Osteoporosis y el Microambiente de la Médula Ósea...En la osteoporosis, ¿El microambiente de la...

31
Juan Pablo Rodríguez V. Doctor en Ciencias Profesor Titular INTA - Universidad de Chile - 2018 - Proyecto FONDECYT # 1160214 Osteoporosis y el Microambiente de la Médula Ósea

Transcript of Osteoporosis y el Microambiente de la Médula Ósea...En la osteoporosis, ¿El microambiente de la...

  • Juan Pablo Rodríguez V.Doctor en Ciencias

    Profesor TitularINTA - Universidad de Chile

    - 2018 -

    Proyecto FONDECYT # 1160214

    Osteoporosis y el Microambiente de la Médula Ósea

  • Las células troncales residen en los tejidos y órganos adultos y son capaces de auto-renovación y de diferenciación multipotente.

    Las células troncales adultas permanecen en un estado no proliferativo, (estado de quiescencia).

    Célula madre

    Auto-renovación Diferenciación

    Célula madre

    Células diferenciadas

    Células Troncales

    Kasper et al, Harrison. Principios de Medicina Interna

  • Watt and Driskell, Phil. Trans. R. Soc. B 365, 155–163, 2010

    • Matriz Extracelular (ECM)• Células• Factores solubles:

    Factores de crecimientoCitoquinas

    • Factores físicos:Tensión de O2Rigidez

    Nicho de Célula Troncal (Stem cell niche): Microambiente en el cual reside la célula troncal; promueve su mantención y regula su función.

  • Bone Marrow Microenvironment

  • Célula Progenitora Mesenquimática(MSCs)

    Harada and Rodan, Nature 423: 349-355, 2003

  • Bone Marrow Microenvironment

    El microambiente de las MSCs proporciona señales de otros fenotipos celulares, la matriz extracelular, factores locales o sistémicos, factores físicos (rigidez, tensión de O2).

  • MSCs

    Osteoblastos

    Adipocitos

    En la osteoporosis, ¿El microambiente de la médula ósea, favorece el potencial adipogénico de las MSCs en desmedro del potencial osteogénico?

  • Demographic data Control Osteoporosis p

    Age (years) 71.9 ± 6.4 (n=92) 73.0 ± 9.0 (n=99)

    0.14

    Height (cm) 153.8 ± 6.1 (n=91)

    152.6 ± 6.4 (n=72)

    0.12

    Weight (kg) 69.8 ± 10.9 (n=90)

    59.1 ± 10.5 (n=71)

    0.0001

    BMI 29.6 ± 4.4 (n=96)

    25.7 ± 4.2 (n=81)

    0.0001

    Body Fat (%) 46.8 ± 6.6 (n=86)

    41.8 ± 8.7 (n=53)

    0.0001

    BMD (g/cm2) 1.239 ± 0.131 (n=59)

    0.812 ± 0.09 (n=36)

    0.0001

    t-score (L2-L4) 0.35 ± 1.15 (n=95)

    -3.49 ± 0.826 (n=85)

    0.0001

    AMMI (kg/m2) 6.03 ± 1.11(n=88)

    5.41 ± 0.99(n=69)

    0.0002

    Hip fracture number 2(3.4%)

    15(26.3%)

    Results are expressed as mean ± standard deviation. BMI: Body mass index.BMD: Bone mineral density.AMMI: Appendicular skeletal muscle mass index is defined as the sum of lean mass from legs and arms related to height.

    Demographic Characteristics of Women

  • -6 -4 -2 2 4 60

    2

    4

    6

    8

    0

    10

    t-score

    AM

    MI(k

    g/m

    2)

    ControlOsteoporosis

    Lo

    wM

    usc

    leM

    as

    sC

    on

    tro

    l

    Fracture

  • 800 x g5 min

    FMO

    Células

    AspiradoMédula

    Ósea

    Obtención del Fluido de Médula Ósea(FMO)

    Pino et al, J Bone Min Res, 25, 492-498, 2010

  • MSCs

    Aspirado de Médula Osea(Cresta Ilíaca)

    Gradiente de Densidad

    (70% Percoll)

    Cultivo Celular

    Células Progenitoras Mesenquimáticas(MSCs)

    DMEM - 10% FBS37°C - 5% CO2

    Obtención de MSCs

  • Zhang et al, J Cell Physiol 233:3418–3428, 2018

    Stiffness

    Effect of ECM Stiffness on Differentiation

    Stiff matrix(134 kPa)

