ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

258
CERN82-10 Health and Safety Department 4 November 1982 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH COMPILATION OF RADIATION DAMAGE TEST DATA PART III: Materials used around high-energy accelerators INDEX DES RÉSULTATS D'ESSAIS DE RADIORÉSISTANCE III e PARTIE: Matériaux utilisés autour des accélérateurs de haute énergie P. Beynel, P. Maier and H. Schônbacher GENEVA 1982

Transcript of ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Page 1: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CERN82-10 Health and Safety Department 4 November 1982

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

COMPILATION OF RADIATION DAMAGE TEST DATA PART III: Materials used around high-energy accelerators

INDEX DES RÉSULTATS D'ESSAIS DE RADIORÉSISTANCE

III e PARTIE: Matériaux utilisés autour des accélérateurs de haute énergie

P. Beynel, P. Maier and H. Schônbacher

GENEVA 1982

Page 2: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

© Copyright CERN, Genève, 198 2

Propriété littéraire et scientifique réservée pour tous les pays du monde. Ce document ne peut être reproduit ou traduit en tout ou en partie sans l'autorisation écrite du Directeur général du CERN, titulaire du droit d'auteur. Dans les cas appropriés, et s'il s'agit d'utiliser le document à des fins non commerciales, cette autorisation sera volontiers accordée. Le CERN ne revendique pas la propriété des inventions brevetables et dessins ou modèles susceptibles de dépôt qui pourraient être décrits dans le présent document; ceux-ci peuvent être librement utilisés parles instituts de recherche, les industriels e: autres intéressés. Cependant, le CERN se réserve le droit de s'opposer à toute revendication qu'un usager pourrait faire de la propriété scientifique ou industrielle de toute invention et tout dessin ou modèle dé­crits dans le présent document.

Literary and scientific copyrights reserved in all countries of the world. This report, or any pan of it, may not be reprinted or trans­lated without written permission of the copyright holder, the Director-General of CERN However, permission will be freely granted for appropriate non-commercial use. If any patentable invention or registrable design is described in the report, CERN makes no claim to property rights in it but offers it for the free use of research institutions, manu­facturers and others. CERN, however, may oppose any attempt by a user to claim any proprietary or patent rights in such inventions or designs as may be described in the present document.

Page 3: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CERN 82-10 Health and Safety Department 4 November 1982

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

COMPILATION OF RADIATION DAMAGE TEST DATA PART III: Materials used around high-energy accelerators

INDEX DES RÉSULTATS D'ESSAIS DE RADIORESISTANT

III e PARTIE: Matériaux utilisés autour des accélérateurs de haute énergie

P. Beynel, P. Maier and H. Schônbacher

GENEVA 1982

Page 4: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CERN — Service d'information scientifique-RD/5 64 - 2500 - novembre 1982

Page 5: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

ABSTRACT RESUME

This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating ma­terials and thermoplastic and thermosetting resins.

The irradiations have been carried out at various ra­diation sources and the results of the different tests are reported, sometimes illustrated by tables and graphs to show the variation of the measured property with ab­sorbed radiation dose. For each entry, an appreciation of the radiation resistance is given, based on measure­ment data, indicating the range of damage (moderate to severe) for doses from 10 to 10 8Gy.

Also included are tables, selected from published re­ports, of general relative radiation effects for several groups of materials, to which there are systematic cross-references in the alphabetical part. This third and last volume contains cross-references to all the mate­rials presented up to now, so that it can be used as a guide to the three volumes.

Ce manuel donne les résultats d'essais sur la résis­tance aux rayonnements ionisants de matériaux et de divers composants d'équipements susceptibles d'être installés dans des zones actives des accélérateurs de particules à haute énergie du CERN. Il est le complé­ment de deux volumes déjà parus qui couvrent, l'un les matériaux organiques pour l'isolation de câbles, l'autre les résines thermoplastiques et thermodurcissables.

Les irradiations ont été effectuées auprès de diverses sources de radiations, et les résultats des différents tests sont rapportés, parfois illustrés de tableaux et gra­phiques pour montrer la variation de la propriété mesu­rée avec la dose absorbée. Pour chaque objet, on donne une estimation de la radiorésistance, basée sur des me­sures, offrant une échelle de dommages (modérés à sévères) pour des doses allant de 10 à 108 Gy.

Sont inclus également des tableaux montrant les effets généraux de l'irradiation pour plusieurs groupes de matériaux sélectionnés de rapports publiés; dans la partie alphabétique des renvois à ces tableaux sont faits systématiquement. Ce troisième et dernier volume com­prend des renvois à tous les matériaux testés jusqu'à présent, ce qui en fait un guide pour les trois volumes.

DOC/kw-rm-msv-mg-cc m

Page 6: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …
Page 7: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CONTENTS

1. Introduction

2. Irradiation conditions

3. Presentation of results

4. General comparative results of radiation effects

5. Classification of materials

Acknowledgements

References

Les chapitres l à S, et l'appendice 7, sont français

Appendix I: Names, in alphabetical order, of all materials for which test results are presented in these volumes

Appendix 2: Explanation of trade names and popular names

Appendix 3: List of firms who collaborated in the irradiation tests presented in this volume

Appendix 4 : List of abbreviations used in this volume

Appendix 5: Tables of general relative radiation effects

Appendix 6: Classification of materials and components contained in this volume according to the dose range up to which they may typically be used

Appendix 7: Detailed description of data entry sheets

TABLE DES MATIÈRES

Page

1 1. Introduction

2 2. Conditions d'irradiation

4 3. Présentation des résultats

4. Résultats généraux comparatifs 5 des effets de l'irradiation

5 5, Classification des matériaux

7 Remerciements

8 Références

its en

14

16

17

18

19

Appendice 7: Description détaillée des feuilles de données

32

Alphabetic compilation of data 35

Page 8: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

1. INTRODUCTION This is the third and last volume (Part III) of a series

of compilations of radiation damage test data published by the European Organization for Nuclear Research (CERN) on the results and experience gained there over the last 10 years, particularly during the construction and operation of the 450 GeV Super Proton Synchro­tron (SPS).

