OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved...

26
© ENERGEX 2015 MANUAL 00302 OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI

Transcript of OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved...

Page 1: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

© ENERGEX 2015

MANUAL 00302

OVERHEAD DESIGN MANUAL

Section 6 – Mechanical Loads

Approved by: F. ZAINI

Page 2: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 3: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 4: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

SUB

3 SECT

6 REV SHT

1 A

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

POLES 120mm² AAAC 1120 CCT 120mm² AAC 1350 CCT

CKD

WORD

ORIGINAL ISSUE

P. RELF

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

10824-A4

F. ZAINI

MECHANICAL LOADS – for 120mm² 7/4.75 1350 & 1120 Alloy CCT – per conductor Stringing Table 880 660 440 220 880 660 440 220

SPAN (m) 40 50 80 100 40 50 80 100 Angle of Deviation 15oC – No Wind Load 15oC – 900Pa Wind Load

0 0.00 0.00 0.00 0.00 0.97 1.23 1.95 2.43 5 0.08 0.10 0.15 0.31 1.27 1.62 2.53 3.42

10 0.15 0.20 0.30 0.61 1.56 2.00 3.09 4.39 15 0.23 0.30 0.46 0.91 1.84 2.37 3.63 5.32 20 0.30 0.40 0.61 1.21 2.10 2.72 4.15 6.21

25 0.38 0.50 0.77 1.51 2.35 3.04 4.63 7.06 30 0.45 0.60 0.91 1.81 2.58 3.35 5.07 7.85 35 0.52 0.70 1.05 2.10 2.79 3.62 5.48 8.58 40 0.59 0.80 1.20 2.39 2.97 3.87 5.84 9.25 45 0.67 0.89 1.34 2.68 3.13 4.09 6.15 9.84 50 0.73 0.99 1.48 2.96 3.27 4.27 6.42 10.35 55 0.80 1.08 1.62 3.23 3.38 4.42 6.64 10.79 60 0.87 1.17 1.75 3.50 3.47 4.54 6.81 11.16 65 0.93 1.25 1.88 3.76 3.53 4.63 6.93 11.45 70 1.00 1.34 2.01 4.01 3.58 4.70 7.01 11.69 75 1.06 1.42 2.13 4.26 3.62 4.75 7.08 11.91 80 1.12 1.50 2.25 4.50 3.65 4.81 7.15 12.10 85 1.17 1.58 2.36 4.73 3.69 4.86 7.23 12.31 90 1.23 1.65 2.47 4.95 3.75 4.95 7.35 12.57

Termination 0.87 1.17 1.75 3.50 3.48 4.59 6.80 11.52

1120 Alloy: Mass= 0.57kg/m Nominal Overall Diameter=21.6mm Breaking Load=27.1kN Stranding: 7/4.75 AAAC 124mm² E:65GPa 1350 Alloy: Mass= 0.57kg/m Nominal Overall Diameter=21.6mm Breaking Load=18.9kN Stranding: 7/4.75 AAC 124mm² E:65GPa

Notes:

1. Tabulated loads incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘wind’.

2. ‘Wind’ loads will vary slightly with span length, especially for tight stringing tensions and nil/small deviation angles.

3. Tip loads are for worst case wind direction. For large deviation angles, this is normal to one circuit, not the bisector of the circuit angles.

Page 5: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 6: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 7: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 8: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 9: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 10: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

SUB

9 SECT

6 REV SHT

K. GOSDEN

P. RELF

F Zaini

B

© COPYRIGHT 2017 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

MECHANICAL LOADS COMMUNICATION CABLE

F. ZAINI

CKD

WORD

Updated for New 2017 Comms Cables

F Zaini

P Relf

1/6/17 DATE

20/10/2015

APP’D B

AUTHR

CKD

APP’D

AUTHR

SHT

DATE

REC’D

10824-A4 1

TABLE OF MECHANICAL LOADS AT POINT OF ATTACHMENT TO POLE 20 PAIR PILOT CABLE (2017 VERSION)

Stringing Table T880 T660 T440 T220 Stringing Table T880 T660 T440 T220

Span Length (m) 40 60 80 100 Span Length (m) 40 60 80 100

Deviation Angle 15°C NO WIND Deviation Angle 15°C 900Pa WIND

T880 T660 T440 T220 T880 T660 T440 T220

0° 0.00 0.00 0.00 0.00 0° 1.51 2.27 3.02 3.78

5° 0.18 0.23 0.35 0.70 5° 2.07 3.00 4.06 5.38

10° 0.35 0.47 0.70 1.41 10° 2.61 3.70 5.07 6.95

20° 0.70 0.93 1.40 2.79 20° 3.64 5.08 6.98 9.95

30° 1.05 1.39 2.08 4.16 30° 4.52 6.28 8.69 12.69

40° 1.38 1.83 2.76 5.50 40° 5.30 7.27 10.12 15.10

50° 1.70 2.27 3.40 6.80 50° 5.88 8.03 11.23 17.07

60° 2.02 2.68 4.03 8.04 60° 6.26 8.50 11.97 18.58

70° 2.31 3.08 4.62 9.22 70° 6.49 8.75 12.37 19.59

80° 2.60 3.45 5.18 10.33 80° 6.77 9.07 12.79 20.27

90° 2.86 3.79 5.70 11.37 90° 7.11 9.49 13.43 21.52

Termination 2.02 2.68 4.03 8.04 Termination 6.46 8.59 12.05 18.59

CONDUCTOR DATA: Mass (kg/m) 1.310 (Total Mass Catenary + Pilot cable)

Diameter (mm) 42

UTS (kN) 26.0 (Catenary – 7/2.00 Galvanised Steel)

Notes: 1. Tabulated loads incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘wind’. 2. ‘Wind’ loads will vary slightly with span length, especially for tight stringing tensions and small or nil deviation angles. 3. Tip loads are for worst case wind direction. For large deviation angles, this is normal to one circuit, not the bisector of the circuit angles.

