Overview of Dynamic Routing Protocols

30
Overview of Dynamic Routing Protocols CIT 340

description

Overview of Dynamic Routing Protocols. CIT 340. Overview of Routing Protocols. - PowerPoint PPT Presentation

Transcript of Overview of Dynamic Routing Protocols

Page 1: Overview of  Dynamic Routing Protocols

Overview of Dynamic Routing Protocols

CIT 340

Page 2: Overview of  Dynamic Routing Protocols

2

Overview of Routing Protocols

• Note: IGRP and EIGRP are Cisco proprietary protocols. They are meant as an alternative between the limited RIP routing protocol and the more complicated and resource intensive OSPF and IS-IS routing protocols. IGRP was discontinued with IOS 12.2 in 2005.

• The dates shown are when the RFC or other document was finalized. The protocol may have been implemented earlier than this date.

Interior Gateway ProtocolsExterior Gateway Protocols

Distance Vector Routing Protocols

Link State Routing Protocols

Path Vector

Classful RIPv1 (1982/1988)

IGRP (1985)

EGP (1982)

Classless RIPv2 (1994)

EIGRP (1992)

OSPFv2 (1991)

IS-IS (1990)

BGPv4 (1995)

IPv6 RIPng (1997)

EIGRP for IPv6

(not yet released)

OSPFv3 (1999)

IS-IS for IPv6 (2000)

BGPv4 for IPv6

(1999)

Page 3: Overview of  Dynamic Routing Protocols

3

The Routing Protocols we will focus on

• Note: RIPv2 will not be discussed in detail but will be used as an example of transitioning from a classful to a classless routing protocol.

Interior Gateway ProtocolsExterior Gateway Protocols

Distance Vector Routing Protocols

Link State Routing Protocols

Path Vector

Classful RIPv1 (1982/1988)

IGRP (1985)

EGP (1982)

Classless RIPv2 (1994)

EIGRP (1992)

OSPFv2 (1991)

IS-IS (1990)

BGPv4 (1995)

IPv6 RIPng (1997)

EIGRP for IPv6

(not yet released)

OSPFv3 (1999)

IS-IS for IPv6 (2000)

BGPv4 for IPv6

(1999)

Page 4: Overview of  Dynamic Routing Protocols

4

Dynamic Routing Protocol Basics

• Routing Protocol = A language a router speaks with other routers to share information about the reachability and status of networks.

• Routing protocols perform:– Best-path determination– Route-table-update functions– Next-best path should the best-path become unusable

Page 5: Overview of  Dynamic Routing Protocols

5

Algorithms

• All dynamic routing protocols are built around an algorithm.

• Algorithm = Step-by-step procedure for solving a problem.

• At a minimum the algorithm must specify:– A procedure for passing reachability information

about networks to other routers.– A procedure for receiving reachability information

from other routers.– A procedure for determining optimal routes based

on the reachability information it has and for recording this information in a route table.

– A procedure for reacting to, compensating for, and advertising topology changes in a network.

A tribute to al-Khwarizmi, 9th century Persian mathematician, the originator and namesake of algorithms.

Page 6: Overview of  Dynamic Routing Protocols

6

Algorithms

Distance Vector Routing Protocols • RIP, IGRP:

– Variant of Bellman-Ford (or Ford-Fulkerson)• EIGRP:

– Diffusing Update Algorithm (DUAL) first proposed by E.W. Dykstra and C.S. Scholten

– Latest and most prominent work done by J.J. Garcia-Luna Aceves (UC Santa Cruz)

Link State Routing Protocols • OSPF, IS-IS:

– Dijkstra’s SPF (Shortest Path First) algorithm, E.W. Dijkstra

Page 7: Overview of  Dynamic Routing Protocols

7

Path Determination

• Router interfaces must be members of different networks.• Router interfaces participate in the network like other hosts on that

network.• Ethernet interfaces:

– Have MAC Addresses– ARP Tables– Participate in the ARP Request and ARP Reply process like other

hosts on that network.

