Overview & Applications

29
Overview & Applications T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015

Transcript of Overview & Applications

Page 1: Overview & Applications

Overview & ApplicationsT. Lezon

Hands-on Workshop in Computational BiophysicsPittsburgh Supercomputing Center

04 June, 2015

Page 2: Overview & Applications

Simulations still take time

Coarse-grained Elastic Network Models are fast

Lane et al. 2013

2

Bakan et al. Bioinformatics 2011.

Page 3: Overview & Applications

The structural data explosionMultiple structures for a single sequence

Dynamics may be inferred from structural data.

Nature, 15 May 2014.

3

Page 4: Overview & Applications

>1A9U:A|PDBID|CHAINGSSHHHHHHSSGLVPRGSHMSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTG......

User inputs a sequenceUser inputs a sequence

identifies, retrieves, aligns, and analyzes (PCA) structures matching input sequence

identifies, retrieves, aligns, and analyzes (PCA) structures matching input sequence User can

• Compare experimental and theoretical models• Sample conformations along normal modes

User can• Compare experimental and theoretical models• Sample conformations along normal modes

p38 network model (ANM)

p38 ensemble(PCA)

Experiment/Theory

Usage example

Exploiting the PDB since 2010• High-throughput analysis of structural data• Application Programming Interface (API) for

development of tools • Suitable for interactive usage

Bakan, Meireles & Bahar. Bioinformatics 2011.

MD trajectory analysis (EDA)

4

Page 5: Overview & Applications

An Interactive Tool

5

Page 6: Overview & Applications

An evolving suite of toolsPrincipal Component AnalysisElastic Network ModelsNormal Mode AnalysisTrajectory Analysis

Computational Drug DiscoveryBinding Site PredictionAffinity Estimation

Call ProDy from VMDNormal Mode Visualization

6

Multiple Sequence AlignmentCorrelated Mutation AnalysisStructural Evolution

Page 7: Overview & Applications

Tutorials: ProDy & Structure Analysis

• Obtaining PDB Files• BLAST Searching the

PDB• Constructing

Biomolecules from Transformations

• Aligning and Comparing Structures

• Identifying Intermolecular Contacts

7

Page 8: Overview & Applications

Tutorial: Elastic Network Models

• Gaussian Network Model (GNM)

• Anisotropic Network Model (ANM)

• Normal Mode Algebra• Deformation Analysis• Customizing ENMs

8

Page 9: Overview & Applications

Elastic Network Model• Useful for finding global

equilibrium motions of proteins

• Employs harmonic potential about native state

• Coarse-grained  (Cα-only description)

• Residue pairs are connected via springs

• Normal modes are found analytically

9

Page 10: Overview & Applications

Elastic Network Model• Useful for finding global

equilibrium motions of proteins

• Employs harmonic potential about native state

• Coarse-grained  (Cα-only description)

• Residue pairs are connected via springs

• Normal modes are found analytically

10

Page 11: Overview & Applications

Elastic Network Model• Useful for finding global

equilibrium motions of proteins

• Employs harmonic potential about native state

• Coarse-grained  (Cα-only description)

• Residue pairs are connected via springs

• Normal modes are found analytically

11

Page 12: Overview & Applications

Hinsen et al. Proteins 33 (1998).

Yang et al. PNAS 106 (2009).

Tirion, PRL 77 (1996).

Hinsen et al. Chem Phys 261 (2000).

Flexible force constants

12

Page 13: Overview & Applications

Optimizing force constants

• Download NMR structures from PDB• Calculate residue MSFs for each protein• Assign ENM topology• Optimize force constants to reproduce structural

dynamics• Search for trends in force constant values with

structure

13

fetchPDB()

calcMSF()

buildHessian()

Page 14: Overview & Applications

Fine-tuning force constants

black: NMRred: ENMblue: modified ENM

• Distance-dependence• 1st neighbors• 2nd neighbors• H bonds

GammaStructureBased()

R=0.91R=0.91

R=0.76R=0.79

R=0.31R=0.57

Learn more at prody.csb.pitt.edu 15

Page 15: Overview & Applications

Tutorial: Ensemble Analysis

• NMR Models• Homologous Proteins• Multiple X-ray

Structures• Multimeric Proteins

16

Page 16: Overview & Applications

Example: Comparing PCA and ENM

17

Structures of HIV1-RTUnboundInhibitor boundDNA bound

Bakan & Bahar. PNAS 106 (2009).

Page 17: Overview & Applications

Example: Comparing PCA and ENM

18Bakan & Bahar. PNAS 106 (2009).

Structures of p38 MAPKUnboundInhibitor boundGlucose boundPeptide bound

Page 18: Overview & Applications

Tutorial: Trajectory Analysis

• Fast processing of long trajectories

• Enables comparison of MD trajectories and structural data or ENM results

19

Page 19: Overview & Applications

Tutorial: Conformational Sampling

• Sample structures along normal modes

• Refine structures using NAMD

20

Page 20: Overview & Applications

Tutorial: Druggability

• Set up NAMD simulations

• Analyze trajectories to identify binding hot spots

21

Page 21: Overview & Applications

Exploring binding with probe molecules

22Bakan et al. J Chem Theor Comput (2012).

Page 22: Overview & Applications

Tutorial: Evol

23

Page 23: Overview & Applications

Tutorial: Normal Mode Wizard

24

Page 24: Overview & Applications

Global transitions

30Å

Outward Facing (OF) Inward Facing (IF)

25Yernool et al. Nature 431 (2004).Reyes et al. Nature 462 (2009).

Page 25: Overview & Applications

Global transitions

Reyes et al. Nature 462 (2009).

Single subunit showing the transport domain moving across the membrane

27

Page 26: Overview & Applications

Rotations-Translations of Blocks

28

HRTBP

HAA PT

(3N × 3N)

(6Nb × 3N)

(3N × 6Nb)(6Nb × 6Nb)

H: ANM Hessian (3 rows/cols per residue)P: Projection matrix from all-residue space to rigid block spaceHRTB: RTB Hessian (no internal motions of blocks)V’AA: Approximate ANM motions

VRTB

PTV’AA

Smaller Hessian can be more easily diagonalized...

...and modes projected back into all-residue spaceMing & Wall. PRL 95 (2005).Zheng & Brooks. Biophys J 89 (2005).

RTB.buildHessian()

Page 27: Overview & Applications

Exploring structural transitions: Glutamate transporter

Lezon & Bahar. Biophys J 102 (2012).

ANM predicts large radial motions of the trimer. Can we invent a better model?

200000

002000

000020

20

ijijijijij

ijijijijij

ijijijijij

ij zzyzx

zyyyx

zxyxx

R

ijH

200000

002000

000020

20

zijzyijijzxijij

zyijijyijyxijij

zxijijyxijijxij

ij

zzyzx

zyyyx

zxyxx

R

ijH

Altered radial force constants:

RTB.buildHessian()

30

Hij = -g

Rij0( )2

xij0( )2 xij

0yij0 cxij

0zij0

xij0yij0 yij

0( )2 cyij0zij0

cxij0zij0 cyij

0zij0 czij

0( )2

é

ë

êêêêêê

ù

û

úúúúúú

Page 28: Overview & Applications

Exploring structural transitions: Glutamate transporter

ANM: Large radial motions imANM

32

Page 29: Overview & Applications

Explicit membrane models

Hss

HEEHSE

HES

“system”

“environment”

As the environment fluctuates randomly, the effective motion of the system is given by

reduceModel()

33