Part I u contains data on commercially available cable-insulating materials, a list of which can be found in Appendix 1. The test samples were supplied by some 30 European cable manufacturers in the form of moulded plates, from which tensile test samples (ISO/R37, ISO/R 527) were cut. The degradation of the mechanical properties and Shore hardness (ISO 868) are reported as a function of the absorbed dose in the range of 5 X 10J to 5 X 106 Gy. As an end-point criterion for an elastic cable-insulating material, we consider it to be radiation resistant up to a dose at which the elongation at break is 100% or more.

Part I I 2 ) contains thermosetting and thermoplastic resins, with the exception of cable-insulating materials (see Appendix 1). Most of the data have been obtained from epoxy resins used as insulation for large high-energy accelerator magnet coils. Again, mechanical pro­perties have been recorded as a function of the absorbed dose in the range of 5 X 106 to 1 X 10s Gy but, in the case of rigid plastics, flexion tests (ISO 178) have been carried out. As an end-point criterion we require that at a given dose D the ultimate flexural strength of the mate­rial is 50% or more of the initial value at zero dose. The electrical properties have not been tested, since usually the permanent effects only become important at doses where the mechanical damage is already severe.

The present Part III contains all items which did not fit into the two previous ones, e.g. cable ties, glass, hoses, motors, oils, paints, relays, scintillators, seals, etc. The items for the irradiation tests either have been supplied by firms from whom CERN had intentions of buying certain items containing materials that were par­ticularly sensitive to radiation, or they have simply been taken from the CERN stock without particular choice of material and supplier. In addition, tables of general rela­tive radiation effects (see Appendix 5) and cross-references to the main entries of all three volumes are given, as will be explained in Section 3. Therefore the pre­sent volume can be used as a guide to information con­tained in the whole series of data compilations.

Contrary to Parts I and II, where irradiation and test procedures could be carried out in accordance with IEC Standard 544 3 ) for insulating materials, the variety of materials and components presented here had to be irradiated and tested in a specific non-standard way depending on size, composition, and functions. Also, the critical test parameters are often only vaguely

1. INTRODUCTION Ce volume est le troisième et dernier (IIIe partie) d'une

série de publications de résultats d'essais de radio-résistance des matériaux obtenus à l'Organisation Européenne pour la Recherche Nucléaire (CERN) au moyen d'essais effectués au cours des dix dernières années, en particulier pendant la construction, puis le fonctionnement, du super synchrotron à protons de 450 GeV (SPS).

La première partie" traite de la radiorésistance des matériaux utilisés comme isolants pour les câbles élec­triques. Une liste alphabétique de ces matériaux se trouve ici dans l'appendice 1. Environ trente fabricants européens de câbles ont fourni les échantillons pour ces essais, sous forme de plaques moulées. Les propriétés mécaniques (résistance à la traction ISO/R 37, ISO/R 527) et la dureté Shore (ISO 868) sont présentées en fonction de la dose absorbée, pour une gamme de doses allant de 5 X 105 à 5 X 106 Gy. Dans notre défi­nition du critère de dégradation, nous considérons un isolant de câble radioresistant si, à une dose seuil don­née, l'allongement à la rupture est encore égal ou supé­rieur à 100%.

La seconde partie2' contient les résultats concernant les résines thermodurcissables et thermoplastiques, à l'exception des isolants de câbles (voir appendice 1). Dans la plupart des cas, il s'agit de résines époxydes utilisées pour l'isolation des bobines d'aimant pour les accélérateurs à haute énergie. Les propriétés méca­niques sont de nouveau données en fonction de la dose absorbée, pour une gamme de doses allant de 5 X 106 à 1 X 108 Gy; dans le cas des plastiques rigides, nous avons effectué des tests de flexion (ISO 178). Le critère de dégradation choisi exige qu'à une dose seuil D, la résistance à la flexion du matériel soit encore supérieure ou égale à 50% de la valeur initiale à dose zéro. Nous n'avons pas étudié les propriétés électriques car, en général, elles commencent à changer à des doses où les dégradations mécaniques sont déjà très importantes.

Le présent volume (troisième partie) contient tous les objets et produits que l'on ne pouvait inclure dans les catalogues précédents, par exemple les ligatures de câbles, le verre, les tuyaux, les moteurs, les huiles, les peintures, les relais, les scintillateurs, les O-rings, etc. Les objets à soumettre aux tests d'irradiation provien­nent de l'une ou l'autre de deux sources: ou bien ils ont été confiés par des firmes auxquelles le CERN avait l'in­tention d'acheter des objets contenant des matériaux particulièrement radiosensibles, ou bien ils ont été pris aux stocks du CERN sans qu'il ait été fait un choix par­ticulier du matériau ou de sa provenance. Nous présen­tons en outre des tableaux qui donnent les effets des radiations en général (voir appendice 5), ainsi que les références des sujets principaux traités dans les trois volumes, comme nous l'expliquerons dans la section 3.

1

Page 9: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

defined, and in some cases we had to restrict ourselves to operational tests or to visual inspections. The methods of irradiation and testing will be discussed in more detail in Sections 2 and 3. In some cases, the tests have been performed by specialists interested in the application (see references). We are grateful to them for having made their results available for this publication.

The entries in this series of data compilation cover a large spectrum of materials and components used in high-energy accelerator engineering; however, this list is still far from complete. Also, because of the extended period of about 10 years during which the data were being collected, several items may have become obso­lete, or they are no longer available on the market. Nevertheless, the data presented could provide easily accessible information for the use of design engineers when selecting materials or when deciding whether further radiation damage tests have to be carried out.