Serial 0192.168.10.1 255.255.255.252

Ethernet 1172.16.2.1 255.255.255.0 MAC: 0abbccddeeff

Ethernet 0

172.16.1.1 255.255.255.0 MAC: 0cddeeffaabb

Page 8: Overview of  Dynamic Routing Protocols

8

Path Determination

Simplistic questions illustrating the complexity of routing protocols:• What should Router A do with the routing updates from B and C?• What mechanism is used to ensure that all routers receive all routing

information?• If Router A has hears about 192.168.4.0/24 from B and C which router

should be the next hop used to reach that network? Should both be used?

• What metric is used to determine best path?

Routing Updates

?

Page 9: Overview of  Dynamic Routing Protocols

9

Metrics

• Metric = A variable assigned to routes as a meaning of ranking them from best to worst or from most preferred to least preferred.– Hop count– Bandwidth– Delay– Reliability– Load– Cost

• RIP– Hop count

• IGRP and EIGRP– Bandwidth– Delay– Reliability– Load

• OSPF– Cost (Cisco defines cost as

Bandwidth)• IS-IS

– Default (Cisco supported)– Delay– Expense– Error

• BGP– Policies and Attributes

Page 10: Overview of  Dynamic Routing Protocols

10

Convergence

• Convergence = The process of bringing all route tables to a state of consistency.

Convergence Vegetarian Catering

Page 11: Overview of  Dynamic Routing Protocols

11

Convergence

• During the time it takes for convergence to occur, routers will continue to route packets using their current routing tables.

• It is during this time that routing errors may occur.• Therefore, convergence time is an important factor in any routing protocol.• The faster a network can reconverge after a topology change, the better.

Page 12: Overview of  Dynamic Routing Protocols

12

Distance Vector Routing Protocols

• Most routing protocols fall into one of two classes:1. Distance Vector2. Link State

• Distance Vector = Derived from the fact that routes are advertised as vectors of (distance, direction), where distance is defined in terms of a metric and direction is defined in terms of the next-hop router.

• Built around Bellman-Ford algorithm.

Serial 0

Ethernet 1

Ethernet 0

Distance

Distance

Distance

Page 13: Overview of  Dynamic Routing Protocols

13

Distance Vector Routing Protocols

• Distance Vector Routing Protocols include:– RIP for IP– XNS (Xerox Networking System’s) RIP– Novell’s IPX RIP– Cisco’s IGRP– Cisco EIGRP– DEC’s DNA Phase IV– AppleTalks Routing Table Maintenance Protocol

(RTMP)• Only RIP for IP and EIGRP are current routing protocols.

Page 14: Overview of  Dynamic Routing Protocols

14

Distance Vector Routing Protocols

Common Characteristics (generalization)• Periodic Updates

– RIP’s 30 seconds to IGRP’s 90 seconds. (Notable exception is EIGRP)

• Neighbors – Sharing a common data link or higher-level adjacency.

• Broadcast updates– Sends updates to a broadcast IP address (Some protocols use

multicast addresses)• Full Routing Table Updates

– Tell their neighbors everything they know by sending their entire routing table.

Periodic updates

Page 15: Overview of  Dynamic Routing Protocols

15

Routing by Rumor

Page 16: Overview of  Dynamic Routing Protocols

16

Distance Vector Techniques Review

• Route Invalidation Timers– “If I don’t hear from you within a certain time period I will invalidate

you and your routes.”• Split Horizon and Split Horizon with Poison Reverse

– “I don’t need to tell you since you are the one who told me.”• Counting to Infinity and Setting a Maximum

– “In case there is a routing loop being created, I will set a maximum metric and then declare the route unreachable.”

• Triggered Updates or Flash Updates– “As soon as I hear a change, I will let my other neighbors know.”