    (Bone Tissue)

    Soft matrix(1.4 kPa)

    (Adipose Tissue)

  • Rodríguez et al, J. Cell Biochem 79, 557-565, 2000

    Synthesis and Depositionof Type I Collagen

    Control Osteoporosis0

    20

    40

    60

    80

    100

    De

    po

    siti

    on

    of

    Typ

    eI C

    olla

    gen

    (mg/

    10

    6ce

    lls)

    Control Osteoporosis

    Typ

    eI C

    olla

    gen

    (mg/

    10

    6ce

    lls)

    0

    2

    4

    6

    8

    10

    12

  • Adipogénesis

    Control Osteoporótica

    Rodríguez et al. J. Cell. Biochem. 79, 557-565, 2000

    Control Osteoporotic0

    5

    10

    15

    20

    25

    Ad

    ipo

    cyte

    (%

    )

    30

    *

    Control Osteoporotic0

    5

    10

    15

    20

    25

    Ca

    lciu

    m D

    ep

    os

    itio

    n

    (mg

    /we

    ll)

    30

    *

  • Non-osteoporotics

    Osteoporotics P

    Interleukin-6 (pg/ml) 4.8 ± 2.5(n=23)

    6.2 ± 2.5(n=15)

    0.044

    Soluble interleukin-6 receptor (ng/ml)

    33.7 ± 13.1(n=12)

    47.0 ± 13.7(n=10)

    0.02

    TNF-a (pg/ml) 72.3 ± 55.0(n=15)

    148.9 ± 82.0(n=12)

    0.036

    Adiponectin (mg/ml) 9.5 ± 2.4(n=15)

    5.7 ± 2.7(n=14)

    0.04

    Soluble-RANKL (pmol/L)

    0.27 ± 0.16(n = 8)

    0.14 ± 0.05n = (8)

    0.021n = 8

    Osteoprotegerin (pmol/L)

    2.9 ± 0.9(n = 8)

    4.4 ± 1.8(n = 8)

    0.035(n = 8)

    Leptin (ng/ml) 14.5 ± 11.3(n=24)

    7.0 ± 4.4(n=12)

    0.004

    Soluble leptin receptor (ng/ml)

    44.6 ± 14.7(n=16)

    48.9 ± 17.8(n=8)

    0.282

    Pino et al, J Bone Min Res 25, 492-498, 2010

    Concentration of Cytokines and Soluble Receptors in the Bone Marrow Soluble Fluid

  • Signaling Regulator Levels in Bone Marrow Fluid of Control and Osteoporotic Donors

    Control Osteoporosis p

    Irisin (mg/ml) 1.53 ± 0.92 2.61 ± 1.11

  • Miranda et al, J. Cell Biochem 117: 2370-2376, 2016

    Fatty Acids BMSF Blood Plasma

    (mol%)

    Saturated 43.2 ± 10.6 37.7 ± 5.6*

    Monounsaturated 31.0 ± 5.6 28.8 ± 5.5*

    Polyunsaturated 25.8 ± 12.7 33.4± 7.8**

    Total Unsaturated 56.8 ± 10.6 62.3 ± 5.6*

    Palmitic acid (C16:0) 32.3 ± 8.9 28.1 ± 4.9*

    Palmitoleic acid (C16:1 n-7) 2.0 ± 0.9 2.3 ± 1.1

    Stearic acid (C18:0) 10.9 ± 3.3 9.7 ± 2.7*

    Oleic acid (C18:1 n-9 cis) 27.3 ± 5.3 25.1 ± 5.1*

    Elaidic acid (C18:1 n-9 trans) 1.7 ± 1.7 1.5 ± 0.7

    Linoleic acid (C18:2 n-6) 22.1 ± 10.3 28.9 ± 6.2**

    Eicosatrienoic acid (C20:3 n-6) 0.6 ± 0.7 1.0 ± 0.8

    Arachidonic acid (C20:4 n-6) 3.0 ± 3.0 3.5 ± 2.4

    Fatty Acid Composition in BMSF and Blood Plasma from Postmenopausal Women

    Results are expressed as mean ± standard deviation. * p

  • Control (n=10) Osteopenia (n=10) Osteoporosis (n=17)

    Fatty Acids BMSF Plasma BMSF Plasma BMSF Plasma

    (mol%) (mol%) (mol%)

