxidized/min  

 

NS  

Andreazza  et  al.,  2007  (b)  

32/32   NA   NA   NA   NA   0     Whole  blood  

-­‐   DNA/RNA  dam.  

 

Comet  assay   DNA  damage  increased  

Kuloglu  et  al.,2002  

23/20   NA   NA   NA   NA   NA     RBC   -­‐   SOD   Nitroblue  tetrazolium  

 

Increased  

                    GPx   nmol  NADPH  oxidized/min  

 

NS  

                    Lipid  perox.  

TBARS  

 

Increased  

Ozcan  et  al.,  2004  

30/21   16   2   0   0   0     RBC   -­‐   SOD   Nitroblue  tetrazolium  

NS  

                    CAT   μmol  of  H2O2  consumed/min  

 

Decreased  in  all  BD  groups  

Page 96: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  86  

                    GPx   nmol  NADPH  oxidized/min  

 

Decreased  in  pretreatment  group  

Raffa  et  al.,  2012  

30/40   8   5   17   0   NA     RBC   -­‐   SOD   Pyrogallol   NS  

                    CAT   μmol  of  H2O2  consumed/min  

Decreased  

                    GPx   nmol  NADPH  oxidized/min  

 

NS  

Ranjekar  et  al.,  2003  

10/31   NA   NA   NA   NA   NA     RBC   -­‐   SOD   Nitroblue  tetrazolium  

 

NS  

                    CAT   μmol  of  H2O2  consumed/min  

 

Decreased  

                    GPx   nmol  NADPH  oxidized/min  

 

NS  

                    Lipid  perox.  

 

TBARS   NS  

 

Soeiro-­‐de-­‐Souza  et  al.,  2013  

50/50   26   24   0   NA   50     Whole  blood  

-­‐   DNA/RNA  dam.  

ELISA   Increased  hydroxylated  guanine  in  DNA  

Versace  et  al.,  2013  

24/18   0   0   24   0   0     Whole  blood  

-­‐   Lipid  perox.  

Lipid  hydroperoxides  assay  kit  

 

Increased  

Sample  Type:  Plasma                        

Ozcan  et  al.,  2004  

30/21   16   2   0   0   0     Plasma   -­‐   NO   Greiss  reaction   Decreased  in  pretreatment  group  

Page 97: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  87  

Savas  et  al.,  2002  

 

44/21   44   0   0   0   0     Plasma   -­‐   NO   Greiss  reaction   Increased  

Yanik  et  al.,  2004  

43/31   43   0   0   0   0     Plasma   -­‐   NO   Greiss  reaction   Increased  

Sample  Type:  Serum                        

Andreazza  et  al.,  2007  

85/32   32   21   32   0   0     Serum   -­‐   SOD   Adrenochrome   Increased  in  depressed  and  manic  patients  

 

                    CAT   μmol  of  H2O2  consumed/min  

 

Decreased  in  euthymic  and  manic  patients  

                    GPx   nmol  NADPH  oxidized/min  

 

Increased  in  euthymic  patients  

                    Lipid  perox.  

TBARS  

 

Increased  in  manic,  decreased  in  euthymic  patients  

Andreazza  et  al.,  2009  

30/30  (early  BD)  30/30  

(late  BD)  

NA   NA   NA   NA   0     Serum   -­‐   GPx   nmol  NADPH  oxidized/min  

NS  

                    PCC   DNPH  reaction  

 

NS  

                    3-­‐NT   ELISA  

 

Increased  in  early  and  late  stage  patients  

Banerjee  et  al.,  2012  

 

73/35   0   0   48   25   NA     Serum   -­‐   Lipid  perox.  

TBARS   Increased  in  all  BD  groups  

Gergerlioglu  et  al.,  2007  

29/30   29   0   0   0   0     Serum   -­‐   SOD   Nitroblue  tetrazolium  

Decreased  

                    NO   Greiss  reaction   Increased  

Page 98: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  88  

Kapczinski  et  al.,  2011  

60/80   20   20   20   0   0     Serum   -­‐   Lipid  perox.  

 

TBARS   Increased  in  manic  and  depressed  patients  

                    PCC   DNPH  reaction  

 

Increased  in  manic  and  depressed  

Kunz  et  al.,  2008  

83/32   32   19   32   0   NA     Serum   -­‐   SOD   Adrenochrome   Increased  in  manic  and  depressed  patients  

 

                    Lipid  perox.  

 

TBARS   Increased  in  all  BD  groups  

Machado-­‐Vieira  et  al.,  2007  

45/30   45   0   0   0   30     Serum   -­‐   SOD   Adrenochrome   Increased  in  drug-­‐free  manic  patients  

                    CAT   μmol  of  H2O2  consumed/min  

 

Increased  

                    Lipid  perox.  