• Holddown Timers – “I’m skeptical of this new “poorer” information and will wait to see if

convergence is in the works.”• Asynchronous Updates and Timing Jitter

– “So we all don’t talk at once, we’ll each wait a certain random time.”

Event-driven or triggered updates

Page 17: Overview of  Dynamic Routing Protocols

17

Routing by Rumor

• Distance vector routing protocols provide road signs to networks.

Page 18: Overview of  Dynamic Routing Protocols

18

As opposed to Link State Routing Protocols

• Link state routing protocols provide road maps to networks (next).

Page 19: Overview of  Dynamic Routing Protocols

19

Link State Routing Protocols

• Link state routing protocols sometimes called:– Shortest Path First (SPF) protocol– Distributed Database protocol

• Built around algorithm from graph theory, E.W. Dijkstra’s short path algorithm.

• Link state routing protocols include:– OSPF– IS-IS– DEC’s DNA Phase V (legacy)– Novell’s Netware Link Services

Protocol (NLSP) (legacy)

Page 20: Overview of  Dynamic Routing Protocols

20

Link State Routing Protocols

These topics will be discussed in detail during OSPF• Neighbor and Neighbor Discovery

– Process of discovering neighbors on common links

• Link State Flooding– Process of flooding link state information within

a topology– Link state protocols converge much faster than

distance vector routing protocols when the topology changes

• Link State Database– Major part of a link state routing protocol– Important that routers have common link state

databases• SPF Algorithm

– Using the link state database, this algorithm is used to calculate the shortest paths to networks.

Page 21: Overview of  Dynamic Routing Protocols

21

Link State Routing Protocols

1 – Flooding of link-state information

2 – Building a Topological Database

3 – SPF Algorithm

4 – SPF Tree

5 – Routing Table

Page 22: Overview of  Dynamic Routing Protocols

22

Interior and Exterior Gateway Protocols

• Note: IGRP and EIGRP are Cisco proprietary protocols. They are meant as an alternative between the limited RIP routing protocol and the more complicated and resource intensive OSPF and IS-IS routing protocols. IGRP was discontinued with IOS 12.2 in 2005.

• The dates shown are when the RFC or other document was finalized. The protocol may have been implemented earlier than this date.

Interior Gateway ProtocolsExterior Gateway Protocols

Distance Vector Routing Protocols

Link State Routing Protocols

Path Vector

Classful RIPv1 (1982/1988)

IGRP (1985)

EGP (1982)

Classless RIPv2 (1994)

EIGRP (1992)

OSPFv2 (1991)

IS-IS (1990)

BGPv4 (1995)

IPv6 RIPng (1997)

EIGRP for IPv6

(not yet released)

OSPFv3 (1999)

IS-IS for IPv6 (2000)

BGPv4 for IPv6

(1999)

Page 23: Overview of  Dynamic Routing Protocols

23

Interior and Exterior Gateway Protocols

• Border Gateway Protocol (BGP) for IP• Exterior Gateway Protocol (EGP) for IP (yes, an EGP named EGP)• ISO’s InterDomain Routing Protocol (IDRP)

Page 24: Overview of  Dynamic Routing Protocols

24

Interior and Exterior Gateway Protocols

• Interior Gateway Protocols = Routing protocols within an autonomous system.

• Exterior Gateway Protocols = Routing protocols between an autonomous system.

• Autonomous System– Older definition: Group of routers under a common administrative

domain running a common routing protocol. (Nowadays it is common the some companies may run multiple routing protocols.)

– Newer definition: A network under a common administration.– Note: AS might also sometimes refer to a process domain.

Page 25: Overview of  Dynamic Routing Protocols

25

Redistribution

• Redistribution is used to route between different IGP routing protocols.

