OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

33
OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE SPACE OPTICS FOR TROPICAL REGION MOHAMED MAHMUD MUFTAH SHUMANI A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy of Electrical Engineering Faculty of Electrical and Electronic Engineering University Tun Hussein Onn Malaysia JUNE 2019

Transcript of OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

Page 1: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE SPACE

OPTICS FOR TROPICAL REGION

MOHAMED MAHMUD MUFTAH SHUMANI

A thesis submitted in

fulfillment of the requirement for the award of the

Doctor of Philosophy of Electrical Engineering

Faculty of Electrical and Electronic Engineering

University Tun Hussein Onn Malaysia

JUNE 2019

Page 2: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

iii

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah,

all praises to Allah for the strengths and His blessing in completing this thesis.I would

like to dedicate to my parents Shik. Hj. Mahmud Shumani and Alshaykhah Alarabi,

ALLAH S. W. T. bless and forgiveness them. I would like to express my sincere

gratitude to my wife Amal life companion, my daughters Jnan, Bayan, Mehad, and my

son Mahmud for their endless love, prayers, understanding and encouragement. All

my bothers and sisters. As well as to all my friends and all my relatives I like thank

everyone has taught me a word

Page 3: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

iv

ACKNOWLEDGEMENT

The author would like to express his sincere appreciation to his supervisor, Prof. Dr.

Mohammed Faiz Lew bin Abdullah for the support given through out the duration for

this research. I would like to thank my country Libya to support me as the difficult

time and Embassy of Libya in Malaysia to help me during my study.

The cooperation given by the Metrological Malaysia Department is also highly

appreciated. Last but not least, the thanks belong to family, my parents and my friends.

Page 4: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

v

ABSTRACT

In modern times, Free Space Optical (FSO) communication technology has become

an alternative way to radio links and optical cables. FSO links provide gigabit per

second data rates and unlimited bandwidth, however its availability can easily be

affected by fading due to different meteorological conditions such as fog, haze, snow

and rain. In tropical regions like Malaysia, haze and rain are the most common

impairment factors to FSO links. These weather conditions limit the visibility, causing

high attenuation to the optical signal. This study evaluated the performance of a

terrestrial FSO link under tropical climate conditions. The proposed FSO availability

prediction model was used to predict the availability of FSO link over path length

ranges of up to 5 km was verified under two different weather conditions for four

places in Malaysia. The FSO availability prediction model was developed as a function

of link distance and signal-to-noise ratio for intensity modulation with direct detection

(IM/DD). Benchmarking against ITU-R estimate shows good agreement with data

based on tropical climate. The cumulative distribution function (CDF) of the received

signal-to-noise ratio (SNR) was used to study the outage performance of the FSO link

under hazy weather conditions. The performance analysis was based on 2013, 2014

and 2015 collected visibility data from Malaysian Meteorological Department (MMD)

for four stations located at KLIA Sepang, Bayan Lepas, Gong Kedak and Batu Pahat.

The study proposes a new link model as a function of SNR and distance. Measured

data were analysed to predict attenuation on FSO systems with two categories of

visibility, namely; Ijaz Model for visibility of less than 1 km and Kim Model for

visibility greater than 1 km were used. Rain intensity was measured with 1-minute

integration time at Batu Pahat station for 2015 and 2016. Visibility data were also

collected with one hour basis at all four stations. Based on the measurements of rain

rate, the percentage of time exceeding 0.01% level corresponded to nearly 108 mm/hr,

while the highest of 168 mm/hr was observed at 0.000193%. The outage probability

was more than 10-4 when the employed wavelength was 1550 nm and for SNR value

Page 5: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

vi

equaled 8 dB, whereas for wavelength of 850 nm, the outage probability was more

than 10-3. For 99.7% availability, FSO SNRhaze varied from 2 dB to 28 dB over a link

distance of 1 km to 5 km under the impact of haze, while the SNRrain varied from 22

dB to 90 dB over the same link distance for 99.99 % under the impact rain. The

proposed availability models were compared with the ITU-R availability estimation.

Benchmarking the proposed outage probability model with the Basahel model and

estimated data from the Malaysia Meteorological Department.

Page 6: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

vii

ABSTRAK

Pada zaman moden ini, teknologi komunikasi Optik Ruang Bebas (FSO) telah

menjadi alternatif kepada rangkaian radio dan kabel optik. Pautan FSO menyediakan

kadar data gigabit per saat dan lebar jalur tanpa had, namun ketersediaannya amat

mudah terkesan oleh keadaan cuaca persekitaran yang berbeza seperti kabus, jerebu,

salji dan hujan. Di negara tropika seperti Malaysia, jerebu dan hujan adalah faktor

utama yang memberikan masalah kepada pautan FSO. Keadaan cuaca yang

menghadkan jarak penglihatan, memberikan kesan yang besar kepada isyarat optik.

Kajian ini akan menilai prestasi pautan FSO terestrial terhadap keadaan iklim tropika.

Model ramalan ketersediaan FSO yang dicadangkan digunakan untuk meramalkan dan

mengesahkan ketersediaan pautan FSO sehingga jarak 5 km di dalam dua keadaan

cuaca yang berbeza di empat tempat di Malaysia. Model ramalan ketersediaan FSO

telah dibangunkan sebagai fungsi jarak pautan dan nisbah isyarat-ke-bunyi untuk

modulasi intensiti dengan pengesanan langsung (IM / DD). Penandaarasan terhadap

anggaran ITU-R menunjukkan hubungan yang baik dengan data di iklim tropika.