 

TBARS  

 

Increased  in  drug-­‐free  manic  patients  

Magalhaes  et  al.,  2012  

53/89  (lipid  perox.)  

48/75  (PCC)  

11   42   0   NA   44     Serum   -­‐   Lipid  perox.  

TBARS   NS  

                    PCC  

 

DNPH  reaction   Increased  

Ozcan  et  al.,  2004  

30/21   16   2   0   0   0     Serum   -­‐   Lipid  perox.  

 

TBARS  

 

Increased  in  pre-­‐  and  post-­‐treatment  groups  

Page 99: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  89  

Savas  et  al.,  2006  

27/20   0   0   27   0   0     Serum   -­‐   SOD   Nitroblue  tetrazolium  

Increased  

                    NO   Greiss  reaction  

 

Increased  

Selek  et  al.,  2008  

30/30   0   30   0   0   0     Serum   -­‐   SOD   Nitroblue  tetrazolium  

 

Decreased  

                    NO   Greiss  reaction  

 

Increased  

Sample  Type:  Post-­‐mortem  brain                    

Andreazza  et  al.,  2010  

15/15   NA   NA   NA   NA   0     -­‐   PFC  (BA10)  

PCC   DNPH  reaction   Increased  

 

   

                3-­‐NT  

 

ELISA   Increased  

Andreazza  et  al.,  2013  

16/26   NA   NA   NA   NA   0     -­‐   PFC  (BA10)  

Lipid  perox.  

Lipid  hydroperoxides  assay  kit  and  4-­‐HNE  ELISA  

 

4-­‐HNE  increased  in  synaptosomal  section,  no  difference  in  LPH  

                    PCC   DNPH  reaction   Increased  in  synaptosomal  proteins  

 

                    3-­‐NT   Immunoblotting   Increased  in  mitochondrial  proteins  

 

Benes  et  al.,  20031  

10/18   NA   NA   NA   NA   4     -­‐   ACC   DNA/RNA  dam.  

 

Klenow  method   NS  

Buttner  et  al.,  20071  

14/14   NA   NA   NA   NA   2     -­‐   ACC  (BA24)  

DNA/RNA  dam.  

Klenow  method   Scission  increased  in  non-­‐GABAergic  cells  only  

Page 100: OxidativeStressinBipolarDisorder:aMeta 5analysisof ... · NDUFS7)in post5mortem hippocampus) of) patients) with) bipolar) disorder,schizophrenia,andhealthycontrols)) 43) Figure3.2.)

  90  

 

Che  et  al.,  20102  

15/15   NA   NA   NA   NA   3     -­‐   Anterior  hippo.  

DNA/RNA  dam.  

 

Immunohisto-­‐chemistry  

RNA  damage  increased  in  patients  more  than  DNA  

Gawryluk  et  al.,  2011  

 

14/12   NA   NA   NA   NA   NA     -­‐   PFC  (BA10)  

GPx   Immunoblotting   NS  

 

Gigante  et  al.,  2011  

35/35   NA   NA   NA   NA   NA     -­‐   Dorso-­‐lateral  PFC  (BA9)  

 

SOD   Immunoblotting   NS  

Mustak  et  al.,  2010  

10/8   NA   NA   NA   NA   10     -­‐   Multiple  brain  regions  

DNA/RNA  dam.  

 

Klenow  method  and  incorporation  of  3[H]-­‐dTTP  

Increased  single  and  double  stranded  DNA  breaks  

 

Wang  et  al.,  2009  

15/15   NA   NA   NA   NA   NA     -­‐   ACC   Lipid  perox.  

Immunnohisto-­‐chemistry  

 

Increased  

 

Abbreviations:  BD,  bipolar  disorder;  RBC,  red  blood  cells;  SOD,  superoxide  dismutase;  GPx,  glutathione  peroxidase;  NS,  not  significant;  CAT,  catalase;  TBARS,  thiobarbituric  acid  reactive  substances;  NADPH,  nicotinamide  adenine  dinucleotide  phosphate;  NA,  not  available;  PCC,  protein  carbonyl  content;  3-­‐NT,  3-­‐nitrotyrosine;  DNPH,  2,4-­‐Dinitrophenylhydrazine;  ELISA,  enzyme-­‐linked  immunosorbent  assay;  PFC,  prefrontal  cortex;  LPH,  lipid  hydroperoxides;  4-­‐HNE,  4-­‐hydroxynonenal;  ACC,  anterior  cingulate  cortex;  GABA,  gamma-­‐aminobutyric  acid;  NO,  nitric  oxide.    1.  Not  included  in  meta-­‐analysis  due  to  missing  data  2.  Patient  info  obtained  from  Dowlatshahi  et  al.,  1999