Overview - American Association of Petroleum...

10
1 Introduction Overview Introduction Formation evaluation with wireline logs, for the purpose of estimating hydrocarbon pore volume (HPV), requires methods to accurately determine net-pay thickness, porosity, and hydrocarbon saturation. Traditional petrophysical algorithms, such as Archie’s equation, need estimates of true formation resistivity (Rt) to calculate saturation and HPV, but many factors interfere with the ability to determine Rt. Resistivity modeling allows for accurate estimation of Rt from measured log data. This chapter introduces the concepts of resistivity modeling for formation evaluation. The history of resistivity logs and modeling is reviewed briefly, and some fundamental concepts and terms, such as dimensionality of earth models and forward and inverse log modeling, are defined. The rationale for why and when resistivity modeling should be applied is introduced by a discussion of tool resolution and accuracy. Contents The Quest for Rt History of resistivity logs and modeling Earth Models Definition Applications of 1-D, 2-D, and 3-D modeling Forward and Inverse Modeling Forward modeling Inverse modeling Acceptable error Non-uniqueness in inversion Why Model Resistivity for Formation Evaluation? Rt for HPV Tool resolution and accuracy Chart book vs. computer modeling When Should Resistivity Modeling be Considered? Practical considerations “Strange” resistivity log interpretation When does resistivity modeling have high risk? Flowchart for applicability of resistivity modeling Copyright © 2011 by The American Association of Petroleum Geologists. DOI: 10.1306/13211293A23414 Yin, H. 2011, Introduction, in H. Yin, Application of resis- tivity-tool-response modeling for formation evalua- tion: AAPG Archie Series, No. 2, p. 1–10.

Transcript of Overview - American Association of Petroleum...

Page 1: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

In t r o d u c tI o n

1 IntroductionOverviewIntroduction Formationevaluationwithwirelinelogs,forthepurposeofestimatinghydrocarbonporevolume

(HPV), requires methods to accurately determine net-pay thickness, porosity, and hydrocarbon

saturation.Traditionalpetrophysicalalgorithms,suchasArchie’sequation,needestimatesoftrue

formationresistivity(Rt)tocalculatesaturationandHPV,butmanyfactorsinterferewiththeability

todetermineRt.ResistivitymodelingallowsforaccurateestimationofRtfrommeasuredlogdata.

Thischapterintroducestheconceptsofresistivitymodelingforformationevaluation.Thehistory

of resistivity logs and modeling is reviewed briefly, and some fundamental concepts and terms,

suchasdimensionalityof earthmodels and forwardand inverse logmodeling, aredefined.The

rationaleforwhyandwhenresistivitymodelingshouldbeappliedisintroducedbyadiscussionof

toolresolutionandaccuracy.

Contents

TheQuestforRt

Historyofresistivitylogsandmodeling

EarthModels

Definition

Applicationsof1-D,2-D,and3-Dmodeling

ForwardandInverseModeling

Forwardmodeling

Inversemodeling

Acceptableerror

Non-uniquenessininversion

WhyModelResistivityforFormation

Evaluation?

RtforHPV

Toolresolutionandaccuracy

Chartbookvs.computermodeling

WhenShouldResistivityModelingbe

Considered?

Practicalconsiderations

“Strange”resistivityloginterpretation

Whendoesresistivitymodelinghave

highrisk?

Flowchartforapplicabilityofresistivity

modeling

Copyright©2011byTheAmericanAssociationofPetroleumGeologists.

DOI:10.1306/13211293A23414

Yin, H. 2011, Introduction, in H. Yin, Application of resis-tivity-tool-response modeling for formation evalua-tion: AAPG Archie Series, No. 2, p. 1–10.

Page 2: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

Ar c hI e Se rI e S, no. 2

TheQuestforRtHistoryofresistivity Perhaps the most appropriate way to summarize the history of resistivity logs is to describe the

logsandmodeling subjectasthequestforRt,thetrueformationresistivityuncorruptedbyboreholeinvadingfluids.