Fungsi taburan kumulatif (CDF) dari nisbah isyarat-ke-bunyi yang diterima (SNR)

digunakan untuk mengkaji prestasi gangguan pautan FSO di dalam keadaan cuaca

yang jerebu. Analisa prestasi berdasarkan data penglihatan 2013, 2014 dan 2015 yang

dikumpulkan dari Jabatan Meteorologi Malaysia (MMD) di empat stesen yang terletak

di KLIA Sepang, Bayan Lepas, Gong Kedak dan Batu Pahat. Kajian ini mencadangkan

model pautan baru sebagai fungsi SNR dan jarak. Data yang dianalisa untuk meramal

kelemahan sistem FSO dalam dua kategori penglihatan, iaitu; menggunakan Model

Ijaz untuk penglihatan kurang dari 1 km dan Model Kim untuk penglihatan lebih

daripada 1 km. Kadar kelebatan hujan diukur dalam masa integrasi 1 minit di stesen

Batu Pahat untuk 2015 dan 2016. Data jarak penglihatan juga dikumpulkan dengan

satu jam di semua empat stesen yang terlibat. Berdasarkan pengukuran kadar hujan,

peratusan masa melebihi tahap 0.01% adalah hampir 108 mm / jam, manakala tertinggi

168 mm / jam diperhatikan pada 0.000193%. Kebarangkalian gangguan lebih dari 10-

Page 7: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

viii

4 apabila panjang gelombang yang digunakan ialah 1550 nm dan untuk nilai SNR

bersamaan 8 dB, sedangkan untuk panjang gelombang 850 nm, kebarangkalian

gangguan adalah lebih daripada 10-3. Untuk ketersediaan 99.7%, FSO SNRhaze

bervariasi dari 2 dB hingga 28 dB melalui jarak pautan 1 km hingga 5 km di bawah

kesan jerebu, manakala SNRrain bervariasi dari 22 dB hingga 90 dB dengan jarak

pautan yang sama untuk 99.99% di bawah hujan lebat. Model ketersediaan yang

dicadangkan dibandingkan dengan anggaran ketersediaan ITU-R. Menanda aras

model kebarangkalian perancangan yang dicadangkan dengan model Basahel dan

anggaran data dari Jabatan Meteorologi Malaysia.