PILOT CABLE 20 PAIR

Page 11: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

SUB

9 SECT

6 REV SHT

K. GOSDEN

P. RELF

F Zaini

B

© COPYRIGHT 2017 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

MECHANICAL LOADS COMMUNICATION CABLE

F. ZAINI

CKD

WORD

Updated for New 2017 Comms Cables

F Zaini

P Relf

1/6/17 DATE

20/10/2015

APP’D B

AUTHR

CKD

APP’D

AUTHR

SHT

DATE

REC’D

10824-A4 2

72 CORE ADSS

MECHANICAL LOADS AT POINT OF ATTACHMENT TO POLE

72 CORE ADSS FIBRE OPTIC CABLE

Stringing Table 880 660 440 220 880 660 440 220

Span (m) 40 60 80 100 40 60 80 100

Deviation Angle 15°C NO WIND 15°C 900 Pa WIND

0° 0.00 0.00 0.00 0.00 0.45 0.68 0.90 1.13

5° 0.02 0.02 0.03 0.06 0.60 0.87 1.18 1.52

10° 0.03 0.04 0.06 0.13 0.74 1.07 1.44 1.91

15° 0.05 0.06 0.10 0.19 0.88 1.25 1.70 2.29

20° 0.06 0.08 0.13 0.25 1.02 1.43 1.93 2.66

25° 0.08 0.10 0.16 0.32 1.12 1.60 2.19 3.01

30° 0.09 0.12 0.19 0.38 1.28 1.76 2.38 3.33

35° 0.11 0.15 0.22 0.44 1.33 1.86 2.60 3.62

40° 0.13 0.17 0.25 0.50 1.41 2.02 2.71 3.88

45° 0.14 0.18 0.28 0.56 1.49 2.05 2.91 4.12

50° 0.16 0.21 0.31 0.62 1.57 2.17 3.02 4.31

55° 0.17 0.23 0.34 0.68 1.62 2.24 3.05 4.46

60° 0.18 0.24 0.37 0.74 1.68 2.25 3.13 4.56

65° 0.20 0.26 0.39 0.80 1.71 2.31 3.21 4.68

70° 0.21 0.28 0.42 0.84 1.74 2.32 3.22 4.69

75° 0.23 0.30 0.44 0.90 1.77 2.36 3.26 4.72

80° 0.23 0.31 0.47 0.94 1.78 2.39 3.26 4.76

85° 0.25 0.34 0.50 0.99 1.79 2.39 3.30 4.79

90° 0.27 0.35 0.52 1.05 1.81 2.41 3.32 4.84

Termination 0.19 0.25 0.37 0.74 1.77 2.35 3.23 4.66

CONDUCTOR DATA: Mass (kg/m) 0.12

Diameter (mm) 12.5

UTS (kN) 28.00

Notes: 1. Tabulated loads incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘wind’. 2. ‘Wind’ loads will vary slightly with span length, especially for tight stringing tensions and small or nil deviation angles. 3. Tip loads are for worst case wind direction. For large deviation angles, this is normal to one circuit, not the bisector of the circuit angles.

Page 12: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

SUB

9 SECT

6 REV SHT

K. GOSDEN

P. RELF

F Zaini

B

© COPYRIGHT 2017 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

MECHANICAL LOADS COMMUNICATION CABLE

F. ZAINI

CKD

WORD

Updated for New 2017 Comms Cables

F Zaini

P Relf

1/6/17 DATE

20/10/2015

APP’D B

AUTHR

CKD

APP’D

AUTHR

SHT

DATE

REC’D

10824-A4 3

MECHANICAL LOADS AT POINT OF ATTACHMENT TO POLE 24, 48 or 72 CORE OPGW FIBRE OPTIC/GROUND WIRE CABLE

Stringing Table 880 660 440 220 880 660 440 220

Span (m) 40 60 80 100 40 60 80 100

Deviation Angle 15°C NO WIND 15°C 900 Pa WIND

0° 0.00 0.00 0.00 0.00 0.50 0.75 1.00 1.25

5° 0.04 0.05 0.08 0.15 0.66 0.96 1.30 1.78

10° 0.08 0.10 0.15 0.30 0.81 1.16 1.60 2.31

15° 0.11 0.15 0.23 0.45 0.95 1.35 1.88 2.81

20° 0.15 0.20 0.30 0.60 1.09 1.53 2.15 3.29

25° 0.19 0.25 0.38 0.75 1.22 1.70 2.40 3.75

30° 0.23 0.30 0.45 0.90 1.34 1.86 2.63 4.18

35° 0.26 0.35 0.52 1.05 1.45 2.00 2.84 4.57

40° 0.30 0.40 0.59 1.19 1.55 2.12 3.03 4.93

45° 0.34 0.45 0.67 1.33 1.63 2.23 3.19 5.24

50° 0.37 0.49 0.73 1.47 1.71 2.32 3.33 5.52

55° 0.41 0.54 0.80 1.61 1.76 2.40 3.44 5.75

60° 0.44 0.58 0.87 1.74 1.81 2.45 3.53 5.94

65° 0.47 0.63 0.93 1.87 1.84 2.49 3.59 6.10

70° 0.50 0.67 1.00 1.99 1.87 2.51 3.64 6.24

75° 0.54 0.71 1.06 2.12 1.89 2.53 3.68 6.36

80° 0.57 0.75 1.12 2.23 1.91 2.55 3.71 6.46

85° 0.59 0.79 1.17 2.35 1.93 2.58 3.75 6.57

90° 0.62 0.82 1.23 2.46 1.96 2.61 3.81 6.70

Termination 0.44 0.58 0.87 1.74 1.83 2.43 3.55 6.21

CONDUCTOR DATA: Mass (kg/m) 0.285

Diameter (mm) 11.0

UTS (kN) 37.90

Notes: 1. Tabulated loads incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘Wind’. 2. ‘Wind’ loads will vary slightly with span length, especially for tight stringing tensions and small or nil deviation angles. 3. Tip loads are for worst case wind direction. For large deviation angles, this is normal to one circuit, not the bisector of the circuit angles.

24, 48 OR 72 CORE OPGW

Page 13: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

SUB

9 SECT

6 REV SHT

K. GOSDEN

P. RELF

F Zaini

B

© COPYRIGHT 2017 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

MECHANICAL LOADS COMMUNICATION CABLE

F. ZAINI

CKD

WORD

Updated for New 2017 Comms Cables

F Zaini

P Relf

1/6/17 DATE

20/10/2015

APP’D B

AUTHR

CKD

APP’D

AUTHR

SHT

DATE

REC’D

10824-A4 4

MECHANICAL LOADS AT POINT OF ATTACHMENT TO POLE 24, 48 or 72 CORE OPGW FIBRE OPTIC/GROUND WIRE CABLE

Stringing Table 110 65 110 65

MES 140 200 140 200

Span 140 200 140 200

Deviation Angle 15°C NO WIND 15°C 900 Pa Wind

0° 0.00 0.00 1.75 2.50

5° 0.30 0.51 2.61 3.72

10° 0.61 1.03 3.45 4.92

15° 0.91 1.54 4.26 6.09

20° 1.21 2.05 5.05 7.22

25° 1.50 2.55 5.79 8.29

30° 1.80 3.05 6.50 9.31

35° 2.09 3.55 7.15 10.26

40° 2.38 4.03 7.75 11.14

45° 2.66 4.51 8.29 11.95

50° 2.94 4.98 8.77 12.68

55° 3.21 5.44 9.19 13.33

60° 3.48 5.90 9.55 13.89

65° 3.74 6.34 9.84 14.38

70° 3.99 6.76 10.10 14.78

75° 4.23 7.18 10.32 15.11

80° 4.47 7.58 10.53 15.43

85° 4.70 7.97 10.75 15.78

90° 4.92 8.34 11.01 16.21

Termination 3.48 5.90 9.94 14.18

CONDUCTOR DATA: Mass (kg/m) 0.285

Diameter (mm) 11.0

UTS (kN) 37.90

Note: 1. Tabulated loads incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘Wind’. 2. ‘Wind’ loads will vary slightly with span length, especially for tight stringing tensions and small or nil deviation angles. 3. Tip loads are for worst case wind direction. For large deviation angles, this is normal to one circuit, not the bisector of the circuit angles.