Such an endeavor implies the need for a resistivity tool that measures beyond the influence of

boreholeconditions,mudcake,caves,shoulderbeds,andanyotherzonesthatgiverisetoanomalous

signalsleadinginsteadtoameasurementofRa,theapparentformationresistivity.Thequestfor

RthasbeenongoingintheloggingindustryeversinceConradSchlumbergertippedhissurface-

electrical-prospectingarrayverticallytologdownawellbore,reasoningthatthecurrentfromthe

electrodesspreadoutintotheformationaroundtheborehole(Schlumbergeretal.,1934).Anearth

modelwasthenassumed,andthelawsofphysicswereusedtopredictanalyticallytheresponsefor

agivenelectrodeconfiguration(i.e.,resistivity-tool-responsemodeling).

Historically, resistivity-tool-response modeling started with resistivity-logging-tool design. The

primaryeffortinmodelingresistivitytoolswastodesigntoolsthatmeasuredRaascloselyaspos-

sibletoformationRt.Earlyexperimentalmodelingusedsmallelectrodesininfinite-conductivity

saltwaterbaths.Later,toolresponseswerestudiedusingmock-upsondesinmorerealisticenviron-

ments,createdbyusingthinimpermeablemembranestoseparatewatersofdifferentsalinity.

Starting in theearly1950s, scalemodelsandanalogcomputers (resistornetworks)werebuilt to

characterizetoolresponsesincaseswherecomplicatedmathematicalmodelsdonotyieldanalytical

solutions.

H. Guyod (1955) discussed an approximate solution of Laplace’s equation,∇2V = 0, whereV =

electricalpotential,withproperboundaryconditions,andaresistornetworkwasdesignedtosimu-

latetoolresponseforagivenformationandelectrodearrangement. Sponsoredbyseveralmajor

oilcompanies,Guyoddesignedaresistornetworkcontainingapproximately300,000resistors.The

innovativenetworkconsistedofabarrelwith2000smallmercurycups,arrangedinahelicalpat-

ternonitsinsidesurface,andacenterrotor,bearing1000brasspinsthatcanfitinsidethecupsin

ordertomovethemudandformationnetworksintoanewpositionrelativetoeachother.

Untilthelate1970s,asimilarresistornetworkhadbeenusedattheSchlumberger-DollResearch

Laboratory in Ridgefield, Connecticut (Figure 1.1). The network, consisting of nearly 500,000

resistors,ledtopredictingtoolresponsesrelativetotrueformationresistivityandtocreatingmany

oftheearlylog-correctioncharts.

Despitethedrawbackstothiskindofmodeling,suchasthedifficultyinexchangingorreconfigur-

ing thousandsof resistors tobuildeachnewcase, thescalemodelingwassuccessfullyapplied in

studyinggalvanictools.However,scalemodelingwasnotreadilyadaptabletotoolsthathavelarge

depthsofinvestigation,suchasinductiontools.

Large improvements in computing capability have introduced qualitative changes in the role of

modelingsincethe1980s.DirectnumericalsolutionsofMaxwell’sequationcanbeusedtocom-

puteresistivitytoolresponseinearthmodelswithcomplexgeometries.Inthese,thegeometrical

restrictionsaremuchlessseverethaninanalyticalandscalemodels.Realisticproblemscanbefor-

mulated,andthesolutionsappearassimpleandunthreateningnumbers,ratherthanasarcaneand

difficult-to-compute mathematical functions. Computerized modeling has reduced from weeks

tominutesthetimerequiredtocalculatemanyboreholeenvironmentaleffectsonresistivity-tool

Page 3: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

In t r o d u c tI o n

responses. A systematic evaluation of the effects of such environmental conditions as borehole

rugosity,caves,mudcake,invasion,dip,shoulderbeds,andformationanisotropyonresistivity-tool

responseisnowpossible.

Thesetheoreticalsimulationsoftoolresponsestolayeredandinvadedformationgeneratedbooks

ofdeparturecurves. In fact,mostcurrent resistivity-correctionchartsprovidedby servicecom-

panies are the result of numerical computer simulation, rather than physical experimental scale

modeling.

EarthModelsDefinition Resistivity-tool-response modeling may be categorized to the class of boundary-value problems.