Page 8: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

ix

CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vii

CONTENTS ix

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xxi

LIST OF SYMBOLS xxii

LIST OF APPENDICES xxiv

CHAPTER 1 INTRODUCTION 1

1.1 Free space optics (FSO) Overview 1

1.2 Problem Statement 4

1.3 Research Objective 5

1.4 Research Scope 5

1.5 Contribution 7

1.6 Thesis Organization 7

CHAPTER 2 LITERATURE REVIEW 10

2.1 Introduction 10

2.2 FSO System Parameters 11

2.2.1 Link Margin 12

2.2.2 FSO Performance Parameters 15

2.2.3 Optical Power 15

2.2.4 Receiver Sensitivity 16

2.2.5 Divergence Angle 16

Page 9: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

x

2.2.6 Receiver Aperture Area 17

2.2.7 Wavelength 17

2.2.8 Geometric Loss 21

2.3 Haze Attenuation 27

2.3.1 Beer-Lambert Law 28

2.3.2 Mie Scattering 29

2.3.3 Kruse Model 30

2.3.4 Kim Model 31

2.3.5 Ijaz Model 32

2.4 Visibility 33

2.5 Rain Attenuation 35

2.5.1 Japan Model 38

2.5.2 Carbonneau Model 38

2.5.3 Malaysia (KL) Model 38

2.5.4 Malaysia (Johor) Model 39

2.5.5 Abdulrahman Model 40

2.5.6 Total Rain Attenuation Model for FSO 41

2.5.7 Availability Model 41

2.6 Rain Intensity 42

2.7 Rain Attenuation Measured 42

2.8 Cumulative Distribution Function (CDF) 43

2.8.1 Annual Rain Rate Exceendance Characteristics 43

2.8.2 Monthly Rain Rate Exceedance Characteristics 44

2.8.3 Worst Month Analysis 44

2.9 Scintillation 45

2.10 Atmospheric Effects and Attenuation 46

2.11 FSO Link Performance and Availability 49

2.12 Received Power 54

2.12.1 Received Signal Power as a Function of Visibility 55

2.12.2 Received Signal Power as a Function of Distance 56

2.12.3 Received Signal Power as a Function of Rain Rate 56

2.13 Signal and Noise Level at Free Space Optical

Receivers 59

2.13.1 Non-coherent (Direct) Detection Model 59

Page 10: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xi

2.13.2 Signal-to-Noise Ratio in Direct Detection 60

2.13.3 Coherent (Heterodyne) Detection Model 60

2.14 Summary Table of Literature Review 63

2.15 Summary 64

CHAPTER 3 RESEARCH METHODOLOGY 65

3.1 Introduction 65

3.2 Research methodology stages 67

3.3 Visibility Data Collection and Processing 69

3.3.1 KLIA Sepang Station 71

3.3.2 Batu Pahat Station 74

3.3.3 Bayan Lepa Station 76

3.3.4 Gong Kedak Station 79

3.4 Validation of measured visibility data 83

3.5 Rain gauge system setup 84

3.6 Rain intensity measurement 86

3.7 Worst month analysis 88

3.8 Validation of measured rain data 90

3.9 Summary 92

CHAPTER 4 ANALYSIS PERFORMANCE OF FSO LINK WITH

AVAILABILITY 93

4.1 Introduction 93

4.2 FSO link availability considering haze condition 94

4.2.1 Haze attenuation analysis for KL station 94

4.2.2 Haze attenuation analysis for Batu Pahat station 97

4.2.3 Haze attenuation analysis for Bayan Lepas

station 100

4.2.4 Haze attenuation analysis for Gong Kedak station 102

4.3 Compromise availability estimation for all stations 104

4.4 Effects of signal to noise ratio on FSO link availability 107

4.4.1 SNR as a function of visibility 107

4.4.2 SNR as a function of distance 108

4.4.3 SNR analysis for KLIA Sepang station 109

4.4.4 SNR analysis for Batu Pahat station 110

4.4.5 SNR analysis for Bayan Lepas station 112

Page 11: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xii

4.6 Rain Effects on FSO availability 115

4.7 Combined haze and rain effects on SNR for FSO link 117

4.8 Summary 119

CHAPTER 5 AVAILABILITY MODELING OF FSO 120

5.1 Introduction 120

5.2 Availability modelling of FSO 121

5.2.1 KLIA outage probability empirical modelling

for wavelength 1550 nm 121

5.2.2 KLIA outage probability empirical modelling

for wavelength 850 nm 123

5.3 Comparison of the prediction FSO with estimation data 125

5.4 Batu Pahat outage probability modelling 128

5.5 Bayan Lepas outage probability modelling 131

5.6 Gong Kedak outage probability modelling 133

5.7 General Malaysian outage probability modelling 137

5.8 Proposed rain outage model for FSO 139

5.9 Comparison of the proposed fso rain outage model

with estimated data 139

5.10 Compromise haze and rain effects on FSO availability 140

5.11 Benchmarking with ITU-R FSO availability estimation 141

5.12 Benchmarking with Basahel Availability model 142

5.13 Summary 143

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 144

6.1 Conclusions 144

6.2 Signification of the findings 147

6.3 Recommendations for future works 147

REFERENCES 148

LIST OF PUBLICATIONS 157

Page 12: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xiii

LIST OF TABLES

2.1 Characteristic of 850 and 1550 wavelength equipment 20

2.2 Visibility and attenuation for different range 0.5km and 1km

to wavelength 1550 nm 25

2.3 Visibility and attenuation for different range 0.5km and 1km

to wavelength 850 nm 26

2.4. International visibility codes and corresponding

visibility (km) 33

2.5 Rain attenuation prediction model for FSO recommended by

ITU-R 37

2.6 Specific rain attenuation models of FSO 40

2.7 Measured rain attenuation with its corresponding rain rate

over 2.6 km 44

2.8 Summary of literature review 66

3.1 Visibility sensor specifications 90

3.2 Sample of raw visibility data for Subang station in

Kuala Lumpur 92

3.3 Sample of raw visibility data for Batu Pahat station 95

3.4 Sample of raw visibility data for Bayan Lepas station 99

3.5 Sample of raw visibility data for Gong Kedak station 103

3.6 Visibility statistics for different % time of the year 106

3.7 Specification of tipping bucket rain gauge

3.8 Sample of rain raw data measured at Batu Pahat on 4

Page 13: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xiv

December 2015 110

3.9 Annual and monthly rain rate statistics at Batu Pahat station 113

3.10 Compared rainfall intensity for three locations Skudai, Kuala

Lumpur and Batu Pahat Station 115

4.1 Comparison availability FSO Link at temperate region and

tropical region 132

4.2 Summary comparison SNR for four stations for different %

time of the year 139

5.1 Modified values a and b at KLIA for 1550 nm 151

5.2 Modified values a and b at KLIA station 152

5.3 Modified values a and b Batu Pahat for 1550 nm wavelength 156