24, 48 OR 72 CORE OPGW

Page 14: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 15: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa
Page 16: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

REV SHT SUB

11 SECT

6 REV SHT

P. RELF

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS OPTUS BBCC

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

1 A 10824-A4

POINT OF ATTACHMENT LOADS IN kN AT 15C NO WIND POINT OF ATTACHMENT LOADS IN kN AT 15C & 900 Pa WIND

ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

30 0.00 0.03 0.06 0.13 0.19 0.25 0.31 0.36 0.42 0.47 0.51 0.36 30 0.23 0 2

0.35

0.47 0.70 0.91 1.09 1.23 1.34 1.42 1.48 1.53 1.44 35 0.00 0.04 0.07 0.15 0.22 0.29 0.36 0.43 0.49 0.55 0.61 0.43 35 0.28

0.42 0.56 0.83 1.07 1.28 1.44 1.57 1.66 1.72 1.79 1.68

40 0.00 0.04 0.08 0.17 0.25 0.33 0.41 0.48 0.56 0.62 0.68 0.48 40 0.33 0.49 0.65 0.95 1.22 1.45 1.64 1.77 1.87 1.95 2.02 1.89 45 0.00 0.05 0.10 0.19 0.28 0.38 0.46 0.55 0.63 0.71 0.78 0.55

0 61 45 0.35 0.53 0.71 1.05 1.36 1.62 1.82 1.98 2.09 2.18 2.26 2.12

50 0.00 0.05 0.11 0.21 0.31 0.41 0.51 0.61 0.69 0.78 0.86 0.61 50 0.40 0.60 0.80 1.17 1.50 1.78 2.01 2.18 2.30 2.39 2.48 2.32 60 0.00 0.06 0.13 0.25 0.38 0.50 0.61 0.73 0.83 0.93 1.03 0.73 60 0.48 0.71 0.94 1.38 1.78 2.11 2.38 2.58 2.72 2.83 2.94 2.75 70 0.00 0.07 0.15 0.29 0.44 0.58 0.72 0.85 0.97 1.09 1.20 0.85 70 0.55 0.82 1.09 1.60 2.05 2.44 2.74 2.97 3.14 3.26 3.38 3.16 80 0.00 0.08 0.17 0.34 0.50 0.66 0.82 0.97 1.11 1.24 1.37 0.97 80 0.63 0.93 1.23 1.80 2.32 2.75 3.10 3.35 3.54 3.68 3.82 3.57

OB0 OB0

SEE NOTES NEXT PAGE

Page 17: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

REV SHT SUB

11 SECT

6 REV SHT

P. RELF

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS OPTUS BBCC

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

1 A 10824-A4

CODES FOR OPTUS BROADBAND STRAND / CABLES OB0 Steel Support Wire Only OB1 1 x Fibre Optic OR 1 x Coax OB2 2 x Fibre Optic OR 1 x Coax & 1 x Fibre Optic OB3 1 x Coax & 2 x Fibre Optic OR 2 x Coax OB4 3 x Coax OR 2 x Coax & 1 x Fibre Optic OR 1 x Coax & 3 x Fibre Optic OB5 2 x Coax & 2 x Fibre Optic OR 3 x Coax & 1 x Fibre Optic OR 4 x Coax OR 2 x Coax & 3 x Fibre Optic OR 3 x Coax & 2 x Fibre Optic OR 4 x Coax & 1 x Fibre Optic OR 3 x Coax & 3 x Fibre Optic.

POINT OF ATTACHMENT LOADS IN kN AT 15C NO WIND POINT OF ATTACHMENT LOADS IN kN AT 15C & 900 Pa WIND ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

30 0.00 0.06 0.13 0.25 0.38 0.50 0.61 0.73 0.83 0.93 1.03 0.73 30 0.83 1.20 1.56 2.25 2.86 3.36 3.76 4.07 4.27 4.39 4.50 4.34 35 0.00 0.07 0.15 0.29 0.44 0.58 0.72 0.85 0.97 1.09 1.20 0.85 35 0.98 1.40 1.82 2.60 3.30 3.87 4.32 4.66 4.88 5.02 5.15 4.96 40 0.00 0.09 0.17 0.34 0.51 0.67 0.83 0.98 1.12 1.26 1.38 0.98 40 1.10 1.58 2.05 2.94 3.72 4.37 4.88 5.26 5.52 5.68 5.82 5.60 45 0.00 0.10 0.19 0.38 0.57 0.75 0.93 1.10 1.26 1.41 1.56 1.10 45 1.25 1.78 2.30 3.28 4.14 4.85 5.40 5.82 6.10 6.27 6.43 6.18 50 0.00 0.11 0.21 0.42 0.63 0.84 1.03 1.22 1.40 1.57 1.73 1.22 50 1.38 1.96 2.52 3.59 4.54 5.31 5.92 6.37 6.67 6.86 7.04 6.76 60 0.00 0.13 0.26 0.51 0.76 1.00 1.24 1.46 1.68 1.88 2.07 1.46 60 1.65 2.33 2.98 4.22 5.32 6.22 6.91 7.43 7.78 7.99 8.20 7.86 70 0.00 0.15 0.30 0.59 0.88 1.17 1.44 1.71 1.96 2.19 2.41 1.71 70 1.93 2.69 3.44 4.84 6.08 7.11 7.88 8.46 8.84 9.09 9.32 8.91 80 0.00 0.17 0.34 0.68 1.01 1.33 1.65 1.95 2.23 2.50 2.57 1.95 80 2.20 3.05 3.89 5.45 6.83 7.97 8.83 9.46 9.88 10.15 10.42 9.94