Theearthmodelspecifiesthegeometryandboundariesofearthregionsofdifferingresistivity,and

theresistivitywithineachregion. Aresistivity toolwith itselectric source(s)anddetector(s),or

transmitter(s)andreceiver(s)locatedatspecifiedpointsisintroducedintotheearthmodel.The

source(s)ortransmitter(s)excitetheearthmediuminsomespecificmanner.Withsomeassumptions

madeaboutthespatialdistributionofresistivity,thesolutionsforresistivitytoolresponseundera

givenearthmodelcantaketheformofsimpleformulasderivedfromMaxwell’sequations,giving

Figure 1.1. The resistor network as an analog computer for two-dimensional (2-D) resistivity-tool-response modeling. This lastresistor network consisted of two racks, about 6 ft (1.8 m) tall and 12 ft (3.7 m) long, with nearly half a million resistors(Anderson et al., 1997, used with permission of Schlumberger).

Page 4: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

Ar c hI e Se rI e S, no. 2

theelectromagnetic(EM)fieldforanydesiredpointinspace.Formorecomplicatedcases,theEM

fieldscannotbeexpressedintermsofanalytical functions,butmustbe laboriouslycomputedat

manypointsinspacesimultaneously.Thedegreeofearth-modelcomplexitymaybesummarized

byreferringtogeometriesofdifferingdimensionalities:one-dimensional(1-D),two-dimensional

(2-D),orthree-dimensional(3-D).

ConsidertheCartesiancoordinatesystemshowninFigure1.2,specifiedbythecoordinatesx,y,

andz.

1.One-dimensional:Iftheresistivity(R)variesinonlyonecoordinatedirection,thenthegeom-

etryisreferredtoasa1-Dearthmodel.Inaparallel-layeredgeometryofsedimentaryrockwith

noborehole,theresistivityoftheformationvariesonlyinthez-coordinatedirection;R=R(z)

(i.e.,1-DVertical,whenboreholeisperpendiculartobeddingplane.Therelativedipisdefined

astheanglebetweentheboreholeandthenormalofbeddingplane).Or,inaninfinitelythick

homogeneous formation penetrated by a borehole with mud-filtrate invasion, the resistivity

variesonlyintheradialdirectionaroundtheborehole:R=R(x)=R(y)=R(r)(i.e.,1-DRadial,

whenboreholeisperpendiculartobeddingplane).

2.Two-dimensional:Ifresistivityvariesintheverticalandradialdirectionsduetobedding,bore-

holeconditions,andmud-filtrateinvasionbutisreasonablyaxisymmetricaroundtheborehole,

thentheearthmodelcanbeadequatelydefinedas2-D,R=R(x,z)=R(y,z)=R(r,z).

3.Three-dimensional:WhenR=R(x,y,z),theearthmodelissaidtobe3-D.

Applicationsof1-D, Applicationsof1-D,2-D,and3-Dresistivitymodelingarelistedbelow.Theassociatedearth-model

2-D,and3-Dmodeling geometriesareillustratedschematicallyinFigure1.2.

Table 1.1. Applications of 1-D, 2-D, and 3-D modeling

Modeling Dimension Effects addressed1-D Bedthickness,shoulderbeds,dippingbeds

2-D Boreholeandcaves,invasion

3-D HeterogeneousRt

Page 5: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

In t r o d u c tI o n

ForwardandInverseModelingForwardmodeling Thenumericalprocessofreconstructingaresistivitylogforagivenearthmodelisoftenreferred

toasforwardmodeling.Forwardmodelingtypicallyresultsinauniqueandrobustsolutionforthe

modeledresistivitylog.

Forward modeling entails the analytic or numerical solution of Maxwell’s equations in a math-

ematical boundary-value problem, where the earth model specifies the boundaries and shapes

of earth regionsofdifferent resistivities.The resistivity logging tool is introduced into the earth

modelbylocatingitstransmitter(s)andreceiver(s)atspecifiedpoints.Thetransmittersexcitethe

physicalmediumoftheearthmodelinamathematicallydefinedmanner.Fora1-Dearthmodel,

thesolutionsofMaxwell’sequationscantaketheformofsimpleformulas,givingtheEMfieldfor

anydesiredpoint inspace.For2-Dor3-Dcases, theEMfieldscannotbeexpressed in termsof

analytical functions, but must be laboriously computed at many points in space simultaneously.