    Saturated 46.2 ± 12.0 38.1 ± 6.5 42.1 ± 12.3 35.4 ± 4.5 41.3 ± 8.5 38.8 ± 5.6

    Monounsaturated 29.7 ± 5.1 32.2 ± 6.8 30.1 ± 4.2 26.1 ± 4.6* 32.3 ± 6.5 28.5 ± 4.5

    Polyunsaturated 24.0 ± 13.4 29.7 ± 11.5 33.8 ± 9.2 38.5 ± 6.1 25.6 ± 11.6 32.7 ± 4.7*

    Total unsaturated 53.8 ± 12.0 61.9 ± 6.5 57.9 ± 12.3 64.6 ± 4.5 57.9 ± 8.8 61.2 ± 5.6

    Palmitic acid (C16:0) 34.8 ± 10.8 27.3 ± 5.1 31.3 ± 10.7 26.3 ± 5.0 31.5 ± 6.8 30.4 ± 3.7

    Palmitoleic acid (C16:1 n-7) 2.0 ± 0.7 2.6 ± 1.4 1.9 ± 1.1 1.8 ± 0.7 2.1 ± 1.0 2.4 ± 1.0

    Stearic acid (C18:0) 11.5 ± 2.0 10.9 ± 2.9 10.8 ± 2.5 9.1 ± 1.9 10.6 ± 4.3 9.3 ± 2.9

    Oleic acid (C18:1 n-9 cis) 26.5 ± 4.8 28.1 ± 7.2 26.1 ± 4.3 23.1 ± 4.3 28.5 ± 6.1 24.5 ± 3.6*

    Elaidic acid (C18:1 n-9 trans) 1.3 ± 0.8 1.5 ± 0.4 1.2 ± 0.8 1.2 ± 0.5 1.7 ± 0.8 1.6 ± 0.8

    Linoleic acid (C18:2 n-6) 22.0 ± 9.2 25.3 ± 8.5 22.6 ± 11.2 31.9 ± 5.7* 23.1 ± 10.0 29.2 ± 4.1*

    Eicosatrienoic acid (C20:3 n-6)

    0.8 ± 0.7 0.9 ± 1.0 0.9 ± 0.6 1.3 ± 0.5 0.4 ± 0.6 0.9 ± 0.8

    Arachidonic acid (C20:4 n-6) 3.3 ± 2.5 3.5 ± 3.0 4.3 ± 4.3 5.3 ± 1.4 2.0 ± 2.0 2.6 ± 1.9

    Miranda et al, J. Cell Biochem 117: 2370-2376, 2016

    Fatty Acid Composition in BMSF and Blood Plasma

    Results are expressed as mean ± standard deviation. *p

  • Blood Plasma Bone Marrow Supernatant Fluid

    Fatty AcidsWithout fracture

    (n=8)With fracture

    (n=9)Without fracture

    (n=8)With fracture

    (n=9)(mol%) (mol%)

    Saturated 37.6 ± 4.6a,b 40.0 ± 6.5 45.6 ± 8.5 37.0 ± 6.3*Monounsaturated 29.5 ± 3.2 27.4 ± 5.5c 28.8 ± 5.3 34.1 ± 6.3*Polyunsaturated 32.8 ± 4.3 32.6 ± 5.2 24.1 ± 13.9 26.9 ± 9.8Total Unsaturated 62.4 ± 4.6a 60.0 ± 6.5 c 54.4 ± 8.5 63.0 ± 6.3

    Palmitic acid (C16:0) 29.0 ± 3.7b 32.2 ± 3.2 32.4 ± 7.7 30.7 ± 6.2Palmitoleic acid (C16:1 n-7) 2.7 ± 0.9 2.0 ± 1.0 2.0 ± 1.0 2.3 ± 1.0Stearic acid (C18:0) 9.4 ± 1.3a 9.2 ± 4.0 13.2 ± 4.5 8.3 ± 2.7*Oleic acid (C18:1 n-9 cis) 25.1 ± 3.5 24.0 ± 3.7 c 24.9 ± 5.0 30.2 ± 5.3*Elaidic acid (C18:1 n-9 trans) 1.8 ± 0.5 1.4 ± 1.0 1.8 ± 0.8 1.6 ± 0.9Linoleic acid (C18:2 n-6) 28.5 ± 3.5a 30.0 ± 4.7 20.4 ± 10.9 25.6 ± 9.0Eicosatrienoic acid (C20:3 n-6) 1.1 ± 0.8 0.6 ± 0.7 c 0.8 ± 0.7 0.1 ± 0.1*Arachidonic acid (C20:4 n-6) 3.2 ± 2.3 2.0 ± 1.3 4.6 ± 1.0 1.5 ± 0.8***

    Miranda et al, J. Cell Biochem 117: 2370-2376, 2016

    Composition of Fatty Acid in Bone Marrow Fluid from Osteoporotic Donors with and without Hip Fracture.