OB1 OB1 ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

30 0.00 0.10 0.20 0.40 0.60 0.80 0.99 1.17 1.34 1.50 1.65 1.17 30 0.98 1.42 1.85 2.67 3.40 4.01 4.49 4.84 5.10 5.27 5.44 5.15 35 0.00 0.12 0.24 0.47 0.71 0.93 1.15 1.6 1.56 1.75 1.93 1.36 35 1.15 1.66 2.15 3.09 3.92 4.62 5.16 5.56 5.85 6.04 6.24 5.89 40 0.00 0.14 0.27 0.54 0.80 1.06 1.31 1.55 1.78 1.99 2.19 1.55 40 1.30 1.87 2.42 3.47 4.40 5.18 5.78 6.23 6.54 6.76 6.98 6.58 45 0.00 0.15 0.30 0.61 0.91 1.20 1.48 1.75 2.01 2.25 2.47 1.75 45 1.48 2.10 2.71 3.87 4.89 5.75 6.42 6.91 7.25 7.49 7.73 7.27 50 0.00 0.17 0.34 0.68 1.01 1.33 1.65 1.95 2.23 2.50 2.75 1.95 50 1.63 2.31 2.98 4.24 5.37 6.31 7.05 7.57 7.95 8.21 8.48 7.97 60 0.00 0.20 0.41 0.81 1.21 1.60 1.97 2.33 2.68 3.00 3.30 2.33 60 1.95 2.75 3.52 4.99 6.29 7.39 8024 8.84 9.27 9.57 9.89 9.25 70 0.00 0.24 0.47 0.94 1.41 1.86 2.30 2.72 3.12 3.49 3.84 2.72 70 2.28 3.18 4.06 5.72 7.20 8.44 9.41 10.09 10.56 10.89 11.26 10.50 80 0.00 0.27 0.54 1.08 1.61 2.12 2.62 3.10 3.56 3.99 4.39 3.10 80 2.60 3.61 4.59 6.44 8.09 9.47 10.55 11.30 11.81 12.18 12.60 11.71

OB2 OB2 Notes: 1. Loads are based on standard stringing for SAG at 2% of span length. Some in-service spans may be installed at higher tensions. 2. Tabulated values incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘Wind’.

NOTE - OPTUS broadband strand / cable is attached at the highest broadband position on pole. Coax cables have an expansion loop in span approx. 1 metre from the pole; Optic fibre cables do not.

2

Page 18: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

REV SHT SUB

11 SECT

6 REV SHT

P. RELF

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS OPTUS BBCC

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

1 A 10824-A4

POINT OF ATTACHMENT LOADS IN kN AT 15C NO WIND POINT OF ATTACHMENT LOADS IN kN AT 15C & 900 Pa WIND

ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM 30 0.00 0.14 0.28 0.55 0.83 1.09 1.35 1.60 1.83 2.05 2.26 1.60 30 1.05 1.53 2.00 2.90 3.70 4.38 4.92 5.31 5.60 5.18 6.03 5.59 35 0.00 0.16 0.33 0.65 0.97 1.28 1.58 1.87 2.15 2.40 2.64 1.87 35 1.23 1.78 2.31 3.34 4.25 5.03 5.65 6.10 6.42 6.66 6.93 6.39 40 0.00 0.19 0.37 0.74 1.10 1.46 1.80 2.13 2.45 2.74 3.02 2.13 40 1.40 2.02 2.62 3.77 4.79 5.67 6.36 6.87 7.23 7.50 7.79 7.17 45 0.00 0.21 0.42 0.83 1.24 1.64 2.03 2.40 2.75 3.08 3.39 2.40 45 1.58 2.26 2.92 4.19 5.32 6.28 7.05 7.61 8.00 8.29 8.62 7.91 50 0.00 0.23 0.46 0.92 1.38 1.82 2.25 2.66 3.05 3.42 3.76 2.66 50 1.75 2.49 3.22 4.60 5.84 6.89 7.73 8.34 8.76 9.08 9.44 8.64 60 0.00 0.28 0.56 1.11 1.66 2.19 2.71 3.20 3.67 4.12 4.53 3.20 60 2.10 2.97 3.82 5.42 6.87 8.10 9.08 9.80 10.28 10.65 11.08 10.09 70 0.00 0.33 0.65 1.30 1.93 2.55 3.15 3.73 4.28 4.79 5.27 3.73 70 2.45 3.44 4.40 6.22 7.86 9.26 10.38 11.20 11.74 12.15 12.64 11.47 80 0.00 0.37 0.74 1.48 2.21 2.92 3.61 4.27 4.90 5.49 6.04 4.27 80 2.80 3.90 4.98 7.01 8.84 10.40 11.65 12.57 13.18 13.63 14.18 12.80

OB3 OB3 ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM 30 0.00 0.18 0.35 0.71 1.05 1.39 1.72 2.04 2.33 2.62 2.88 2.04 30 1.43 2.05

2.66 3.82 4.85 5.73 6.43 6.93 7.28 7.55 7.83 7.26

35 0.00 0.21 0.41 0.83 1.23 1.63 2.01 2.38 2.73 3.05 3.36 2.38 35 1.68 2.39 3.08 4.40 5.58 6.57 7.36 7.93 8.33 8.63 8.95 8.27 40 0.00 0.24 0.47 0.94 1.41 1.86 2.30 2.72 3.12 3.49 3.84 2.72 40 1.90 2.70 3.47 4.95 6.26 7.38 8.27 8.91 9.35 9.68 10.05 9.25 45 0.00 0.27 0.53 1.06

1 187 1.58 2.08 2.58 3.05 3.50 3.92 4.31 3.05 45 2.15 3.03 3.88 5.50 6.95 8.18 9.16 9.87 10.34 10.70 11.11 10.19

50 0.00 0.30 0.59 1.18 1.75 2.32 2.86 3.39 3.89 4.36 4.79 3.39 50 2.38 3.33 4.27 6.03 7.62 8.96 10.03 10.80 11.31 11.70 12.16 11.13 60 0.00 0.36 0.71 1.41 2.11 2.78 3.44 4.07 4.67 5.23 5.76 4.07 60 2.85 3.96 5.05 7.10 8.93 10.50 11.74 12.64 13.23 13.67 14.20 12.93 70 0.00 0.41 0.83 1.65 2.46 3.25 4.02 4.75 5.45 6.11 6.72 4.75 70 3.35 4.61 5.84 8.17 10.25 12.02 13.43 14.46 15.11 15.60 16.20 14.67 80 0.00 0.47 0.95 1.88 2.81 3.71 4.58 5.42 6.22 6.97 7.67 5.42 80 3.83 5.23 6.59 9.18 11.49 13.46 15.03 16.18 16.91 17.44 18.11 16.32