Themathematicalandnumerical techniquesused in forwardmodelinghavebeenthesubjectof

manypublications,anddiscussionofthesetechniquesisoutsidethescopeofthisvolume.See,for

example,AndersonandGianzero(1983);Andersonetal.(1996);Chewetal(1984);Gianzeroetal.

(1985).

Figure 1.2. Schematic resistivity profiles for earth models in one dimension (1-D) if the resistivity varies in borehole axialdirection (R = R[z]); two dimensions (2-D) if resistivity varies in the vertical and radial directions (R = R[x,z] = R[y,z] =R[r,z]) axisymmetric around the borehole (where Rxo = resistivity of invasion zone, Rm = borehole mud resistivity, Di =diameter of invasion zone, and DB = diameter of borehole); and three dimensions (3-D) if resistivity varies in all major axes(R = R[x,y,z]).

R5”

3-D

R(x,r,z)y

x

z

R4”

1-D

Relative DipR(z)

z

R6

R7R8 R9

R6”

R2”

R1”

2-D

R(r,z)

z

R4’ Rxo

R2’

R1’

DB

Di

R3’

R5’

R4

R2

R1

R3

R5 Rm

Page 6: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

Ar c hI e Se rI e S, no. 2

Earth Model

Shallow Medium Deep

Resistivity

Rt

1-D Forward Modeling

Tool Response Functions

Aschematicrepresentationof1-DforwardmodelingisshowninFigure1.3.Ontheleftistheearth

model. Itassumesnoboreholewashoutorellipticityandnoinvasion. Simplifiedtool-response

functionswiththreedifferentdepthsof investigation(shallow,medium,anddeep)areshownin

the middle. In principle, the depth of investigation of an induction tool is proportional to the

spacingbetweenthetransmitterandreceivercoilpairs(i.e.,thelongerthespacing,thedeeperthe

toolmeasures).Theright-handsideshowsthetrueresistivityoftheformation(orange),andthe

shallow(blue),medium(green),anddeep(red)resistivitylogs.Thedeepresistivitytoolreadsthe

lowestvaluesovertheinterval,becausethethicknessesofthebedsarebelowtheverticalresolution

ofthedeeptool,whereastheshallowtoolreadsnearlythetrueRthereintheabsenceofinvasion.

Inversemodeling TheprocessofderivinganearthmodelincludinganRtprofilefromasetofgivenfieldlogswith

appropriateresistivity-tool-responsefunctionsisreferredtoasinversemodeling.Inversemodeling

entails iterativelyadjustingtheformationresistivity(Rt),bedboundaries,and(fora2-Dmodel)

invasiondepthandinvasion-zoneresistivity(Rxo)ineachlayeroftheearthmodel,andrepeating

theforward-modelcalculation,untilanacceptablereplicationoftheobservedfieldlogsisachieved.

Inversemodelingmaynotyieldauniquesolution.

Figure 1.4 is a schematic representation of 2-D forward and inverse modeling. The sand layers

havebeeninvadedbymudfiltrate.Thetool-responsefunctionsfortheshallow,medium,anddeep

resistivitytoolsareshowninthemiddle.Theright-handsideshowsthetrueresistivityofthefor-

mationRt,resistivityoftheinvadedzoneRxo,andtherespectiveshallow,medium,anddeeptool

readings.Inthiscase,theshallowresistivitylogissignificantlylowerthantrueresistivity(Rt)but

closelyagreeswiththeinvadedzoneresistivityRxobecauseofinvasion(contrastwithFigure1.3).

Figure 1.3. Schematic representation of 1-D forward modeling of resistivity in ohm m of an earth model where the sandsare not invaded. Rt = true resistivity.