5.4 Modified values a and b Bayan Lepas 160

5.5 Modified values a and b Gong Kedak 164

5.6 Summary predicted a and b values for all station 167

5.7 Comparison estimated between predicted outage probability

model and estimated outage for Batu Pahat station with

850 nm wavelength 169

5.8 Modified values a and b at Batu Pahat under rain rate 170

5.9 FSO Availability for distances from 1 km to 5 km under

tropical climate 173

5.10 Benchmarking with ITU-R Availability Estimation due to

Rain 174

Page 14: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xv

LIST OF FIGURES

1.1 Block Diagram of a Terrestrial FSO Link 4

1.2 Categorization of Wireless Communications Based on the

Research Scope 6

2.1 Atmospherics layers 11

2.2. Environmental effect on FSO link 12

2.3 Concept of Link margin of FSO under Tropical Region 14

2.4 External and Internal Parameters of FSO 14

2.5 The impact of divergence on the light beam 17

2.6 Visible Spectrum 18

2.7 The Overview of the EM Spectrum with its Nominated Frequency

Bands 19

2.8 Comparison of FSO with various wireless technologies 20

2.9 Transmission properties of the atmosphere in the near

infrared wavelength range under clear weather conditions 21

2.10 Geometrical Loss 22

2.11 Geometrical loss of the link by varying the distance 23

2.12 Attenuation Against Visibility for Two Different Wavelength

850nm and 1550 nm 24

2.13 Atmospheric Attenuation Over the Transmission Range

of 0.5 Km to 3 Km 25

2.14 Geometrical and haze attenuation against link distance for

Page 15: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xvi

different visibility 27

2.15 Atmospheric attenuation due to haze for three different

visibility 28

2.16 Attenuation versus visibility using Kruse model 31

2.17 Attenuation versus visibility using Kim model 32

2.18 Rain attenuation (dB/km) for different rain intensity (mm/hr) 35

2.19 Prediction based on modified k and α values and power curve

of best-fit against the measured attenuation and rain rate

at IIUM Campus 38

2.20 Combined CDF’s of predicted attenuation based on average

rain rate and visibility data measured in Malaysia over 5 km

FSO link 41

2.21 Annual Cumulative Distribution of Rain rate for Ahmedabad 43

2.22 Monthly and annual Cumulative distribution of Rain rate for

Ahmedabad 2006 44

2.23 Worst month cumulative distribution of rain rate for

Ahmedabad 45

2.24 Comparison between proposed outage probability model and

Predicted data over 1 km FSO link distance 54

2.25 Receiver signal power with visibility for wavelengths

850nm and 1550nm 55

2.26 Receiver power with distance length for different visibility

with wavelength 1550nm 56

2.27 Receiver power with distance length for a rain rate of

100 mm/hr 58

2.28 Receiver power with Rain rate for specific rain attenuation 58

2.29 SNR with visibility for wavelengths of 850 nm and 1550 nm 62

Page 16: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xvii

3.1 Research Methodology Approach 66

3.2 Shows the Visibility Meter used in the experiments 70

3.3 Cumulative distribution of the visibility data measured in

Malaysia from January 1, 2013, to December 31, 2015, at

KLIA Sepang station 72

3.4 Cumulative distribution of the visibility data measured in

Malaysia from January 1, 2013, to December 31, 2015, at

Batu Pahat Station 75

3.5 Cumulative distribution of the visibility data measured in

Malaysia from January 1, 2013, to December 31, 2015, at

Bayan Lepas station 77

3.6 Cumulative distribution of the visibility data measured in

Malaysia from January 1, 2013, to December 31, 2015,

at Gong Kedak station 80

3.7 Malaysia Map showing pins at the exact locations of the

4 MMD 82

3.8 Cumulative distribution of the visibility data measured in

Malaysia from January 1 2005 to December 31 84

3.9 Schematic of the tipping bucket mechanism 85

3.10 Cumulative Distribution of the Rain Rate Measured in Batu

Pahat from July 1 2015 to December 31 2015 87

3.11 Cumulative Distribution of the Rain Rate Measured in Batu

Pahat from January 1 2016 to December 31 2016 88

3.12 Worst Month Cumulative Distribution of Rain Rate for Batu

Pahat Station 90

4.1 CDFs of the attenuation predicted for wavelength 1550nm on

the basic visibility measured in KLIA sepang station from

January 1, 2013, to December 31, 2015. 95

4.2 CDFs of the attenuation predicted for wavelength 850nm on

Page 17: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xviii

the basic visibility measured in KLIA sepang station from

January 1, 2013, to December 31, 2015. 95

4.3 Attenuation predicted at different percentages of time for

different distance links at KLIA Subang station. 96

4.4 Availability Estimation of FSO under Impact Haze Condition

at KLIA 97

4.5 CDFs of the attenuation predicted or wavelength 1550nm on

the basic visibility measured in Batu Pahat station from

January 1, 2013, to December 31, 2015 98

4.6 Attenuation predicted at different percentages of time for

different distance links at Batu Pahat station 99

4.7 Availability Estimation of FSO under Impact Haze Condition

at Batu Pahat 99

4.8 CDFs of the attenuation predicted for wavelength 1550nm on

the basic visibility measured in Bayan Lepas station from

January 1, 2013, to December 31, 2015. 100

4.9 Attenuation predicted at different percentages of time for

different distance links at Bayan Lepas station 101

4.10 Availability Estimation of FSO under Impact Haze Condition

at Bayan Lepas station 101

4.11 CDFs of the attenuation predicted for wavelength 1550nm

on the basic visibility measured in Gong Kedak station from

January 1, 2013, to December 31, 2015. 102

4.12 Attenuation predicted at different percentages of time for

different distance links at Gong Kedak station. 103

4.13 Availability Estimation of FSO under Impact Haze Condition

at Gong Kedak station 104

4.14 Comprise Between Average Measured Visibility Data for

All Stations 105

Page 18: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xix

4.15 Availability Estimation of FSO Link under Influence of haze

at Tropical Region 106

4.16 Outage Probability of the FSO Link for Visibility Data in KLIA

Station as a Function of the SNR under Two Considered

Wavelengths.