  • Pino et al, Frontiers in Endocrinology 7:139, 2016

    Relationship between Hip Fractures and Fatty Acid CompositionIn the Bone Marrow Fluid of Osteoporotic Women

  • Señales recibidas desde un microambiente alterado pueden tener efecto en las características funcionales de las MSCs:

    Metabolismo Estado redox

  • Ito and Suda, Nature rev 15, 243-256, 2014

    Does o-MSCs show an alteredmetabolic status, as compared

    with c-MSCs?

  • Lactato Extracelular

    mg

    Lact

    ato

    / 1

    06

    célu

    las

    0 3 140

    0.5

    1.0

    1.5

    2.0

    Diferenciación Adipogénica(días)

  • A. Oxygen consumption rate (OCR). B. Extracellular acidification rate (ECAR), as a measured of glycolisis. Values were normalized at the protein content of each culture plate. Data shown correspond to the mean of at least three different assays by group.

    c-MSCs o-MSCs

    Oxidative Phosphorylation and Glycolisis in c- and o-MSCs

    Rosen CJ. Personal communication

    OXPHOS Glycolisis

  • Lact

    ato

    (m

    g/1

    06

    célu

    las)

    Normal Osteopénica Osteoporótica

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Lactato Extracelular(Basal)

  • OXPHOSTCA cycle

    Pyruvate

    Lactate

    Glucose

    G-6-P

    Pyruvate

    PPP

    NADPH Glycolisis

    IGF-1

    PI3K

    AKT

    PDK

    HIF1a

    Acetyl CoAPDH

    ROS

    Catalase SOD

    FOXO

    Adipocytes

    Osteoblasts

    mTOR

    NOX

    TNX1 PRDX

  • Román et al, Reunión Anual Soc. Biol. Celular, 2016

    Transcript levels quantified by qRT-PCR.

    Normal OsteoporosisRe

    lati

    veEx

    pre

    ssio

    n/

    GA

    DP

    H

    0

    0.1

    0.2

    0.3

    0.4Catalase ***

    Normal Osteoporosis0

    5

    10

    15

    Re

    lati

    veEx

    pre

    ssio

    n/

    GA

    DP

    H SOD1

    0

    5

    10

    15

    Re

    lati

    veEx

    pre

    ssio

    n/

    GA

    DP

    H

    TNX1 ***

    Normal Osteoporosis Normal Osteoporosis

    **

    Re

    lati

    veEx

    pre

    ssio

    n/

    GA

    DP

    H

    0

    0.001

    0.002

    0.003PRDX

  • Román et al, Reunión Anual Soc. Biol. Celular, 2016

    0

    0.005

    0.010

    0.015

    0.020

    0.025

    Re

    lati

    veEx

    pre

    ssio

    n/

    GA

    DP

    H NOX4

    Normal Osteoporosis0

    0.01

    0.02

    0.03

    0.04

    0.05***

    Re

    lati

    veEx

    pre

    ssio

    n/

    18

    S PDK1

    Normal Osteoporosis

    0

    0.05

    0.10

    0.15*

    Re

    lati

    veEx

    pre

    ssio

    n/

    18

    S

    HIF-1a

    Normal Osteoporosis

    *

    Foxo

    Normal OsteoporosisRe

    lati

    veEx

    pre

    ssio

    n/

    GA

    DP

    H

    0

    0.02

    0.04

    0.06

    0.08

    0.10

  • Román et al, J. Cell Biochem 118: 585-593, 2017

    Viability of MSCs after H2O2 Treatment

  • En resumen

    El microambiente de la médula ósea normal es

    diferente al de una médula ósea osteoporótica.

    Diferente contenido de colágeno

    Diferentes niveles de factores solubles (FMO)

    Esto se puede traducir en diferente funcionalidad:

    Metabolismo

    Estado redox

  • Declaro no tener conflictos de interés.

    Juan Pablo Rodríguez V.Doctor en Ciencias

    Profesor TitularINTA - Universidad de Chile