OB4 OB4 ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM 30 0.00 0.24 0.48 0.96 1.43 1.90 2.34 2.77 3.18 3.56 3.92 2.77 30 1.98 2.79 3.59 5.10 6.45 7.60 8.51 9.16 9.60 9.94 10.32 9.50 35 0.00 0.28 0.56 1.12 1.67 2.20 2.72 3.22 3.70 4.14 4.56 3.22 35 2.30 3.23 4.13 5.85 7.38 8.68 9.71 10.45 10.95 11.32 11.76 10.79 40 0.00 0.32 0.64 1.28 1.91 2.52 3.11 3.69 4.23 4.74 5.21 3.69 40 2.63 3.66 4.67 6.58 8.29 9.74 10.89 11.72 12.27 12.68 13.17 12.03 45 0.00 0.36 0.72 1.44 2.15 2.84 3.51 4.15 4.76 5.33 5.86 4.15 45 2.95 4.09 5.20 7.30 9.19 10.78 12.05 12.98 13.57 14.02 14.56 13.26 50 0.00 0.40 0.80 1.60 2.39 3.15 3.90 4.61 5.29 5.93 6.52 4.61 50 3.30 4.54 5.75 8.04 10.09 11.83 13.22 14.22 14.86 15.34 15.93 14.46 60 0.00 0.48 0.96 1.92 2.86 3.78 4.68 5.53 6.35 7.11 7.82 5.53 60 3.95 5.39 6.79 9.44 11.81 13.83 15.44 16.62 17.36 17.89 18.58 16.75 70 0.00 0.56 1.13 2.24 3.34 4.42 5.46 6.46 7.41 8.30 9.13 6.46 70 4.60 6.23 7.81 10.81 13.49 15.77 17.60 18.94 19.79 20.37 21.15 18.96 80 0.00 0.64 1.29 2.56 3.82 5.05 6.24 7.38 8.47 9.49 10.49 7.38 80 5.28 7.08 8.85 12.18 15.16 17.69 19.73 21.23 22.18 22.79 23.66 21.10

Notes: 1. Loads are based on standard stringing for SAG at 2% of span length. Some in-service spans may be installed at higher tensions. 2. Tabulated values incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘Wind’.

3

Page 19: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

SUB 

12 SECT 

6 REV SHT

P. RELF

A

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS TELSTRA BBCC

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

A 10824‐4

CODES FOR OPTUS BROADBAND STRAND / CABLES TB0 Steel Support Wire Only TB1 1 x “500” Coax TB2 2 x “500” Coax OR 1 x “750” Coax TB3 3 x “500” Coax OR 1 x “500” Coax & 1 “750” Coax OR 2 x “500” Coax & 1 x “750” Coax TB4 1 x “750” & 3 x “500” Coax OR 2 x “750” Coax OR 2 x “750” & 1 x “500” Coax OR 2 “750” & 2 x “500” Coax TB5 3 x “750” Coax OR 2 x “750” & 3 x “500” Coax OR 3 x “750” & 1 x “500” Coax OR 3 x “750” & 2 x “500” Coax OR 3 x “750” & 3 x “500” Coax

POINT OF ATTACHMENT LOADS IN kN AT 15C NO WIND POINT OF ATTACHMENT LOADS IN kN AT 15C & 900 Pa WIND

ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

30 0.00 0.03 0.06 0.12 0.18 0.24 0.30 0.35 0.40 0.45 0.50 0.35 30 0.20 0.31 0.41 0.62 0.80 0.95 1.08 1.17 1.24 1.29 1.35 1.25 35 0.00 0.04 0.07 0.15 0.22 0.29 0.35 0.42 0.48 0.54 0.59 0.42 35 0.25 0.38 0.50 0.74 0.95 1.13 1.27 1.38 1.46 1.52 1.58 1.47 40 0.00 0.04 0.08 0.16 0.24 0.32 0.40 0.47 0.54 0.61 0.67 0.47 40 0.28 0.42 0.56 0.82 1.06 1.26 1.42 1.54 1.63 1.70 1.77 1.64 45 0.00 0.05 0.09 0.19 0.28 0.37 0.46 0.54 0.62 0.69 0.76 0.54 45 0.30 0.46 0.62 0.92 1.19 1.42 1.60 1.74 1.84 1.92 2.00 1.86 50 0.00 0.05 0.10 0.21 0.31 0.41 0.50 0.59 0.68 0.76 0.84 0.59 50 0.35 0.53 0.70 1.02 1.32 1.57 1.77 1.92 2.03 2.11 2.20 2.03 60 0.00 0.06 0.12 0.25 0.37 0.49 0.60 0.72 0.82 0.92 1.01 0.72 60 0.43 0.63 0.83 1.22 1.56 1.86 2.10 2.27 2.40 2.50 2.60 2.40 70 0.00 0.07 0.15 0.29 0.43 0.57 0.71 0.84 0.96 1.07 1.18 0.84 70 0.48 0.71 0.95 1.39 1.79 2.13 2.41 2.61 2.76 2.87 3.00 2.76 80 0.00 0.08 0.16 0.33 0.49 0.65 0.80 0.95 1.09 1.22 1.34 0.95 80 0.55 0.82 1.08 1.57 2.02 2.40 2.71 2.93 3.10 3.22 3.36 3.09

TB0 TB0

Notes: 1. Loads are based on standard stringing for SAG at 2% of span length. Some in-service spans may be installed at higher tensions. 2. Tabulated values incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘Wind’.

NOTE – TELSTRA have no overhead aerial optic fibre cable

NOTE - OPTUS broadband strand / cable is attached at the highest broadband position on pole. Coax cables have an expansion loop in span approx. 1 metre from the pole; Optic fibre cables do not.

Page 20: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

SUB 

12 SECT 

6 REV SHT

P. RELF

A

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS TELSTRA BBCC

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

A 10824‐4

POINT OF ATTACHMENT LOADS IN kN AT 15C NO WIND POINT OF ATTACHMENT LOADS IN kN AT 15C & 900 Pa WIND ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