As to the future project to build at CERN a large elec­tron/positron storage ring (LEP), we should make it clear that all information contained in these three volumes on organic materials, representing the highest number of entries, is also valid for the radiation environ­ment around this new installation. This is due to the fact that for organic materials the damage is to a large extent related to the absorbed dose irrespective of the type of radiation4'. For inorganic substances, e.g. semiconduc­tors and metals, this is not true, and great care must be taken if the radiation field in an application is different to the one during the radiation test. At this point we would like to stress that electronics components are amongst the most radiation-sensitive items used in accelerator engineering. Although electromagnetic radiation, which will be the main contribution to the absorbed dose at LEP, may cause up to 100 times less damage to semi­conductors than would particle radiation from proton accelerators or neutrons from a nuclear reactor5', this has to be seriously considered. A data compilation6', made for European space projects, of the effects of elec­tromagnetic radiation on electronic components is avail­able and can be consulted for reference purposes.

2. IRRADIATION CONDITIONS As mentioned in the Introduction, the irradiation con­

ditions depend on the size, composition, and function of the item to be tested. Basically we used three radiation sources for this series of investigations: - the 7 MW ASTRA pool reactor at Seibersdorf,

Austria; - w C o irradiators or spent-fuel elements; - dump and target areas of the CERN accelerators. Table 1 7 " U ) gives a summary of the characteristics of the various irradiation sources and their positions, and indicates which items have been irradiated there.

Par conséquent, nous pouvons considérer cette partie comme un guide des informations contenues dans la série complète.

Dans les Parties I et II, les irradiations des matériaux isolants ont été effectuées en accord avec la norme IEC 544 3 ) . Dans le cas présent ceci n'était pas possible à cause de la diversité des matériaux et composants qui ont été irradiés et testés selon leurs dimensions, leur composition et leurs utilisations. Souvent les para­mètres des essais ont été insuffisamment définis et on a dû se restreindre à de simples tests d'observation et d'inspection visuelle. Les sections 2 et 3 seront consa­crées aux méthodes d'irradiation et d'essais. Dans cer­tains cas, les tests ont été exécutés par des spécialistes qui étaient intéressés à l'application d'un matériau (voir les références citées). Nous les remercions ici d'avoir mis leurs résultats à notre disposition.

Les éléments de cette série de compilations représen­tent un grand nombre de matériaux et composants utili­sés dans la construction des accélérateurs à haute énergie; néanmoins, on ne peut considérer cette liste comme complète. D'autre part, il faut tenir compte du fait que ces résultats ont été recueillis en une dizaine d'années de travaux, et il n'est pas exclu que certains objets ne soient plus présents sur le marché. Malgré cet inconvénient les résultats présentés ici peuvent fournir aux ingénieurs des indications utiles et facilement accessibles pour choisir des matériaux ou pour prendre, dans certains cas, la décision d'effectuer des essais de radiation supplémentaires.

En ce qui concerne le nouveau projet de construction au CERN d'un anneau de stockage à électrons/posi­tons (LEP), on peut souligner que toutes les informa­tions contenues dans ces trois volumes sur les maté­riaux organiques (qui représentent de loin la branche la plus importante), restent utilisables pour les champs de radiation dans cette nouvelle installation. En effet, les dommages occasionnés aux matériaux organiques varient, dans la plupart des cas, en fonction de la dose absorbée et sont indépendants de la nature des radia­tions4' . En revanche, pour les composés inorganiques, par exemple semi-conducteurs et métaux, cette remar­que n'est pas forcément exacte: il faut donc être très pru­dent dans le cas où le champ de radiation pendant le fonctionnement est différent de celui utilisé pour le test. Sur ce point nous aimerions attirer l'attention de l'utili­sateur sur le fait que les composants électroniques sont parmi les objets les plus radiosensibles dans la cons­truction des accélérateurs. Dans la machine LEP, la ma­jeure partie des rayonnements sera du type électro­magnétique qui, on le sait par expérience, peut causer jusqu'à 100 fois moins de dommages aux composants électroniques que les rayonnements issus d'accéléra­teurs à protons ou de réacteurs nucléaires5'. Toutefois, il faut être très attentif et nous citerons comme référence

2

Page 10: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Most of the materials have been irradiated in the nuclear reactor. This radiation source has the advan­tage of having a well-defined radiation field, reliable dosi­metry methods, and sufficiently high dose rates and therefore short irradiation times. A detailed survey of the irradiation positions and dosimetry methods at the ASTRA reactor can be found elsewhere7'.

Spent-fuel elements (or switched-off reactor) and 6 0 Co irradiations were preferred for items with metallic parts which would have become too radioactive after irradiation in a reactor or a high-energy accelerator field. The radiation-sensitive parts within these items were, of course, the organic materials.

Irradiations around the CERN accelerators were carried out in only a very limited number of cases, the main reasons for this being the low dose rates, high dose gradients, imprecise knowledge of the particles and their energy spectra, and difficult dosimetry. Some parasitic irradiations were carried out on electronics components and on insulating materials, near dumps and target sta­tions, in order to study the effect of the radiation field and the dose rate.

The aim of the tests presented in this compilation was to predict the lifetime of the materials and components used in a radiation environment, prior to their installa­tion and operation. Therefore these types of tests are accelerated ones, where the integrated total dose is col­lected over a period ranging from hours up to three weeks, whereas the same dose, during operation, would be accumulated after periods usually exceeding 10 years.

It is known that radiation damage to organic materials may depend not only on the absorbed dose but also on the irradiation time and dose ra te 1 2 - 1 4 ' . The amount of oxygen available by diffusion into the sample, in relation to the number of radiation-produced chemically reactive radicals, or chain scission sites, may strongly influence the amount of permanent damage to the material. There­fore the damage caused by irradiation over a long period of time may be more important than damage from irradiation to the same total dose, at high dose rates for a short time. The dose rate effect is, in addition, depen­dent on the chemical structure of the material itself. The amount of oxygen available is a function of the sample thickness and of its permeability for gases, and of the amount of stabilizers added to the polymer to control oxidation damage under normal ageing conditions. For example, it is known that the effect is more pronounced in polyolefins [e.g. polyethylene (PE)], but is usually not of great importance for polyvinylchloride (PVC) and ethylene-propylene rubber (EPR).