4.17 Outage Probability of the FSO Link for Visibility Data in Batu

Pahat Station as a Function of the SNR under Two Considered

Wavelengths. 109

4.18 Outage Probability of the FSO Link for Visibility Data in Bayan

LepasStation as a Function of the SNR under Two Considered

Wavelengths. 110

4.19 Outage Probability of the FSO Link for Visibility Data in Gong

Kedak Station as a Function of the SNR under Two Considered

Wavelengths. 111

4.20 SNR (dB) with distance length for specific rain attenuation 113

4.21 SNR with rain rate for specific rain attenuation 113

4.22 SNR with rain rate for total path rain attenuation with

different distance 114

4.23 SNR with path length for three different rain rate values 114

4.24 Cumulative distribution of predicted attenuation based on rain

rate data measured in Malaysia from during two years

2015 and 2016 115

4.25 Attenuation Predicted at Different Percentages of Times up

to 5 km for FSO link Based on the Average Rain Rate Data

Measured in Malaysia During 2015 and 2016 years 116

4.26 Availability Estimation of FSO under Impact Rain Rate

Condition at Batu Pahat Area 117

5.1 The percentage outage and power curve fitting for KLIA

station with 1550 nm wavelength 122

5.2 The percentage outage and power curve fitting for KLIA

station with 850 nm wavelength 124

Page 19: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xx

5.3 The percentage outage and power curve fitting for Batu Pahat

station with 1550 nm wavelength 126

5.4 The percentage outage and power curve fitting for Batu Pahat

station with 850 nm wavelength 126

5.5 The percentage outage and power curve fitting for Bayan

Lepas station with 1550 nm wavelength 129

5.6 The percentage outage and power curve fitting for Bayan

Lepas station with 850 nm wavelength 129

5.7 The percentage outage and power curve fitting for Gong

Kedak station with 1550 nm wavelength 131

5.8 The percentage outage and power curve fitting for Gong

Kedak station with 850 nm wavelength 132

5.9 Comparison urban model with estimated availability link

Distance for KLIA and Bayan Lepas stations 136

5.10 Comparison sub-urban model with estimated availability link

Distance for Batu Pahat and Gong Kedak stations 136

5.11 The percentage outage and power curve fitting for Batu Pahat

under impact rain 138

5.12 Comparison between predicted outage probability model and

Estimated Data for 1 km link distance 140

5.13 Combine predicted availability of FSO Link under impact

haze condition and rain condition 141

5.14 Comparison between Predicted Outage Probability model,

Estimated Data and Basahel model 143

Page 20: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xxi

LIST OF ABBREVIATIONS

BER - Bit Error Rate

CDF - Cumulative Distribution Function

FSO - Free Space Optics

GHz - GigaHertz

IR - Infrared

ITU-R - International Telecommunication Union Sector

LAN - Local Area Network

LASER - Light Amplification by Stimulated Emission of Radiation

LED - Light-Emitting Diodes

LOS - Line of sight

MATLAB - Matrix laboratory

MIMO - Multiple Input Multiple Output

MMS - Meteorological Services Malaysia

MOR - Meteorological optical range

MVR - Meteorological Visual Range

NASA - National Aeronautics and Space Administration

RF - Radio Frequency

RX - Receiver

SNR - Signal-to-noise-ratio

TX - Transmitter

Page 21: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xxii

LIST OF SYMBOLS

Mm - Millimetre

A - Link Availability

𝐺𝑒𝑜𝑚𝑙𝑜𝑠𝑠 - Goemetric Loss or attenuation

Fm - Fade margin

Θ - Divergence angle

mW - MilliWatt

mrad - Miliradian

𝐴𝑟 - Receiver aperture area

λ - Wavelength

nm - Nanometre

D - Receiver capture diameter

d - Link distance

𝐼𝑑 - Detection intensity at distance d

σ - Scattering coefficient

dBm - Decibel miliwatt

V - Visibility

q - Size distribution of the scattering particles

ɤ - Rain attenuation or extinction coefficient

ɤR - Specific rain attenuation

R - Rain attenuation

mm/hr - Millimetre/hour

𝜎𝑅2 - Ryton variation

𝐴0.01% - Total path attenuation induced by rain for 0.01 %

𝑑𝑒𝑓𝑓 - Effective path length

R2 - Coefficient of determination

Ap - Rain attenuation for other percentage of time p

,r - Path length distance factor

Page 22: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xxiii

RMSE - Root Mean Square Error

CF - Curve fitting

,mm/min - Millimetre/minute

,r1 - Normalized path reduction factor

,r0.01% - Reduction factor for 0.01 %

LM - Link Margin

𝐴𝐹𝑆𝑂 - Link availability of FSO

𝑃𝑜𝑢𝑡,𝐹𝑆𝑂 - Outage probability of FSO

Page 23: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

xxiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Matlab Programming 157

B CDF of the Rain Measured

C Attenuation Predicted for Different Wavelength 169

D Attenuation Predicted on The Basic Visibility in

Batu Pahat 170

E Attenuation Predicted on The Basic Visibility in

Bayan Lepas 173

F Attenuation Predicted on The Basic Visibility in

Gong Kedak 177

G Outage Probability of the FSO Link Based

Visibility Data 179

H Predicted Attenuation based on rain rate data

measured in Malaysia in 2015 and 2016 187

Page 24: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

ii

Page 25: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

REFERENCES

Abdulrahman, A. Y., Rahman, T. A., et al. (2011). Empirically derived path

reduction factor for terrestrial microwave links operating at 15gz in

Peninsula Malaysia. J. of Electromagn. Waves and Appl., 25, 23-37.

Aburakawa, Y., & Otsu, T. (2002). Experimental evaluation of 800-nm band optical

wireless link for new generation mobile radio access network. Paper presented

at the Microwave Photonics, 2002. International Topical Meeting on.

Aburakawa, Y., & Otsu, T. (2003). Experimental evaluation of 800-nm band optical

wireless link for new generation mobile radio access network. IEICE

transactions on electronics, 86(7), 1175-1183.

Achour, M. (2002). Simulating atmospheric free-space optical propagation; Part II:

haze, fog, and low clouds attenuations. Paper presented at the Optical Wireless

Communications V.

Achour, M. (2002b). Simulating atmospheric free-space optical propagation, part ii:

haze, fog and low clouds attenuations. SPIE Proceeding, 4873.

Al Naboulsi, M. (2004). Fog attenuation prediction for optical and infrared waves.

Optical Engineering, 43(2), 319-329.

Al-Gailani, S. A., Mohammad, A. B., Sheikh, U. U., & Shaddad, R. Q. (2014).

Determination of rain attenuation parameters for free space optical link in

tropical rain. Optik-International Journal for Light and Electron Optics,

125(4), 1575-1578.

Ali, M. A. A., & Ahmed, E. H. (2015). Performance of FSO communication system

under various weather condition. Adv. Phys. Theor. Appl, 43, 10-19.

Alma, H., & Al-Khateeb, W. (2008). Effect of weather conditions on quality of Free

Space Optics links (with focus on Malaysia). Paper presented at the Computer

and Communication Engineering, 2008. ICCCE 2008. International

Conference on.

Arimoto, Y., Presi, M., Guarino, V., D'Errico, A., Contestabile, G., Matsumoto, M., &

Ciaramella, E. (2008). 320 Gbit/s (8× 40 Gbit/s) double-pass terrestrial free-

space optical link transparently connected to optical fibre lines. Paper

presented at the Optical Communication, 2008. ECOC 2008. 34th European

Conference on.

Page 26: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

149

Awan, M. S., Leitgeb, E., Khan, M. S., Nadeem, F., & Capsoni, C. (2008, October).

Evaluation of fog attenuation results for optical wireless links in free space. In

Satellite and Space Communications, 2008. IWSSC 2008. IEEE International

Workshop on, pp. 112-116

Awan, M. S., Leitgeb, E., Nadeem, F., Khan, M. S., & Capsoni, C. (2009, April).

Weather effects impact on the optical pulse propagation in free space. In

Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th (pp. 1-

5). IEEE.

Basahel, A., & Al-Khateeb, W. (2014). Carrier class availability prediction for Hybrid

FSO/RF system in heavy rainfall regions based on ITU-R models.

International Journal of Computer and Communication Engineering, 3(6),

404.

Basahel, A., Rafiqul, I. M., Habaebi, M. H., & Suriza, A. (2016). Visibility effect on

the availability of a terrestrial free space optics link under a tropical climate.

Journal of Atmospheric and Solar-Terrestrial Physics, 143, 47-52.

Basahel, A. A., Islam, M. R., Zabidi, S. A., & Habaebi, M. H. (2017). Availability

assessment of Free-Space-Optics links with rain data from tropical climates.

Journal of Lightwave Technology, 35(19), 4282-4288.

Basahel, A. A., Rafiqul, I. M., Habaebi, M. H., & Zabidi, S. A. (2017, November).

Availability modeling of terrestrial free-space-optical links using fade statistics

from tropical climate. In Smart Instrumentation, Measurement and Application

(ICSIMA), 2017 IEEE 4th International Conference on (pp. 1-4). IEEE.

Brazda, V., Schejbal, V., & Fiser, O. (2012, March). Rain impact on FSO link

attenuation based on theory and measurement. In Antennas and Propagation

(EUCAP), 2012 6th European Conference on (pp. 1239-1243). IEEE.

