Organocatalysis

42

description

Organic Chemistry

Transcript of Organocatalysis

Page 1: Organocatalysis
Page 2: Organocatalysis

“Organocatalysis”

• The use of small molecules to catalyze

organic transformations (emphasis on

asymmetric variants)

• Term first used in 2000

MacMillan, J. Am. Chem. Soc., 2000. MacMillan, J. Am. Chem. Soc., 2000.

Page 3: Organocatalysis

What’s in a name?

MacMillan, D.W.C.; Nature, 2008. “What’s in a name? That which we call a rose by any other name would smell as sweet.”

Page 4: Organocatalysis

The Field Explodes

• “Organocatalysis” unified the field and

attracted the scientific community

• Cheap

• Large chiral pool

• Non-toxic

• Insensitive to moisture and air

• Industrial interest = more $$$

Page 5: Organocatalysis

History Lesson in Organocatalysis

Liebig, 1860 Yamada, 1969

Hajos and Parrish, 1974

Page 6: Organocatalysis

History Lesson in Organocatalysis

II

Shi, 1996 Denmark, 1997 Yang, 1996

Epoxidations

Aldol List, Lerner, and Barbas, 2000

Strecker

Jacobsen, 1998

Page 7: Organocatalysis

Cooperative Catalysis and Ion

Pairing in Organocatalysis

Page 8: Organocatalysis

Cooperative Catalysis and Ion Pairing in Organocatalysis

Organocatalytic general

mode of activation.

Cooperative ion pairing in asymmetric organocatalysis.

Page 9: Organocatalysis

Asymmetric Acyl Transfer: Steglich Rearrangement:

Briere, J-F.; Oudeyer, S.; Dalla, V.; Levacher, V.; Chem Soc. Rev. 2011,.

Chiral ammonium betaine

Page 10: Organocatalysis

Cooperative Taming of Reactive Catalysts

(1) Schreiner, P. Science 2010;327: 965

(2) Jacobsen et al. Science 2010;327:986-990

Page 11: Organocatalysis

Model Povarov reaction : Catalyzed by NBSA acid and chiral ureas

(B) Some of the chiral catalysts evaluated in

optimization studies.

Best conditions : NBSA +

bifunctional sulfinamido urea (1a)

(C) Results of catalyst structure-

reactivity/enantioselectivity studies.

Jacobsen et al. Science 2010;327:986-990

Page 12: Organocatalysis

Model Povarov reaction: Catalyzed by NBSA acid and chiral ureas

Jacobsen et al. Science 2010;327:986-990

(C) Martinelline (11), a

natural-product inhibitor of

bradykinin B1 and B2 G

protein-coupled receptors

Page 13: Organocatalysis

Phase-Transfer Catalysis and

Oxidation in Organocatalysis

Page 14: Organocatalysis

Phase-Transfer Catalysis (PTC)

• Early work in the 1950s by Hennis and 1960s by Makosza and Brändström

• Term “phase-transfer catalysis” coined in 1971 by Starks

“An alternative solution to the heterogeneity problem, phase-transfer catalysis, is introduced here. Reaction is brought about by the use of small quantities of an agent which transfers one reactant across the interface into the other phase to that reaction

can proceed.” Starks, C. M. “Phase Transfer Catalysts. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”, J. Am. Chem. Soc. 1971, 93, 195.

C6H13

ClNaCN

H2O, 105 CC6H13

CN

NO REACTION

Page 15: Organocatalysis

Phase-Transfer Catalysis (PTC)

C6H13

ClBu3P+(CH2)15CH3Br- (1.5 mol %)

NaCN, H2O, 105 CC6H13

CN

Bu3P(CH2)15CH3 CN

NaCl

NaCN

Bu3P(CH2)15CH3 Cl

Organic Phase

Interface

Aqueous Phase

Starks, C. M. J. Am. Chem. Soc. 1971, 93, 195.

Page 16: Organocatalysis

Advantages of Phase-Transfer Catalysis

• 1984: Asymmetric alkylations promoted by modified chincona alkaloids

Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. Am. Chem. Soc. 1984, 106, 446.

OCl

Cl

MeO

MeCl, 10 mol % cat

50% aq NaOHtoluene

20 C, 18 h95% yield92% ee

OCl

Cl

MeO

Ph

Me

N+

N

OH

H

CF3

Br-

phase transfer catalyst

N+

N

O

CF3

H

OCl

Cl

MeO

H-bonding/pi-stacking

Page 17: Organocatalysis

Phase Transfer Alkylation

Page 18: Organocatalysis

Shi Epoxidation

Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806-9807; Kurti, L.; Czako, B. Strategic Applications of Name Reactions in Organic Synthesis; Elsevier Academic Press, Boston, 2005.

Page 19: Organocatalysis

Mechanism

Kurti, L.; Czako, B. Strategic Applications of Name Reactions in Organic Synthesis; Elsevier Academic Press, Boston, 2005.

Page 20: Organocatalysis

Organocatalyzed Epoxidations

Page 21: Organocatalysis

Organocatalyzed Epoxidations

Page 22: Organocatalysis

Organocatalytic Alpha-Oxidations

Brown, S.P.; Brochu, M.P.; Sinz, C.J.; MacMillan, D.W.C J. Am. Chem. Soc. 2003, 125, 10808. Zhong, G. Angew. Chem. Int. Ed. 2003, 42, 4247.