Finally, we draw the attention of the user of this cata­logue to the different dosimetry methods as listed in Table 1 for the various radiation sources. Only the calorimetric method yields a direct measure of the

une compilation6' des effets de radiation par rayonne­ment électromagnétique sur les composants électroni­ques, éditée pour des projets spatiaux européens.

2. CONDITIONS D'IRRADIATION Comme mentionné dans l'introduction, les conditions

d'irradiation dépendent des dimensions, de la composi­tion et des utilisations possibles des objets testés. Nous avons principalement utilisé trois modes d'irradiation: - Le réacteur piscine ASTRA, de 7 MW, à Seibersdorf

(Autriche); - Une source de cobalt ou de combustible usé d'un

réacteur; - Des zones de cibles et des arrêts de faisceau des

accélérateurs du CERN. Le tableau l 7 _ u ) présente un résumé des caractéris­tiques de ces différentes sources d'irradiation, ainsi que les positions d'irradiation avec indication des positions choisies pour les différents objets à tester.

La plupart des matériaux ont été irradiés dans le réac­teur nucléaire. Cette source d'irradiation a l'avantage de posséder un champ de radiation bien défini, une méthode dosimétrique fiable et des débits de dose suffi­samment élevés pour permettrer des temps d'irradiation assez courts. Les détails sur les positions d'irradiation et la dosimetric au réacteur ASTRA ont été présentés ailleurs7'.

Les combustibles du réacteur (ou réacteur éteint), ainsi que la source de cobalt, sont utilisés de préférence pour irradier les objets contenant des parties métal­liques qui deviendraient trop radioactives dans un réac­teur ou un accélérateur en fonctionnement. Les parties radiosensibles de ces objets sont, bien entendu, les composants organiques.

Nous n'avons effectué des irradiations autour des accélérateurs du CERN que dans très peu de cas. Les principales raisons en sont un faible débit de dose, un gradient de dose élevé, une dosimetric difficile et une mauvaise connaissance du spectre des particules et de leur énergie. Quelques irradiations isolées ont été effec­tuées auprès des arrêts de faisceau et stations de cible sur des composants électroniques ainsi que sur des matériaux isolants, avec pour but l'étude des effets du champ de rayonnement et du débit de dose.

Le but de tous les essais présentés dans cette compi­lation est de prédire, avant leur installation et leur uti­lisation, le temps de vie ou de fonctionnement des matériaux et composants utilisés dans un champ de radiation. Par conséquent, ces types d'essais sont des essais accélérés, où l'on distribue la dose totale intégrée au cours d'une période qui peut aller de quelques heures à trois semaines, alors que les mêmes doses, pendant le fonctionnement réel, seront accumulées en général au bout de périodes dépassant dix ans.

3

Page 11: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

absorbed dose, whereas all the other doses were ob­tained by intercalibration. All doses in this report are quoted in gray (Gy) for a (CH2)n-type material (1 Gy = 1 J*kg~' = 102 rad). For non-organic materials, e.g. semiconductors, this does not represent the true dose but serves as a comparative measure of exposure. If the true dose is needed for comparison with other data, it can be calculated from this by the methods described in Refs. 3 or 15, for example, if the atomic composition of the material is known.

3. PRESENTATION OF RESULTS As demonstrated in the previous section, it is evident

that in the complex field of radiation damage to mate­rials a great number of parameters may influence the results, especially if a large variety of materials are tested and the doses range over six decades. Therefore the information presented has to be used with precaution and in many cases it can serve as a guideline only. We are confident, however, from the experience that we have gained over the last 10 years, that we can predict the expected lifetime of materials in a high-energy accele­rator environment, within the right order of magnitude, using the results from our accelerated reactor tests. If the results for different items made of the same base material are found to differ, this may be due to a specific composition or test condition. Furthermore, the func­tion of the items may require different degrees of per­formance from the base material, and therefore different appreciations of the radiation resistance may result.

As in the two preceding volumes, the data are pre­sented in alphabetical order, and the following informa­tion can be found for tested materials or components: - the keyword used to describe the entry; - most radiation-sensitive base material used in the

composition of the test item, followed by type, sup­plier, and an internal identification;

- a short description of the material ; - its application or use at CERN, if known; - irradiation conditions specifying the radiation source,

the medium, the dose rate, and the total integrated doses received by the material;

- the methods of testing, a short description, and the test standard if applicable;

- a summary of the results of tests; more details, when available, will be found on the opposite (left-hand) page.

- remarks, if any; - references 1^ 3 5 ' to where further data or information

on this entry may be found; - a general appreciation, illustrating graphically the

dose range in which no damage (blank), light to mod­erate damage (hatched), and/or moderate to severe damage (black) can be expected. It is also indicated if

Il faut noter que les effets des radiations sur les matériaux organiques ne dépendent pas uniquement de la dose absorbée mais aussi du temps d'irradiation et du débit de dose 1 2~ 1 4 ). La quantité d'oxygène disponible par diffusion dans l'échantillon, en relation avec le nombre de radicaux chimiquement actifs durant l'irradiation, qui sont des positions de rupture de chaînes, peuvent forte­ment influencer les dommages subis par les matériaux. Il en résulte que les dommages causés au cours d'une longue période d'exposition peuvent être plus importants que ceux causés, à même dose intégrée, par des débits de dose élevés durant une courte période. De plus, la structure chimique du matériel influence cet effet de débit de dose. La disponibilité en oxygène est une fonction de l'épaisseur de l'échantillon, de sa perméabi­lité aux gaz et de la quantité de stabilisateurs présents dans le polymère pour contrôler les dommages par oxy­dation au cours du processus normal de vieillissement. Ainsi, il est connu que cet effet est plus important pour les polyoléfines [par exemple le polyethylene (PE)1 que pour le chlorure de polyvinyle (PVC) ou le caoutchouc ethylene propylene (EPR).