Bisaillon, E., Brosseau, D., Yamamoto, T., Mony, M., Bernier, E., Goodwill, D., . . .

Kirk, A. (2002). Free-space optical link with spatial redundancy for

misalignment tolerance. IEEE Photonics Technology Letters, 14(2), 242-244.

Bloom, S., & Hartley, W. S. (2002). The last-mile solution: hybrid FSO radio.

Whitepaper, AirFiber Inc.

Bloom, S., Korevaar, E., Schuster, J., & Willebrand, H. (2003). Understanding the

performance of free-space optics. Journal of optical Networking, 2(6), 178-

200.

Bouchet, O., Marquis, T., Chabane, M., Alnaboulsi, M., & Sizun, H. (2005). FSO and

quality of service software prediction. Paper presented at the Proc. Spie.

Bouchet, O., Sizun, H., et al. (2006). Free-Space optics propagation and

communication. UK: ISTE.

Page 27: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

150

Bouchet, O., Sizun, H., Boisrobert, C., & De Fornel, F. (2010). Free-space optics:

propagation and communication (Vol. 91): John Wiley & Sons.

Buckley, S. (2001). Free space optics: The missing link. Telecommunications, 35(10),

26-26.

Capsoni, C., D'Amico, M., & Nebuloni, R. C. (2006). Attenuation due to rain on FSO.

In XVI Riunione Nazionale di Elettromagnetismo (pp. 1-4).

Capsoni (2009). Weather effects impact on the Optical Pulse Propagation in free

space. Paper presented at the IEEE 69th Vehicular Technology Conference,

2009, VTC Spring 2009.

Carbonneau, T. H., & Wisley, D. R. (1997). Opprtunities and challenges for optical

wireless:the competitive advantage of free space telecommunications link in

today's crowded marketplace. Wireless Technologies and Systems: Millimeter

Wave and Optical, Proc. SPIE, 3232, 119-128.

Chen, B. (2002). A trial based study of free space optics systems in Singapore. Agilent

Technology.

Colvero, C. P., Cordeiro, M. C. R., et al. (2007, Oct. 29 2007-Nov. 1 2007). FSO

systems: Rain, drizzle, fog and haze attenuation at different optical windows

propagation. Paper presented at the International Conference on Microwave

and Optoelectronics, 2007 (IMOC 2007).

Crane, R. K., & Robinson, P. C. (1997). ACTS propagation experiment: rain-rate

distribution observations and prediction model comparisons. Proceedings of

the

IEEE, 85(6), 946-958.

Das, S., Maitra, A., & Shukla, A. K. (2010). Rain attenuation modelling in the 10-100

GHz frequency using drop size distributions for different climatic zones in

tropical India. Progress in Electromagnetics Research, 25, 211-224.

Dordova, L., & Wilfert, O. (2009). Free space optical link range determination on the

basis of meteorological visibility. Paper presented at the 19th International

Conference on Radioelektronika, 2009 (RADIOELEKTRONIKA '09)

Duncan, W. (2001). Optical Power Margin or "Fade Margin". White Paper

Document: Plantree.

Epple, B., & Henniger, H. (2007). Discussion on design aspects for free-space optical

communication terminals. IEEE Communications Magazine, 45(10).

Fatin, H. M., Abu Sahmah, M. S., et al. (2011). Effect of rain attenuations on free

space optic transmission in Kuala Lumpur. Paper presented at the

International Conference on Advanced Science, Engineering and Information

Technology 2011, Hotel Equatorial Bangi-Putrajaya, Malaysia.

Page 28: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

151

Fischer, K. W., Witiw, M. R., Baars+, J. A., & Oke, T. R. (2004). Atmospheric laser

communication: New challenges for applied meteorology. Bulletin of the

American Meteorological Society, 85(5), 725-732.

Flecker, B., Gebhart, M., Leitgeb, E., Muhammad, S. S., & Chlestil, C. (2006). Results

of attenuation measurements for optical wireless channels under dense fog

conditions regarding different wavelengths. Paper presented at the Proc. SPIE.

Fletcher, G., Hicks, T., & Laurent, B. (1991). The SILEX optical interorbit link

experiment. Electronics & communication engineering journal, 3(6), 273-279.

Gappmair, W., & Flohberger, M. (2009). Error performance of coded FSO links in

turbulent atmosphere modeled by gamma-gamma distributions. IEEE

Transactions on wireless communications, 8(5).

Gebhart, M., Leitgeb, E., & Bregenzer, J. (2003). Atmospheric effects on optical

wireless links. Paper presented at the Telecommunications, 2003. ConTEL

2003. Proceedings of the 7th International Conference on.

Ghassemlooy, Z., Le Minh, H., & Ijaz, M. (2008). Free space optical communications:

The University of Northumbria, Newcastle UK.

Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2012). Optical wireless

communications: system and channel modelling with Matlab®: CRC press.

Giggenbach, D., & Henniger, H. (2008). Fading-loss assessment in atmospheric free-

space optical communication links with on-off keying. Optical Engineering,

47(4), 046001.

Grabner, M., & Kvicera, V. (2007). On the relation between atmospheric visibility and

optical wave attenuation. Paper presented at the Mobile and Wireless

Communications Summit, 2007. 16th IST.

Hasan, W. A., Rahim, S. K. A., et al. (2011). Potential interference and rain attenuation

at 21.4-22 GHz downlink broadcasting satellite signals. International Journal

of Electronics, 98(12), 1721-1731.

Ijaz, M., Ghassemlooy, Z., Pesek, J., Fiser, O., Le Minh, H., & Bentley, E. (2013).

Modeling of fog and smoke attenuation in free space optical communications

link under controlled laboratory conditions. Journal of Lightwave Technology,

31(11), 1720-1726.

ITU-R P.618-6, R. (1999). Propagation data and prediction methods required for the

design of earth-space telecommunication system: International

Telecommunication Union.

ITU-R P.1814, R. (2007). Prediction methods required for the design of terrestrial

free-space optical links: International Telecommunication Union.