Proposed transition state

Product ground state structure is oligomeric, making isolation difficult

Synthetic applications

Page 23: Organocatalysis

Alpha-oxyamination with TEMPO

Sibi, M.P.; Hasegawa, M. J. Am. Chem. Soc. 2007, 129, 4124. Simonovich, S.P.; Van Humbeck, J.F.; MacMillan, D.W.C Chem. Sci. 2011.

Switching to a metal known to form metal-TEMPO complexes gave better results:

Page 24: Organocatalysis

Dihydrobenzofuran Synthesis via Oxidation

compound Pd source additive time yield ee

1 spPd(THA)2 Ca(OH)2 36h 87% 81%

3 spPd(THA)2 Ca(OH)2 60h@55C 57% 90%

Pelly SC, Govender S, Fernandes MA, Schmalz H-, De Koning CB. J. Org. Chem. 2007;72(8):2857-64.

Trend RM, Ramtohul YK, Ferreira EM, Stoltz BM. Angew. Chemie. Intl. Ed. 2003;42(25):2892-5.

Page 25: Organocatalysis

Quaternary ammonium (hypo)iodite Catalysis for Enantioselective Oxidative Cycloetherification

Uyanik M, Okamoto H, Yasui T, Ishihara K. Science 2010; 328(5984):1376-9.

Page 26: Organocatalysis

Proposed mechanism

Uyanik M, Okamoto H, Yasui T, Ishihara K. Science 2010; 328(5984):1376-9.

Page 27: Organocatalysis

A Mild Condition Realized by PTC

Uyanik M, Okamoto H, Yasui T, Ishihara K. Science 2010; 328(5984):1376-9.

Page 28: Organocatalysis

Hydroaminations and Asymmetry-

Induced by Covalent Interactions in

Organocatalysis

Page 29: Organocatalysis

Examples of covalent organocatalysis:

Enantioselective Amine Addition Reactions

Catalytic Entities Reaction being catalyzed

1

2

3

Roesky, P.W.; Müller,T.E. Angew. Chem. Int. Ed. 2003, 42, 2708 – 2710

Page 30: Organocatalysis

4

5

Roesky, P.W.; Müller,T.E. Angew. Chem. Int. Ed. 2003, 42, 2708 – 2710

Page 31: Organocatalysis

Examples of covalent organocatalysis: Enamine and Iminium Ion Catalysis

• Nucleophilic enamine reacts with various electrophiles •α-functionalizations • HOMO activation

• Electrophilic iminium reacts with various nucleophiles •β-functionalizations • LUMO activation

List, B. Chem. Commun. 2006, 819-824.

Enamine catalysis

Iminium Ion catalysis

Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243-4244.

List, B.; Lerner, R. A.; Barbas, C. F. III. J. Am. Chem. Soc. 2000, 122, 2395-2396.

Page 32: Organocatalysis

Examples of covalent organocatalysis: Brønsted Acid Catalysis

Ackerman, L. Synlett 2008, 7, 995-998. Zigang, L.; Zhang, J.; Brouwer, C.; Yang, .; Reich, N.W.; He, C. Org. Lett. 2006, 8, 4175-4178. Hartwig, J.F.; Schlummer, B. Org. Lett. 2006, 4, 1471-1474.

•Catalytic hydroamination with acyclic phosphoric acid diesters.

•Phosphoric acid diester catalysis of intramolecular hydroamination.

• Chiral phosphoric acid diester as catalyst for asymmetric hydroamination.

3b: R = 3,5-(F3C)2C6H3

• Proposed catalytic cycle for cyclization of aminoalkenes catalyzed by triflic or sulfuric acid in toluene.

Page 33: Organocatalysis

Asymmetric Additions to Dienes

Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F. D. Nature 2011, 470, 245-249. SGB

chiral Brønsted acid protonation

nucleophilic acid/SN2'

Page 34: Organocatalysis

Asymmetric Additions to Dienes

Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F. D. Nature 2011, 470, 245-249. SGB

Page 35: Organocatalysis

Asymmetric Additions to Dienes

Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F. D. Nature 2011, 470, 245-249. SAD

Temp Substrate Product ee yield

Mechanistic Work

Page 36: Organocatalysis

Organocascades and Organocatalyzed

Cycloadditions

Page 37: Organocatalysis

Organocascade Catalysis • Tandem reactive processes inspired by nature

• Strategy that combines multiple catalyst activations into one mechanism

• More efficient than the “stop and go” method of synthesis

• Build complexity very quickly

• More practical for industrial applications

Page 38: Organocatalysis

Organocascade Catalysis • Conversion of squalene to lanosterol

Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem., 2010, 2, 167-178.

Page 39: Organocatalysis

Organocascade Catalysis • Organocatalysis in cascades

– Compatible, functional group tolerant, specific, controlled

Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S. Tetrahedron, 1998, 58, 5471-5484.

Simmons, B.; Walji, A. M.; MacMillan, D. W. C. Angew. Chem. Int. Ed., 2009, 48, 4349-4353.

64% dr

Page 40: Organocatalysis

Organocascade to generate common intermediate

Page 41: Organocatalysis

Functionalization of the intermediate generates multiple alkaloids

Page 42: Organocatalysis

Nice work, guys!