Page 26: Overview of  Dynamic Routing Protocols

26

Classful vs. Classless Routing Protocols

Page 27: Overview of  Dynamic Routing Protocols

Classless Routing Protocols

“The true characteristic of a classless routing protocol is the ability to carry subnet masks in their route advertisements.” Jeff Doyle, Routing TCP/IP

Benefits:

• All-zeros and all-ones subnets – - Although some vendors, like Cisco, can also handle this with

classful routing protocols.

• VLSM – Can have discontiguous subnets– Better IP addressing allocation

• CIDR– More control over route summarization

Page 28: Overview of  Dynamic Routing Protocols

Classless Routing Protocols

Classless Routing Protocols:• RIPv2• EIGRP• OSPF• IS-IS• BGPv4Remember classful/classless routing protocols is different than classful/classless

routing behavior. Classlful/classless routing protocols (RIPv1, RIPv2, IGRP, EIGRP, OSPF, etc.) has

to do with how routes get into the routing table; how the routing table gets built. Classful/classless routing behavior (no ip classless or ip classless) has to do with

the lookup process of routes in the routing table (after the routing table has been built).

It is possible to have a classful routing protocol and classless routing behavior or visa versa.

It is also possible to have both a classful routing protocol and classful routing behavior; or both a classless routing protocol and classless routing behavior.

Page 29: Overview of  Dynamic Routing Protocols

SantaCruz1router rip network 172.30.0.0 network 192.168.4.0 version 2 no auto-summary  SantaCruz2router rip network 172.30.0.0 network 192.168.4.0 version 2 no auto-summary  ISProuter rip redistribute static network 10.0.0.0 network 192.168.4.0 version 2 no auto-summary

ip route 207.0.0.0 255.0.0.0 null0

e0

ISP

SantaCruz2SantaCruz1

192.168.4.20/30

172.30.1.0/24

Internet

s0

s0 s0

s1

172.30.100.0/24

e0

192.168.4.24/30

.21

.22

.25

.26

10.0.0.0/8

e0.1

.1.1

Lo0Lo0

172.30.110.0/24172.30.2.0/24 .1.1

.1

static route to207.0.0.0/8

207.0.0.0/16207.1.0.0/16207.2.0.0/16207.3.0.0/16

etc.

` 172.30.200.16/28

172.30.200.32/28

Lo1Lo2

RIPv2 Example

Page 30: Overview of  Dynamic Routing Protocols

e0

ISP

SantaCruz2SantaCruz1

192.168.4.20/30

172.30.1.0/24

Internet

s0

s0 s0

s1

172.30.100.0/24

e0

192.168.4.24/30

.21

.22

.25

.26

10.0.0.0/8

e0.1

.1.1

Lo0Lo0

172.30.110.0/24172.30.2.0/24 .1.1

.1

static route to207.0.0.0/8

207.0.0.0/16207.1.0.0/16207.2.0.0/16207.3.0.0/16

etc.

` 172.30.200.16/28

172.30.200.32/28

Lo1Lo2

SantaCruz2#show ip route 

172.30.0.0/16 is variably subnetted, 6 subnets, 2 masksC 172.30.200.32/28 is directly connected, Loopback2C 172.30.200.16/28 is directly connected, Loopback1R 172.30.2.0/24 [120/2] via 192.168.4.21, 00:00:21, Serial0R 172.30.1.0/24 [120/2] via 192.168.4.21, 00:00:21, Serial0C 172.30.100.0/24 is directly connected, Ethernet0C 172.30.110.0/24 is directly connected, Loopback0 192.168.4.0/30 is subnetted, 2 subnetsR 192.168.4.24 [120/1] via 192.168.4.21, 00:00:21, Serial0C 192.168.4.20 is directly connected, Serial0R 10.0.0.0/8 [120/1] via 192.168.4.21, 00:00:21, Serial0R 207.0.0.0/8 [120/1] via 192.168.4.21, 00:00:21, Serial0

VLSM and the Routing Table

Supernet, classless routing protcols will route supernets (CIDR)