Page 29: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

152

ITU-R F.2106-1. (2010) Fixed service applications using free-space optical links.

International Telecommunication Union.

ITU-R, 837-6. (2012). Characteristics of precipitation for propagation modelling.

Recommendation. International Telecommunication Union.

Jia, Z., Zhu, Q., & Ao, F. (2006). Atmospheric attenuation analysis in the FSO link.

Paper presented at the Communication Technology, 2006. ICCT'06.

International Conference on.

Kazemi, H., Uysal, M., & Touati, F. (2014). Outage analysis of hybrid FSO/RF

systems based on finite-state Markov chain modeling. Paper presented at the

Optical Wireless Communications (IWOW), 2014 3rd International Workshop

in.

Kharraz, O., & Forsyth, D. (2013). PIN and APD photodetector efficiencies in the

longer wavelength range 1300–1550nm. Optik-International Journal for Light

and Electron Optics, 124(16), 2574-2576.

Kidouchim, I. (2007). Introduction to FSO technology: wireless product division,

MRV. Retrieved on 14 Jun 2010,

www.systemsupportsolutions.com/.../Introduction_to_FSO_Technology.pps

Kim, I. I., McArthur, B., & Korevaar, E. (2001). Comparison of laser beam

propagation at 785 nm and 1550 nm in fog and haze for optical wireless

communications. Paper presented at the proc. SPIE.

Kim, I. I., Mitchell, M., & Korevaar, E. J. (1999). Measurement of scintillation for

free-space laser communication at 785 nm and 1550 nm. Paper presented at

the Optical Wireless Communications II.

Kolka, Z., Wilfert, O., & Biolkova, V. (2007). Reliability of Digital FSO links in

Europe. Int. J. Electronics, Communications, and Computer Engineering, 1(4),

236-239.

Korevaar, E., Kim, I. I., et al. (2003). Atmospheric propagation characteristics of

highest importance to commercial free space optics. Proc. of SPIE, 4976, 1-

12.

Kruse, P. W., McGlauchlin, L. D., & McQuistan, R. B. (1962). Elements of infrared

technology: Generation, transmission and detection. New York: Wiley, 1962.

Kvicala, R., Kvicera, V., et al. (2007). BER and availability measured on FSO link.

Radioengineering, 16(3), 6.

Kvicera, V., Grabner, M., & Fiser, O. (2013). Propagation characteristics obtained

on parallel terrestrial FSO links at 860 nm and 1550 nm. Paper presented at

the Optical Wireless Communications (IWOW), 2013 2nd International

Workshop on.

Page 30: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

153

Leitgeb, E., Gebhart, M., & Birnbacher, U. (2005). Optical networks, last mile access

and applications Free-Space Laser Communications (pp. 273-302): Springer.

Lightpointe. (2009a). How to Design a Reliable FSO System: Lightpointe White Paper

Series.

Lightpointe. (2009b). What is Free Space Optics (FSO)? : Lighpointe White Paper.

Mandeep, J., & Tanaka, K. (2007). Effect of atmospheric parameters on satellite link.

International Journal of Infrared and Millimeter Waves, 28(10), 789-795.

Middleton, W. E. K. (1957). Vision through the atmosphere Geophysik II/Geophysics

II (pp. 254-287): Springer.

Muhammad, S. S., Kohldorfer, P., & Leitgeb, E. (2005). Channel modeling for

terrestrial free space optical links. Paper presented at the Transparent Optical

Networks, 2005, Proceedings of 2005 7th International Conference.

Nadeem, F., Kvicera, V., Awan, M. S., Leitgeb, E., Muhammad, S. S., & Kandus, G.

(2009). Weather effects on hybrid FSO/RF communication link. IEEE Journal

on Selected Areas in Communications, 27(9).

Naimullah, B. S. S. (2004). Effect of Rainfall Rate and Visibility on Free Space Optical

Communications in Malaysian Environment. Doctoral dissertation.

Naimullah, B. S. S., Hitam, S., et al. (2007). Analysis of the effect of haze on free

space optical communication in the Malaysian environment. Paper presented

at the proceedings of the 2007 IEEE International Conference on

Telecommunications, Penang, Malaysia.

Naimullah, B. S., Othman, M., et al. (2008). Comparison of wavelength propagation

for free space optical communications. Paper presented at the Electronic

Design, 2008. ICED 2008. International Conference on.

Navidpour, S. M., Uysal, M., & Kavehrad, M. (2007). BER performance of free-space

optical transmission with spatial diversity. IEEE Transactions on wireless

communications, 6(8).

Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of

free-space optical communication systems over atmospheric turbulence

channels. IET communications, 3(8), 1402-1409.

Noor, N. H. M., Al-Khateeb, W., & Naji, A. (2011). Experimental evaluation of

multiple transmitters/receivers on free space optics link. Paper presented at the

Research and Development (SCOReD), 2011 IEEE Student Conference.

Ojo, J. S., Ajewole, M. O., et al. (2008). Rain rate and rain attenuation prediction for

satellite communication in KU and KA Bands over Nigeria. Progress In

Electromagnetics Research B, 5, 207-223.

Page 31: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

154

Olsen, R., Rogers, D. V., & Hodge, D. (1978). The aR b relation in the calculation of

rain attenuation. IEEE Transactions on antennas and propagation, 26(2), 318-

329.

Popoola, W., Ghassemlooy, Z., Awan, M., & Leitgeb, E. (2009). Atmospheric channel

effects on terrestrial free space optical communication links. Paper presented

at the 3rd International Conference on Computers and Artificial Intelligence

(ECAI 2009).

Prokes, A. (2009). Atmospheric effects on availability of free space optics systems.

Optical Engineering, 48(6), 066001.

Prokes, A., & Skorpil, V. (2009, September). Estimation of free space optics systems

availability based on meteorological visibility. In Communications, 2009.

LATINCOM'09. IEEE Latin-American Conference on (pp. 1-4). IEEE.