30 0.00 0.06 0.12 0.23 0.34 0.45 0.56 0.66 0.76 0.85 0.93 0.66 30 0.64 0.92 1.21 1.74 2.20 2.59 2.90 3.13 3.28 3.38 3.49 3.34 35 0.00 0.07 0.13 0.27 0.40 0.53 0.65 0.77 0.88 0.99 1.09 0.77 35 0.74 1.07 1.39 2.00 2.53 2.97 3.31 3.58 3.75 3.86 4.00 3.82 40 0.00 0.08 0.15 0.30 0.45 0.59 0.73 0.87 1.00 1.12 1.23 0.87 40 0.85 1.21 1.57 2.24 2.84 3.33 3.70 3.99 4.18 4.30 4.45 4.25 45 0.00 0.09 0.17 0.34 0.51 0.67 0.83 0.98 1.12 1.26 1.38 0.98 45 0.95 1.36 1.75 2.50 3.15 3.70 4.11 4.42 4.62 4.76 4.93 4.69 50 0.00 0.10 0.19 0.38 0.56 0.74 0.92 1.09 1.25 1.40 1.54 1.09 50 1.16 1.50 1.93 2.74 3.46 4.06 4.51 4.84 5.06 5.21 5.40 5.13 60 0.00 0.11 0.23 0.45 0.68 0.90 1.11 1.31 1.50 1.68 1.85 1.31 60 1.27 1.78 2.29 3.23 4.07 4.76 5.29 5.65 5.91 6.08 6.31 5.97 70 0.00 0.13 0.27 0.53 0.79 1.05 1.29 1.53 1.75 1.97 2.16 1.53 70 1.48 2.06 2.64 3.71 4.66 5.45 6.05 6.45 6.72 6.92 7.19 6.79 80 0.00 0.15 0.30 0.61 0.91 1.20 1.48 1.75 2.01 2.25 2.47 1.75 80 1.70 2.34 2.98 4.18 5.23 6.11 6.79 7.23 7.52 7.74 8.64 7.57

TB1 TB1 NGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

ANGLE SPAN

(m)

0

5

10

20

30

40

50

60

70

80

90

TERM

30 0.00 0.09 0.17 0.34 0.51 0.67 0.83 0.98 1.12 1.26 1.38 0.98 30 0.85 1.22 1.58 2.27 2.87 3.38 3.76 4.05 4.25 4.39 4.56 4.31 35 0.00 0.10 0.20 0.39 0.59 0.78 0.96 1.13 1.30 1.46 1.60 1.13 35 0.99 1.41 1.82 2.60 3.29 3.86 4.29 4.61 4.83 4.99 5.18 4.89 40 0.00 0.11 0.23 0.45 0.67 0.89 1.10 1.30 1.49 1.67 1.84 1.30 40 1.13 1.61 2.07 2.93 3.70 4.34 4.83 5.17 5.42 5.59 5.82 5.48 45 0.00 0.13 0.26 0.51 0.76 1.00 1.24 1.46 1.68 1.88 2.07 1.46 45 1.28 1.79 2.30 3.26 4.11 4.82 5.36 5.73 5.99 6.19 6.44 6.05 50 0.00 0.14 0.28 0.57 0.84 1.11 1.38 1.63 1.87 2.09 2.30 1.63 50 1.42 1.98 2.54 3.58 4.51 5.28 5.88 6.27 6.55 6.77 7.05 6.61 60 0.00 0.17 0.34 0.68 1.01 1.33 1.65 1.95 2.23 2.50 2.75 1.95 60 1.70 2.36 3.00 4.21 5.28 6.18 6.87 7.33 7.62 7.87 8.20 7.66 70 0.00 0.20 0.40 0.79 1.18 1.56 1.92 2.28 2.61 2.93 3.22 2.28 70 1.98 2.73 3.46 4.83 6.05 7.06 7.85 8.37 8.68 8.96 9.34 8.69 80 0.00 0.23 0.45 0.90 1.34 1.78 2.19 2.60 2.98 3.34 3.67 2.60 80 2.27 3.09 3.91 5.43 6.78 7.91 8.79 9.37 9.70 10.00 10.43 9.67

TB2 TB2

Notes: 1. Loads are based on standard stringing for SAG at 2% of span length. Some in-service spans may be installed at higher tensions. 2. Tabulated values incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘Wind’.

Page 21: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

SUB 

12 SECT 

6 REV SHT

P. RELF

A

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS TELSTRA BBCC

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

A 10824‐4

POINT OF ATTACHMENT LOADS IN kN AT 15C NO WIND POINT OF ATTACHMENT LOADS IN kN AT 15C & 900 Pa WIND ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM 30 0.00 0.14 0.27 0.55 0.81 1.08 1.33 1.57 1.80 2.02 2.22 1.57 30 1.07 1.54 2.01 2.88 3.65 4.30 4.80 5.16 5.43 5.65 5.93 5.48 35 0.00 0.16 0.32 0.63 0.95 1.25 1.54 1.83 2.09 2.35 2.58 1.83 35 1.25 1.78 2.31 3.30 4.18 4.92 5.49 5.89 6.18 6.44 6.76 6.23 40 0.00 0.18 0.36 0.73 1.08 1.43 1.77 2.09 2.40 2.69 2.96 2.09 40 1.43 2.03 2.62 3.72 4.71 5.54 6.18 6.62 6.94 7.23 7.60 6.98 45 0.00 0.21 0.41 0.82 1.22 1.61 1.99 2.35 2.70 3.03 3.33 2.35 45 1.61 2.27 2.92 4.14 5.23 6.15 6.86 7.34 7.69 8.01 8.41 7.70 50 0.00 0.23 0.46 0.91 1.36 1.79 2.21 2.62 3.00 3.37 3.70 2.62 50 1.79 2.51 3.22 4.55 5.74 6.74 7.52 8.06 8.42 8.77 9.22 8.41 60 0.00 0.27 0.55 1.09 1.62 2.14 2.65 3.14 3.60 4.03 4.43 3.14 60 2.14 2.98 3.80 5.35 6.73 7.89 8.80 9.43 9.82 10.22 10.76 9.77 70 0.00 0.32 0.64 1.27 1.90 2.51 3.10 3.66 4.20 4.71 5.18 3.66 70 2.50 3.45 4.38 6.14 7.70 9.03 10.06 10.79 11.21 11.66 12.27 11.09 80 0.00 0.36 0.73 1.45 2.16 2.86 3.53 4.18 4.80 5.37 5.91 4.18 80 2.86 3.91 4.95 6.91 8.65 10.12 11.28 12.09 12.56 13.04 13.730 12.35