Enfin, nous attirons l'attention de l'utilisateur de ce catalogue sur les différentes méthodes dosimétriques présentées au tableau 1, et qui sont utilisées pour des sources d'irradiation différentes. Seule la méthode calorimétrique offre une mesure directe de la dose absorbée, alors que toutes les autres doses sont obte­nues par intercalibration. Toutes les doses mentionnées dans ce catalogue sont données en gray (Gy) pour un matériel du type (CH 2 ) n (1 Gy = 1 J • k g - 1 = 102 rad). Pour les matériaux inorganiques, semi-conducteurs par exemple, ceci ne représente pas la dose exacte; nous gardons cependant cette unité pour des motifs de com­paraison des expositions. Si l'on a besoin de la dose réelle, pour des comparaisons avec d'autres données, pour autant que la composition atomique du matériel soit connue, on peut la calculer d'après nos valeurs en utilisant les méthodes décrites dans les références 3 et 15, par exemple.

3. PRÉSENTATION DES RÉSULTATS Comme signalé plus haut, il est évident que les effets

des radiations sur les matériaux sont très complexes, un grand nombre de paramètres pouvant influencer les résultats; cette complexité est due, en particulier, à la grande diversité des matériaux testés ainsi qu'à la gamme de dose étendue sur six ordres de grandeur. L'information présentée doit donc être utilisée avec pré­caution et, dans bien des cas, elle ne doit être considérée que comme une ligne à suivre. Grâce à l'expérience que nous avons acquise en dix ans, nous pouvons toutefois prédire avec un ordre de grandeur correct, à partir des résultats de nos essais accélérés en réacteur, la durée de

4

Page 12: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

the appropriate range was not reached in our test or in the test of an equivalent material contained in this catalogue. A more detailed description of these data sheets is

given in Appendix 7. As mentioned in the Introduction, the materials pre­

sented in this series of catalogues are listed in Appen­dix 1. Table 2 gives the French names with their English translation, and the trade names. Appendix 2 gives explanations of trade names and popular names. Appendix 3 lists the firms who collaborated in our ra­diation test programme, and Appendix 4 explains the abbreviations which occur in this volume.

4. GENERAL COMPARATIVE RESULTS OF RADIATION EFFECTS

All the entries mentioned in Section 3 refer to a speci­fic material, component, or device. In addition, Appendix 5 gives a review of general relative radiation effects, in the form of tables or graphs, under the follow­ing entries 1 ' 2 , 3 6- 3 7»:

- cable insulations, - elastomers, - G-values (radio-chemical yield), - hoses, - oils, - paints, - textiles, - thermoplastic and thermosetting resins. Appendix 5 begins with a complete list of all materials quoted in these tables; cross-references to the tables are also given in the alphabetical data compilation section.

Further information on radiation damage to materials and components that might be of interest to the reader can be found elsewhere 6 , 3 8 - 4 4 ' .

5. CLASSIFICATION OF MATERIALS In Appendix 6 we classify the main materials and

entries contained in these three volumes, under the fol­lowing categories: - use not recommended, or to be used with precaution, - usable up to 5 X 10 5Gy, - usable up to 1-2 X 106 Gy, - usable up to 1-2 X 10 7Gy, - usable up to 1 X 10" Gy, - usable above 1 X 108 Gy.

Following the remarks in Sections 2 and 3, the aim of this classification is to indicate to the user the dose limit up to which the various materials may be used. It should again be stressed that the limits are specific to the item tested and to the end-point criteria applied, and that it may be possible to obtain higher or lower dose toler­ances for differently designed applications of the same type of material. Nevertheless, our experience shows

vie des matériaux utilisés auprès des accélérateurs de haute énergie. Il est possible que les résultats obtenus pour différents objets fabriqués avec la même matière de base soient différents; ceci peut être expliqué par des compositions ou des conditions d'essais spécifiques différentes. De plus, l'utilisation de ces objets peut demander des degrés différents de performance à la matière de base; il en résulte une appréciation différente de la radiorésistance.

Comme dans les deux volumes précédents, les résul­tats sont présentés ici par ordre alphabétique en anglais; sur chaque page on peut trouver les informa­tions suivantes: - Nom-clef identifiant l'objet décrit; - Matériaux de base radiosensibles constituant l'objet

de l'essai, suivi du type, du nom du fournisseur et du numéro d'identification interne;

- Brève description du matériau ou de l'objet; - Application ou utilisation au CERN si connues; - Conditions d'irradiation spécifiant la source, le

milieu, le débit de dose et les doses totales reçues par le matériau;

- Méthodes d'essais, brève description, norme si appli­cable;

- Résumé des résultats obtenus; on peut trouver sur la page en face (page de gauche) un supplément d'infor­mation chaque fois que cela est possible;

- Remarques, s'il y a lieu; - Références 1 6 - 3", si l'on désire connaître plus de

détails sur cet objet; - Appréciation générale, montrant graphiquement la

gamme de doses pour laquelle les dommages sont nuls (blanc), modérés (hachuré) et sévères (noir); par­fois aussi, indication (no test) de la zone susceptible d'être dégradante mais où nous n'avons pas fait d'es­sais sur le matériau lui-même ou un matériau équiva­lent.

Une description plus détaillée de ces feuilles de don­nées est présentée à l'appendice 7.

Comme nous l'avons dit dans l'introduction, tous les matériaux mentionnés dans cette série de catalogues constituent l'appendice 1. Pour retrouver facilement un matériau dont on connaît le nom uniquement en fran­çais, le tableau 2 liste tous les matériaux cités dans ce volume en ordre alphabétique en français, avec leur tra­duction anglaise.