Page 7: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

In t r o d u c tI o n

Acceptableerror Inthisvolume,resistivity-tool-responsemodeling,whenappliedforformationevaluation,involves

replicatingtheobservedfieldlogbynumericallysolvingthemathematicalboundary-valueproblem

of the electromagnetic fields generated from a specific resistivity tool under a pre-defined earth

modelontrial. Tothedegreethatthefield-logandthemodeled-logresponsesare inacceptable

agreement, the underlying earth model can be considered one possible representation of the

formation’strue-resistivityprofile.Iftheassumptioninthedefinedearthmodel(1-D,2-D,or3-D)

isclosetotherealitywherethefieldlogdatawereobtained,suchanacceptableagreementcanbe

definedbythetool-sondeerrorinmanycases.

Non-uniquenessin Resistivity modeling may not yield a unique solution. Multiple acceptable replications of the

inversion observed field log may be achieved through resistivity modeling by variation of the formation

resistivities,bedboundaries,andinvasiondepths.Hence,thederivedearthmodelmaynotbethe

true formation-resistivity profile, but one possible representation that yields a similar observed

response.

Non-uniquenessisparticularlyproblematicinformationswherethebeddingfrequency(inversely

related to bed thickness and spacing) exceeds the so-called blind frequency of the logging tool.

Theblindfrequencyisthemaximumspatialfrequencybelowwhichindividualbedscanbedistin-

guishedonthelog.Forbeddingabovetheblindfrequency(andthinnerthanthecorresponding

minimumthickness and spacing), individualbeds cannotbedistinguished, andnon-uniqueness

Figure 1.4. Schematic representation of 2-D forward- and inverse-modeling process of resistivity in ohm m for an earthmodel where the sands are invaded.

Earth Model

Shallow Medium Deep

Resistivity

Rt

Forward Modeling

Inverse Modeling

Tool Response Functions

Page 8: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

Ar c hI e Se rI e S, no. 2

becomesamajorfactorininversion.Asanexample,theblindfrequencyofthedualinductionlog

isintherangeofonebedperfoot(0.3m).SeeChapters3and6formoredetails.

Tominimizenon-uniqueness,itisessentialtointegratelogswithdifferentdepthsofinvestigation

andverticalresolution,andtoemployconstrainingdatafromallpossiblesourcesintheapplication

ofresistivitymodelingforformationevaluation.Forexample,coreimagesorborehole-imagelogs

maybeutilizedtoidentifybedboundariesandthicknesses.Petrophysicallimitsfromporositylogs

orcoredatamaybeusedtoderivepossiblemaximumandminimumresistivityvalues.Knowledge

oftoolphysics,localgeology,andoffsetwelldatamayleadtheresistivitymodelertoamorerealistic

earthprofileofformationresistivity.

WhyModelResistivityforFormationEvaluation?RtforHPV Theaccuracyofhydrocarbonsaturationcalculatedfromwelllogsisfundamentallydependentupon

accuratedeterminationofRt. True formation resistivity is anessential input intohydrocarbon-

resourceassessmentsinpetrophysics.Iftheapparentresistivity(Ra)measuredbyaresistivitytool

isuseddirectlytoestimatehydrocarbonsaturationandhydrocarbonporevolume(HPV),errorsin

HPVwillgenerallyresult.

Toolresolutionand Because of tool physics and borehole conditions, formation resistivity measured by a logging

accuracy tool, Ra, is not equal to Rt in most logging environments. All deep-reading resistivity tools are

influencedbytheresistivitydistributionina largevolumesurroundingthesonde. Forexample,

the deep induction resistivity tools may not resolve beds less than 2 ft (0.6 m) thick even after

resolution-enhancementprocessing,because theirvertical resolution is limitedby induction-tool

physicsandthespacingofthedeep-readingcoils.

Chartbookvs. Traditional environmental correction charts usually do not provide satisfactory remedies for

computermodeling estimating environmental effects on resistivity logs. The charts that are provided by the service

companieshavelimitingassumptionsthatseldommatchreal-worldexamples.Computermodeling

canbedonetoconvertapparentresistivityfromlogsintoaresponseprofilethatmaybecloserto

reality.Infact,anymodernenvironmentalcorrectionchartprovidedbyaservicecompanyisthe

resultofcomputermodeling.

High-resistivityanomaliesmaynotcorrespondtoresistivebeds,butrathertotheinterfacebetween

twobeds,eachwithlowerRtthantheRaindicatedonthelog.Suchananticorrelationmayoften

bemistakenasdepthmismatch,andonlymodelingmayresolvethecorrectdepthandresistivityof

eachbed.