TB3 TB3 ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM 30 0.00 0.19 0.38 0.76 1.13 1.50 1.85 2.19 2.51 2.81 3.10 2.19 30 1.43 2.02 2.61 3.70 4.68 5.50 6.14 6.58 6.90 7.19 7.57 6.90 35 0.00 0.22 0.45 0.89 1.33 1.75 2.17 2.56 2.94 3.29 3.62 2.56 35 1.67 2.35 3.01 4.25 5.37 6.31 7.04 7.55 7.89 8.22 8.66 7.85 40 0.00 0.26 0.51 1.02 1.51 2.00 2.47 2.93 3.36 3.76 4.14 2.93 40 1.91 2.66 3.40 4.79 6.03 7.08 7.90 8.48 8.83 9.21 9.71 8.76 45 0.00 0.29 0.57 1.14 1.70 2.25 2.78 3.29 3.77 4.23 4.65 3.29 45 2.15 2.98 3.79 5.32 6.68 7.84 8.75 9.38 9.77 10.17 10.73 9.65 50 0.00 0.32 0.64 1.27 1.89 2.50 3.09 3.65 4.19 4.69 5.16 3.65 50 2.39 3.29 4.17 5.84 7.33 8.59 9.58 10.28 10.69 11.12 11.73 10.51 60 0.00 0.38 0.77 1.52 2.27 3.00 3.71 4.39 5.03 5.64 6.21 4.39 60 2.87 3.91 4.94 6.87 8.59 10.05 11.21 12.03 12.51 12.98 13.71 12.19 70 0.00 0.45 0.89 1.78 2.65 3.50 4.32 5.12 5.87 6.58 7.23 5.12 70 3.35 4.52 5.69 7.87 9.82 11.47 12.78 13.72 14.28 14.77 15.61 13.80 80 0.00 0.51 1.02 2.03 3.03 4.00 4.95 5.85 6.71 7.52 8.28 5.85 80 3.83 5.14 6.43 8.86 11.02 12.87 14.33 15.39 16.02 16.54 17.49 15.37

TB4 TB4 ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM ANGLE

SPAN (m)

0

5

10

20

30

40

50

60

70

80

90

TERM 30 0.00 0.27 0.54 1.08 1.61 2.13 2.63 3.11 3.57 4.00 4.40 3.11 30 1.77 2.49 3.21 4.55 5.75 6.77 7.58 8.15 8.53 8.95 9.47 8.42 35 0.00 0.32 0.63 1.26 1.88 2.48 3.07 3.63 4.16 4.67 5.13 3.63 35 2.07 2.89 3.69 5.22 6.58 7.74 8.67 9.33 9.75 10.21 10.82 9.57 40 0.00 0.36 0.72 1.44 2.15 2.84 3.51 4.15 4.76 5.33 5.86 4.15 40 2.36 3.28 4.18 5.88 7.40 8.70 9.73 10.48 10.94 11.45 12.14 10.68 45 0.00 0.41 0.81 1.62 2.41 3.19 3.94 4.66 5.35 6.00 6.60 4.66 45 2.66 3.66 4.66 6.52 8.20 9.63 1078 11.61 12.12 12.66 13.44 11.77 50 0.00 0.45 0.90 1.80 2.68 3.54 4.38 5.18 5.94 6.66 7.33 5.18 50 2.95 4.05 5.13 7.17 8.99 10.55 11.80 12.72 13.28 13.86 14.71 12.82 60 0.00 0.54 1.09 2.16 3.22 4.26 5.26 6.23 7.14 8.00 8.80 6.23 60 3.54 4.81 6.07 8.43 10.55 12.36 13.82 14.90 15.58 16.21 17.23 14.89 70 0.00 0.63 1.27 2.52 3.76 4.97 6.14 7.26 8.33 9.33 10.27 7.26 70 4.13 5.57 6.99 9.66 12.06 14.12 15.78 17.01 17.80 18.49 19.66 16.87 80 0.00 0.72 1.45 2.88 4.29 5.67 7.01 8.29 9.51 10.66 11.73 8.29 80 4.73 6.33 7.91 10.88 13.55 15.84 17.69 19.08 19.98 20.72 22.06 18.79

TB5 TB5

Notes: 1. Loads are based on standard stringing for SAG at 2% of span length. Some in-service spans may be installed at higher tensions. 2. Tabulated values incorporate load factors of 1.1 ‘No wind’ and 1.25 ‘Wind’.

Page 22: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

13 6 SUB SECT REV SHT

A

P. RELF

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS BROADBAND COMMUNICATIONS CABLE DESIGN GUIDELINES

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

10824-A4 1

DETERMINATION OF POLE HEIGHT, CAPACITY AND FOUNDATION DESIGN Note - pole height requirements, pole tip loads, and/or pole foundation loads may be significantly increased due to attachment of broadband to ENERGEX poles. Determination of broadband attachment points for new / reinstated pole: STEP 1 – Determine highest broadband in-span ground clearance that must be

achieved by the lowest (Telstra) broadband strand/cable in each span (refer ‘Clearances’).

STEP 2 – Calculate the standard broadband in-span sag dimension which is equal to 2% of the span length. Add this figure to ground clearance calculated in Step 1.

This gives lowest (Telstra) broadband attachment point on the new / reinstated pole.

Note actual broadband sag should approximate the ENERGEX overhead mains profile where practicable.

STEP 3 – Add standard 300 mm separate between Optus and Telstra broadband attachments on the pole. This gives the highest (Optus) broadband attachment point on the pole for any existing or future Optus attachment point. This shll be done when any carriers are attached to the pole. Optus has commercial access rights to the highest broadband pole attachment point.

STEP 4 – Allow standard broadband in-span sag dimension of 2% of broadband span length to determine proposed or future Optus sag profile. In general, spacings between the broadband attachment points on the pole and ENERGEX infrastructure will be the critical spacing dimension, rather than in-span spacings.

These steps allow Broadband Organisations to reattach existing broadband or install future broadband, to new or relocated pole in the same relative position(s). Determination of the minimum pole length: STEP 5 – Determine additional pole length required to accommodate the greatest

relevant preferred clearances between; highest (Optus) broadband and the lowest point of ENERGEX infrastructure and conductors; both on the pole and in span,

Minimum in-span clearances/spacings in this table are referenced to separation between the broadband and the lowest point of the ENERGEX conductor sag between poles (refer ‘Clearances’).

A greater minimum clearance may be required to achieve the required clearances/spacings where: - spans are greater than 70 metres - conductor temperature is less than 25ºC at the time of attachment - electricity conductors immediately above the broadband are at Table 220 or tighter

stringing, For typical pole and conductor span configurations, the most frequently occurring clearance/circuit spacing scenarios should involve adherence to one of the following requirements: - Where no streetlight mains exists; a 900 mm preferred (750 mm minimum) on pole

separation and a 600 mm minimum required in span separation between broadband and bare low voltage aerial main conductors.

- Where a bare streetlight main exists, clearances as for bare low voltage aerial main

conductors (as detailed above).

- Where an insulated streetlight main exists, a 600 mm preferred (500 mm minimum) on pole separation and a 600 mm required minimum in span separation. Note that minimum required infrastructure clearances/circuit spacings are only to be used where specifically achieving the preferred infrastructure clearances would require additional expenditure, such as the installation of a longer pole or the rearrangement/raising of more than 2 crossarms.

Determine the total pole tip load: STEP 6 – Resolve broadband point of attachment in no wind and wind conditions to

give an equivalent pole tip load (refer ‘Poles – Worked Example’). Point of attachment loads applied by the broadband strand/cable are detailed in ‘Mechanical Loads’.