L'appendice 2 donne les explications des noms dépo­sés ou commerciaux. L'appendice 3 présente la liste des firmes qui ont collaboré dans nos essais de radiorésis­tance, l'appendice 4 explique les abréviations.

4. RÉSULTATS GÉNÉRAUX COMPARATIFS DES EFFETS DE L'IRRADIATION

Tous les éléments de la section 3 désignent un maté­riau ou appareil bien déterminé. L'appendice 5 se

5

Page 13: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

that the mechanical damage to a base material is con­sistent in relation to the dose, and that radiation-sensi­tive materials such as Teflon must not be employed after they have reached their respective dose limit.

compose d'une série d'informations générales sur les ef­fets des radiations, sous forme de tableaux ou graphi­ques, pour les objets suivants 1 ' 2 - 3 6 ' 3 7 ' : - Isolants de câbles, - Elastomères, - Valeur G (rendement radiochimique), - Tuyaux, - Huiles, - Peintures, - Textiles, - Résines thermoplastiques et thermodurcissables.

Avant ces tableaux, nous avons introduit une liste de tous les matériaux qui y sont mentionnés. D'autre part, dans la partie alphabétique, des renvois aux tableaux de cet appendice 5 sont faits chaque fois qu'il y a lieu.

Des informations supplémentaires sur les effets des radiations qui pourraient intéresser l'utilisateur sont citées sous les références 6 et 38-44.

5. CLASSIFICATION DES MATÉRIAUX Dans l'appendice 6, tous les matériaux et objets con­

tenus dans les trois volumes sont classés dans les caté­gories suivantes: - Utilisation non recommandée, ou avec précaution, - Utilisable jusqu'à 5 X 10 5Gy, - Utilisable jusqu'à 1-2 X 10 6Gy, - Utilisable jusqu'à 1-2 X 107Gy, - Utilisable jusqu'à 1 X 10" Gy, - Utilisable au-dessus de 1 X 108Gy. Suivant les remarques des sections 2 et 3, le but de cette classification est de donner l'ordre de grandeur de la dose limite jusqu'à laquelle un matériau peut être utilisé. Il faut de nouveau souligner que ces limites sont spéci­fiques aux objets testés et aux critères de fin d'utilisa­tion choisis. Il est possible d'obtenir des performances plus faibles ou plus élevées suivant les différentes appli­cations proposées pour un même type de matériaux. Toutefois, nous avons remarqué par expérience que les dommages mécaniques subis par un matériau de base sont en rapport avec la dose; des matériaux sensibles au rayonnement, comme par exemple le Teflon, ne devront en aucun cas être utilisés au-delà de leur limite de dose respective.

6

Page 14: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Acknowledgements Remerciements

The present study was initiated by J.B. Adams with the start of the SPS programme and was originally carried out in collaboration with M. Van de Voorde and the ISR Division. The radiation damage test studies have been continuously supported by A.J. Herz (HS Department).

Our particular thanks are due to K. Goebel for his in­terest in this work and for many useful discussions and suggestions.

We would like to thank the firms which have supplied the test samples, both for their interest in this subject and for useful discussions which we had with their re­presentatives.

The irradiations have been carried out at the ASTRA reactor centre, which belongs to the Osterreichische Stu-diengesellschaft fur Atomenergie in Vienna. The good collaboration with A. Burtscher and J. Casta is acknow­ledged.

These irradiation tests were carried out at the request of numerous colleagues at CERN. We are grateful to them for supplying us with samples and information, and, in many cases, conducting the material tests and making the results known to us. They also cross­checked the information presented in this publication. This data compilation depended to a large part on their collaboration.

Finally, we would like to acknowledge the special effort and care taken by the CERN Scientific Reports Editing and Text Processing Sections in the preparation of this document.

Cette étude a été lancée par J.B. Adams, avec le début du programme SPS; initialement, elle a été effectuée en collaboration avec M. Van de Voorde et la Division ISR. Les études de dégradation des matériaux due au rayon­nement ont été constamment soutenues par A.J. Herz (Département HS).

Nous remercions particulièrement K. Goebel pour l'intérêt qu'il a montré pour cette étude et pour de nom­breuses suggestions et discussions.

Nous tenons aussi à remercier les fabricants qui ont fourni des échantillons d'essais; nous avons eu des dis­cussions utiles avec les représentants de nombreuses firmes.

Les irradiations ont été effectuées au réacteur ASTRA, à Seibersdorf, en Autriche, qui fait partie de l'Osterreichische Studiengesellschaft fur Atomenergie. Nous avons apprécié la bonne collaboration que nous ont offerte A. Burtscher et J. Casta.

Ces tests d'irradiation ont été exécutés à la demande de nombreux collègues au CERN. Nous leur sommes reconnaissants de nous avoir fourni des échantillons et des informations, et d'avoir, dans de nombreux cas, ré­alisé eux-mêmes les tests sur les matériaux, mettant leurs résultats à notre disposition. Ils ont aussi vérifié les informations présentées dans cette publication. Cette compilation de données a dépendu en grande par­tie de leur collaboration.

Nous voudrions enfin exprimer notre appréciation de l'effort et de l'attention que les sections Edition de rap­ports scientifiques et Traitement de textes du CERN ont apportés à la préparation de ce document.

7

Page 15: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

REFERENCES

1) H. Schônbacher and A. Stolarz-Izycka, Compilation of radiation damage test data, Part I: Cable insulating materials, CERN 79-04 (1979).

2) H. Schônbacher and A. Stolarz-Izycka, Compilation of radiation damage test data, Part II: Thermosetting and thermoplastic resins, CERN 79-08(1979).

3) Guide for determining the effects of ionizing radiation on insulating materials, IEC Standard 544 (3 parts) (Inter­national Electrotechnical Commission, Geneva, 1979).