Rakia, T., Yang, H.-C., Alouini, M.-S., & Gebali, F. (2015). Outage analysis of

practical FSO/RF hybrid system with adaptive combining. IEEE

Communications Letters, 19(8), 1366-1369.

Rabinovich, W. S., Moore, C. I., Burris, H. R., Murphy, J. L., Mahon, R., Ferraro, M.

S., ... & Xu, B. (2010, February). Free space optical communications research

at the US Naval Research Laboratory. In Free-Space Laser Communication

Technologies XXII (Vol. 7587, p. 758702). International Society for Optics and

Photonics.

Ramasarma, V. (2002). Free space optics: A viable last-mile solution. Bechtel

Telecommunications Technical Journal, 1(1), 22-30.

Rockwell, D. A., & Mecherle, G. S. (2001). Wavelength selection for optical wireless

communications systems. Paper presented at the Proc. SPIE.

Sadiku, M. N., Musa, S. M., & Nelatury, S. R. (2016). Free space optical

communications: An overview. European Scientific Journal, ESJ, 12(9).

Sharma, P., Hudiara, I. S., & Singh, M. L. (2011). Estimation of path length reduction

factor by using one year rain attenuation statistics over a line of sight link

operating at 28.75 GHz in Amritsar (INDIA). Journal of Infrared, Millimeter,

and Terahertz Waves, 32(2), 137-142.

Sharul Kamal, A., Sum, C., Din, J., Tharek, A., Zhoinol Abidin, M., & Awang, M.

(2000). Rain attenuation study over terrestrial and earth-satellite Links in

Malaysia. Wireless Communication Research Laboratory University

Technology Malaysia.

Sizun, M., De Fornel, M., & Al Nabousi, M. (2003). Propagation of optical and

infrared waves in the atmosphere. Paper presented at the Proc. SPIE.

Page 32: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

155

Soibel, A., Wright, M. W., Farr, W. H., Keo, S. A., Hill, C. J., Yang, R. Q., & Liu, H.

(2010). Midinfrared interband cascade laser for free space optical

communication. IEEE Photonics Technology Letters, 22(2), 121-123.

Sprenger, B., Zhang, J., Lu, Z., & Wang, L. (2009). Atmospheric transfer of optical

and radio frequency clock signals. Optics letters, 34(7), 965-967.

Srinivasan, R., & Sridharan, D. (2010). The climate effects on line of sight (LOS) in

FSO communication. Parameters, 2, 3.

Tatarko, M., Ovseník, L., & Turán, J. (2012, May). Availability and reliability of FSO

links estimation from measured fog parameters. In MIPRO, 2012 Proceedings

of the 35th International Convention (pp. 192-195). IEEE.

Ulaganathen, K., Rahman, T. A., Rahim, S. K. A., & Islam, R. M. (2013). Review of

rain attenuation studies in tropical and equatorial regions in Malaysia: An

overview. IEEE Antennas and Propagation Magazine, 55(1), 103-113.

Vidyarthi, A., Jassal, B. S., & Gowri, R. (2011, May). Modeling of rain drop-size

distribution for Indian region. In Microwave Technology & Computational

Electromagnetics (ICMTCE), 2011 IEEE International Conference on (pp.

350-353). IEEE.

Vidyarthi, A., Jassal, B. S., Gowri, R., & Shukla, A. K. (2011, December). Comparison

between empirical lognormal and gamma rain drop-size distribution models for

Indian region. In Microwave Conference Proceedings (APMC), 2011 Asia-

Pacific (pp. 1686-1689). IEEE.

Virk, A. K., Malhotra, J. S., & Pahuja, S. (2012). Link margin optimization of free

space optical link under the impact of varying meteorological conditions.

International Journal of Engineering Science and Technology (IJEST), 4(3).

Wainright, E., Refai, H. H., & Sluss Jr, J. J. (2005). Wavelength diversity in free-space

optics to alleviate fog effects. Paper presented at the Proc. of SPIE Vol.

Weichel, H. (1990). Laser beam propagation in the atmosphere (Vol. 3): SPIE press.

Willebrand, H., & Ghuman, B. S. (2002). Free space optics: enabling optical

connectivity in today's networks: SAMS publishing.

Willebrand, H. A., & Ghuman, B. S. (2001). Fiber optics without fiber. IEEE

spectrum, 38(8), 40-45.

Yang, L., Gao, X., & Alouini, M. S. (2014). Performance analysis of free-space optical

communication systems with multiuser diversity over atmospheric turbulence

channels. IEEE Photonics Journal, 6(2), 1-17.

Zabidi, S. A., Al Khateeb, W., Islam, M. R., & Naji, A. W. (2010). The effect of

weather on free space optics communication (FSO) under tropical weather

Page 33: OUTAGE PREDICTION MODELLING OF TERRESTRIAL FREE …

PTTAPERP

USTAKAAN TUNKU T

UN AMINAH

156

conditions and a proposed setup for measurement. Paper presented at the

Computer and Communication Engineering (ICCCE), 2010 International

Conference on.

Zabidi, S. A., Islam, M. R., Al-Khateeb, W., & Naji, A. W. (2012). Analysis of rain

effects on terrestrial free space optics based on data measured in tropical

climate. IIUM Engineering Journal, 12(5).

Zabidi, S. A., Islam, M. R., Al Khateeb, W., & Naji, A. W. (2011). Investigating of

rain attenuation impact on free space optics propagation in tropical region.

Paper presented at the Mechatronics (ICOM), 2011 4th International

Conference On.

Zabidi, S. A., Rafiqul, I. M., & Wajdi, A. K. (2013, November). Rain attenuation

prediction of optical wireless system in tropical region. In Smart

Instrumentation, Measurement and Applications (ICSIMA), 2013 IEEE

International Conference on (pp. 1-5). IEEE.

Zhang, W., & Moayeri, N. (1999). Power-law parameters of rain specific attenuation.

Zhuanhong, J., Qingling, Z., et al. (2006). Atmospheric Attenuation Analysis in the

FSO Link. Paper presented at the International Conference of Communication

Technology 2006 (ICCT'06), Guilin, Chin.