STEP 7 – Add this total broadband pole tip load to the normally calculated

ENERGEX conductor and pole loads, to determine the total pole tip load.

STEP 8 – Select the required pole foundation/reinstatement options to cater for total pole tip load.

Page 23: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

14 6 SUB SECT REV SHT

A

P. RELF

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS ENGINEERING BACKGROUND

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

10824-A4 1

1. ENGINEERING BACKGROUND – MECHANICAL LOADS Structural Analysis Method ENERGEX has recently changed from a working stress design approach of ESAA document C(b)1:1991 to the newer limit state design method of AS/NZS 7000:2010. Higher more realistic wind pressure in line with AS/NZS 1170 are now used, corresponding to a return period of 50 years. However, strengths of components are assessed more realistically, so that the end result is not significantly different. Poles are assumed to be rigid. Deflection of the pole under load is not taken into account. Pole tip load ratings take into account the wind load of the pole itself, so that designers simply need to consider forces applied to the pole by conductors. There is no need for designers to build in additional ‘safety margins’ in normal practice, as these are already built into the load factors and component strength factors. The two loading conditions described below are considered by distribution line designers.

‘No Wind’ Condition The ‘No Wind Condition’ is also known as ‘the sustained load condition’ or ‘everyday load’. A standard temperature of 15C used. This corresponds to the mean of winter season temperatures.

Wind Condition

The ‘Wind Condition’ is also known as ‘short duration condition’ or ‘strength limit state’.

Once again, a standard temperature of 15C used. However, for this condition the line components are subjected to the following wind pressures:

Conductors 900 Pa Poles (round) 1300 Pa Flat Surfaces (projected area) 1500 Pa

The pressure is different for these various elements because of the differences in the drag presented to the wind.

Generally the ‘Wind’ Condition (rather than ‘No Wind’) is the limiting condition.

1

Page 24: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

14 6 SUB SECT REV SHT

A

P. RELF

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS ENGINEERING BACKGROUND

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

10824-A4 2

CONDUCTOR FORCES ON POLE The total bending or overturning moment on a pole due to conductor forces, MT, is the vector sum of all individual conductor moments. These moments are the product of force and height of attachment. Thus:

MT = F1 h1 + F 2 h2 + ….. Thus the resultant tip load on a pole, FT, is:

FT = F1 h1 / hT + F2 h2 / hT + ….. Note that the forces above are vector quantities, ie they have both:

Magnitude, and Direction.

Being vectors, these forces cannot simply be added together arithmetically unless they are in the same direction.

For each conductor, there are two components to the force Fc applied:

(i) transverse force Wc (acting at right angles to the direction of the conductor), due to action of wind on the side of the conductor; and

(ii) longitudinal force T (in the direction of the conductor), due to conductor tension.

These are illustrated as follows: For Termination poles, the transverse wind force is generally much smaller than the longitudinal force. For practical purposes, it can usually be ignored. However, for straight-line intermediate poles, where the longitudinal tensions cancel, the transverse wind load should be checked if: spans are long, or conductors are large, or there are many conductors.

F2F1

FT Resultant Tip Load

h2 h1

F1 F2 hT

Transverse Longitudinal Longitudinal

Wind Direction

T Conductor

Transverse Wind Load Longitudinal Force -

Conductor Tension Wc

Fc Resultant

Page 25: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

14 6 SUB SECT REV SHT

A

P. RELF

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS ENGINEERING BACKGROUND

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

10824-A4 3

Note that conductor forces vary with wind direction. These are at a maximum when the wind is normal (at 90) to a conductor. When calculating the total load on the pole, the worst-case wind direction should be used. Transverse Wind Force applied to a pole by a conductor is given by the following equation:

Wc = 0.5 Ls c Pwc cos2

where: Wc = transverse force applied to pole due to conductor

windage (kN) Ls = span length (m) c = projected diameter of conductor (m) Pwc = design wind pressure on conductor (kPa) i.e. 0.9kPa = angle between wind direction and the normal to the

conductor (deg) The factor of 0.5 is included because only half of each span attached to a pole is considered to load the pole in question; the other half will affect adjacent poles. Therefore for a pole with spans ( Ls1 and Ls2 ), either side the equation becomes:

Wc = 0.5 Ls1 c1 Pwc cos2 1 + 0.5 Ls2 c2 Pwc cos2 2

For further information, Refer AS/NZS 7000Appendix B and Table 7.3 for applicable load factors

Longitudinal Force - Conductor Tension Basic Sag-Tension Relationship The horizontal force applied to a pole, by a conductor in a level span of mains, is given by the expression:

T = WLs2

8 S where:

T = conductor tension (N) W = uniformly distributed load on conductor (N/m) S = maximum sag in conductor span (m)

Under no wind conditions, the only load is the conductor weight. Thus, conductor tension is related to sag as follows:

T = mgLs2

8 S where:

m = unit mass of conductor (kg/m) g = gravitational acceleration constant (9.81 m/s2)

Page 26: OVERHEAD DESIGN MANUAL - Energex · OVERHEAD DESIGN MANUAL Section 6 – Mechanical Loads Approved by: F. ZAINI . SUB 3 SECT 6 SHT REV in part or whole without written 1 A ... 900Pa

14 6 SUB SECT REV SHT

A

P. RELF

© COPYRIGHT 2015 ENERGEX This drawing must not be reproduced in part or whole without written permission from ENERGEX

K. GOSDEN

MECHANICAL LOADS ENGINEERING BACKGROUND

F. ZAINI

CKD

WORD

ORIGINAL ISSUE

DATE 20/10/2015

APP’D A

AUTHR

CKD APP’D

AUTHR

DATE REC’D

10824-A4 4

Under wind conditions, the uniformly distributed load of the conductor is comprised of contributions from the weight of the conductor in the vertical direction and the windage in the horizontal direction, ie

W = Wv2 + Wh

2 where:

Wv = vertical component of distributed load, ie weight, mg (N/m)

Wh = horizontal component of distributed load, ie wind force (N/m)

The horizontal unit load is:

Wh = c Pwc cos2 Effect of Conductor Stretch under Wind Conditions One complication that must be accounted for when determining mechanical loads under wind conditions is conductor stretch, particularly for higher stringing tensions. For additional details refer AS/NZS 7000:2010 Appendix S.

Force on Deviation Pole The resultant force due to a deviation angle in the conductor is given by the expression:

R = 2 T N sin ( /2)

where:

R is the resultant force T is the longitudinal tension in each conductor (horizontal component) N is the number of conductors is the angle of deviation.

Note that for wind condition there are also the transverse wind load contributions to be taken into account.

For large deviation angle, the worst case wind direction is normal to one of the spans rather than dissecting the angle between them.

T

T

Resultant Load R

Wh

Wv

W