4) D.C. Phillips, The effects of radiation on electrical in­sulators in fusion reactors. AERE-R8923, Harwell (1978).

5) K.P. Lambert, H. Schônbacher and M. Van de Voorde, A comparison of the radiation damage of electronic compo­nents irradiated in different radiation fields, Nucl. Instrum. Methods 130, 291 (1975). See also CERN 75-4 (1975).

6) F. Wulf, D. Brâunig and W. Gaebler, Data compilation of irradiation tested electronic components, Hahn-Meitner Inst, report HMI/B 353, TN 53/08,2nd edition (1981).

7) H. Schônbacher, M. Van de Voorde, A. Burtscher and J. Casta, Study on radiation damage to high energy accelerator components by irradiation in a nuclear reac­tor, Kerntechnik 17, 268(1975).

8) S. Battisti, R. Bossart, H. Schônbacher and M. Van de Voorde, Radiation damage to electronic components, Nucl. Instrum. Methods 136, 451 (1976); see also: CERN 75-18 (1975) (also translated into Russian).

9) B. McGrath, H. Schônbacher and M. Van de Voorde, Effects of nuclear radiation on the optical properties of cerium-doped glass, Nucl. Instrum. Methods 135, 93 (1976); see also: CERN 75-16(1975).

10) B. McGrath, H. Schônbacher and M. Van de Voorde, Effect of neutron radiation on the electrical resistivity of copper at room temperature, Nucl. Instrum. Methods 136,575(1976).

11) A. Iz'ycka and H. Schônbacher, High-level dosimetry for radiation damage studies at high-energy accelerators, Proc. 3rd ASTM-EURATOM Symp. on Reactor Dosi­metry, Ispra, 1979 (EUR 6813, Ispra 1980), p. 316.

12) H. Wilski, Verhalten eines Àthylen-Propylen-Copoly-merisats bei der Einwirkung ionisierender Strahlen in Luft, Colloid & Polym. Sci. 254,451 ( 1976).

13) R.L. Clough and K.T. Gillen, Radiation-thermal degra­dation of PE and PVC: Mechanism of synergism and dose rate effects, Radiât. Phys. and Chem. 18, 661 (1981).

14) I. Kuriyama, N. Hayakawa, Y. Nakase, J. Ogura, H. Yagyu and K. Kasai, Effect of dose rate on degrada­tion behavior of insulating polymer materials, IEEE Transact, on Electr. Insulation EI 14,272 ( 1979).

15) M.H. Van de Voorde, Effects of radiation on materials and components — Megarad dosimetry, CERN 69-12 (1969).

16) D.C. Phillips, J.M. Scott, K. Goebel, H. Schônbacher, W. Dieterle, W. Eichenberger and J. Maurer, The selec­tion and properties of epoxide resins used for the insula­tion of magnet systems in radiation environment, CERN 81-05(1981).

17) D. Johnson, Material radiation resistance and the SPS radiation field, CERN EP/SCE-R 703T/UA5/P80-I (1980).

18) P. Beynel, Tenue aux rayons ionisants des matériaux iso­lants sous forme de bande autoadhésive, CERN Lab II-RA/TM 75-5(1975).

19) P. Beynel, Tenue à l'irradiation des principaux matériaux composant un moteur électrique, CERN Lab II-RA/37.40/TM 74-26(1974).

20) P. Beynel, Tenue aux rayons ionisants des ligatures pour câbles électriques, CERN Lab II-RA/TM 75-4(1975). P. Beynel, Tenue à l'irradiation des ligatures AMP, CERN Lab II-RA/TM 75-32(1975).

21) H. Schônbacher. K.P. Lambert and M. Van de Voorde, The effect of mixed radiation fields on electronic devices, CERN preprint Lab II/RA/PP 74-4, Int. Conf. on Evaluation of Space Environment on Materials, Toulouse, 1974 (CNES, Toulouse, 1974).

22) G. Villard, Essai de tenue en haute tension de liquides diélectriques. CERN Lab II/BT/GT/aw/E, Techn. Note/74-2(1974).

23) R. Dubois, Fonctionnement en opération du septum électrostatique pour l'extraction Ouest, période juillet 1976-décembre 1977. CERN SPS/ABT/RD/Note Tech/78-3 (1978).

24) R. Dubois, Fonctionnement en opération des septa électrostatiques en 1978 (Extractions Ouest et Nord), CERN SPS/ABT/RD/Note Tech/79-4 ( 1979).

25) P. Beynel, Tenue aux radiations d'un éclairage de secours au néon, CERN HS-RP/TM 77-66 (1977).

26) D. Bendl, J. Casta and H. Kurz, Messung der Ànderung der magnetischen Eigenschaften von lamellierten Ring-kernen durch Neutronenbestrahlung im ASTRA-Reaktor, ASTRA Reaktor Inst, report, REX 123 (1974).

27) H. Beger, Radiation induced attenuation in some com­munication glass fibres around 850 and 1060 nm, CERN-SPS/ARF/77-21 (1977).

28) H. Schônbacher, M. Van de Voorde, G. Kruska and K..M. Oesterle, Performance of paint coatings in the radiation field of nuclear reactors and of high energy par­ticle accelerators, and after contamination by radio­nuclides, Kerntechnik 19,209(1977).

29) H. Schônbacher and W. Witzeling, Degradation of acrylic scintillator and wavelength shifter material by nuclear radiation, Nucl. Instrum. Methods 165, 517 (1979).

30) D. Johnson, Irradiation study of film, mylar and scintil­lator, CER N/EP/JD/ed, 21.6.19 79 (unpublished).

31) P. Beynel, Note concernant l'établissement d'un ensemble d'essais systématiques de résistance mécanique de O-ring subissant des irradiations, CERN Lab II/RA/37.04/TM/73-14 (1973).