Withtheadventofmodelingcodes(computerprograms)tosimulateresistivity-toolresponse,and

withsignificantincreasesincomputingpower,resistivitymodelinghasbecomeafeasiblealterna-

tive tochartbooks for formationevaluation. Whenappropriatelyused, resistivitymodelingcan

reduceuncertaintyinresistivity-basedreserveestimates.

Page 9: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

In t r o d u c tI o n

WhenShouldRtModelingbeConsidered?Practical Although resistivity modeling is becoming practical with the continual increase in computing

considerations power,resistivity-tool-responsemodelingmaystillbequitetimeconsuming,especiallyin2-Dand

3-Dmodeling.Whetherresistivity-tool-responsemodelingispracticalforagivenwellshouldbe

objectivelyjudged,basedonprojectrequirementsandavailableinformationfromfieldlogs.

Whenaccurateresistivity-basedHPVcalculationisrequired,resistivitymodelingshouldgenerally

beappliedwhenthechart-book-specifiedenvironmentalconditionsdonotapproximatethebore-

holeconditionsinwhichthelogswerecollected.

“Strange”resistivity Wellsareoftennotidealforlogging.Resistivitylogsfromdeviatedandhorizontalwells,drilledto

loginterpretation optimizeproductivity,oftenappearcounter-intuitive,andarenotcorrectablebychartbooks.The

physicalprinciplesembodied inMaxwell’sequationsofresistivity toolsarewellunderstood,and

withmodelingcapableofhonoringenoughdetailsofthetoolphysicsandboreholeenvironment,

suchresponsesarepredictable. Toolresponseartifacts suchaspolarizationhorns,whichappear

aslargetransientovershootsintheresistivityresponseatbedboundariesindeviatedwells,canbe

readilyunderstoodthroughmodeling.

Whendoesresistivity Defining resistivity for beds thinner than the vertical resolution of deep-reading resistivity tools

modelinghave ishighlyuncertainwithoutadditionalconstraints,suchascore-plugsaturationdatatodefinebed

highrisk? resistivity and high-resolution log or core images to rigorously define beds and bed thicknesses.

Thisisduetothetools’physicallimitsinaccuracyandsensitivityforbedsthinnerthanthevertical

resolutionofthetool.Theverticalresolutionoftoday’sarrayinductiontoolsisabout2ft(0.6m),

andthatisalsoabouttheverticalresolutionofmostporositylogs.Becauseoflimitedresourcesfor

modelingporositylogs,resistivitymodeledforbedsthinnerthan2ft(0.6m)maynotcompletely

addresstheuncertaintyinHPVcalculation,exceptwhenthewellhascore-plugporosity.Moreover,

whenbedsarethinnerthantheverticalresolutionofdeep-readingresistivitytools,othertechniques

mayworkwellandbemoreeconomical,suchastheparallel-conductivitymodeland/orvolumetric

laminatedsandanalysis(VLSA)(Passeyetal.,2006).

Page 10: Overview - American Association of Petroleum Geologistsstore-assets.aapg.org/documents/previews/831A2/CHAPTER01.pdf · Overview Introduction ... Forward modeling The numerical process

�0

Ar c hI e Se rI e S, no. 2

Flowchartfor Thefollowingflowdiagramsummarizeswhenandwhereresistivitymodelingshouldbe

applicabilityof considered.

resistivitymodeling

Figure 1.5. Flow diagram summarizing when and where toapply resistivity modeling. Sw = water saturation

yes

yes

yesyes

yesyes

no

no

nono

nono

Boreholeand invasionproblems?

Start

Are sands> 2 feet?

Are sands< 20 feet?

Is dipping orwell deviation

>30°?

Significant“horn” or resistivity

contrast?

Boreholeand invasionproblems?

Will Inductionor Laterolog be used

in Sw and HydrocarbonPore Thicknesscalculations?

Rt Modeling is notnecessary for HPT

estimation

1-D Resistivitymodeling

Use modeling results and conductArchie or shaly sand FE for

Hydrocarbon Pore Thickness

2-D Resistivitymodeling