32) P. Beynel, Note sur la tenue à l'irradiation des joints O-ring, CERN Lab II/RA/TM 75-42(1975).

33) C. Mueller, P. Siffert and H.M. Heijne, Defects introduc­ed in silicon by irradiation with muons of GeV energy, Proc. Int. Conf. on Radiation Effects in Semiconductors, Dubrovnik, 1976, eds. N.B. Urli and J.W. Corbett (The Institute of Physics, Bristol and London, 1977), p. 505. E. Heijne, Radiation damage: Experience with silicon detectors in high-energy particle beams at CERN, Proc. of Meeting on Miniaturization of High-Energy Physics Detectors, Pisa, 1980 (Plenum Press, London, 1981).

34) P. Beynel and A. Ijspeert, Résultats d'un essai d'irradia­tion nucléaire sur les parties isolantes d'un microrupteur utilisé pour les interlocks des aimants splitters, CERN Technical note SPS/ABT/TA/AI/79-193(1979).

35) P. Beynel, Résistance aux radiations des matériaux de construction du sas du puits de secours neutrino (SPS), CERN HS-RP/TM/78-64(1978).

36) M.H. Van de Voorde, Effects of radiation on materials and components, CERN 70-5 ( 1970).

37) M.H. Van de Voorde and C. Restât, Selection guide to organic materials for nuclear engineering, CERN 72-7 (1972).

38) Proc. IEEE Annual Conferences on Nuclear and Space Radiation Effects, published in IEEE Trans. Nucl. Sci.

8

Page 16: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

39) L.L. Bonzon, An experimental investigation of syner­gisms in class 1 components subjected to LOCA type-tests, NUREG/CR-0275, SAND 78-0067 (Sandia Laboratories, Albuquerque, N.M., USA, 1978).

40) C.L. Hanks and D.J. Hamman, Radiation effects design handbook — Section 3: Electrical insulating materials and capacitors (NASA CR 1787, Washington, 1971).

41) A. Spencker, H.G. Wagemann and D. Bràunig, Strahlen-belastungsuntersuchungen an elektronischen Bauele-

menten des SYMPHONIE-Satelliten, Hahn-Meitner Institute report HMI-B 181(1975).

42) D.S. Billington and J.H. Crawford Jr., Radiation damage in solids (University Press, Princeton, 1961).

43) J.F. Kircher and R.E. Baumann, eds., Effects of radiation on materials and components (Reinhold, New York, 1964).

44) R.O. Bolt and J.G. Carrol, eds., Radiation effects on organic materials (Academic Press, New York, 1963).

9

Page 17: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Table 1

Characteristics of various radiation sources used for this data compilation

Radiation source Irradiation position*'

7 MW ASTRA research pool

Pos. 11

SNIF

Core

Fuel elements ASTRA

Pos. 35

6 0 Co source Various

CERN accelerators

Characteristics of radiation field

Irradiation Irradiation Dose rate medium temperature

(°C) (Gy/h)

Dosimetry method Items irradiated

5 X 10 1 6 n t h /m 2 s 3X 1 0 1 6 n f ( E > l M e V ) / m 2 s

Water 40-50 2 X 106 Calorimeter71

Activation detector1* Thermosetting resins2'

Ebenel(El) 4 X 10"n t h ,/m 2 s 3X 10 1 4 n,<E>lMeV)/m 2 s

Air 32-45 2X 10s Ionization chamber1' Cable-insulating materials"; other organic materials

2X 10 1 3 n t h /m 2 s 5X 1 0 ' 3 n f ( E > l M e V ) / m 2 s

Air 35-45

n: 2 X 103

y:2X 1 0 2

Activation detector Ionization chamber

Electronics components8', optical glasses"

1 X 10 l l ! n l h /m 2 s 8 X I 0 n n f ( E > l M e V ) / m 2 s

Water or N 2 or He 50-100 3X 10"

Activation detectors Calorimeter Magnetic materials, copper wires"

Gamma radiation field characteristic for reactor fuel elements (0.5-3 MeV)

Air 25-35 1 X 104

1 X 10 ! Ionization chamber" Insulating materials containing metal; hoses with metal connectors

Gamma rays 1.2 MeV Air 25 1 X 104 Fricke dosimeter Insulating materials containing metal; motors

1SR beam Hadron cascade and secondary gamma rays. Air dump Primary proton energy ~ 30 GeV ;22

RPL and PDG glass dosimeters'"

Electronics components and items con­taining metal, up to 103 Gy

SPS neutrino Hadron cascade and secondary gamma rays. Air target area Primary proton energy ~ 400 GeV 23 3X 102 RPL and glass

dosimeters'" Cable and magnet insulations; items containing metal, up to 5 X 106 Gy

PS or SPS Primaries (losses) and secondaries up to Air ring 30 GeV (PS) or 250 GeV and 400 GeV (SPS) 22 1-10

RPL and glass dosimeter. Cable and magnet insulation; paints; ionization chambers'" operational life-tests

a) Specified on each entry in the data compilation section.

Page 18: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Tableau 2

Noms, en ordre alphabétique, de tous les matériaux cités dans ce volume, avec leur traduction, sous laquelle on peut les trouver dans le catalogue.

Les noms en italiques sont des marques de fabrique ou des noms déposés, sous lesquels on les trouve dans le catalogue

En français

Absorbeur HF Accessoires de pompe à vide Acétate Acétate cellulosique Acétate d'éthylène vinyl Acétone Alcool polyvinylique Alkyl aromatique Amiante-ciment Aniline formaldehyde A raldite Askarel Benzène Bois Bromoforme Bromure d'éthyle Buna Caoutchouc acrylique Caoutchouc acrylonitrile C aoutchouc acry lonitrile-butadiène C aoutchouc acrylonitrile-butadiène-styrène C aoutchouc de buty le Caoutchouc chloré Caoutchouc éthylène-propylène Caoutchouc polychloroprène Caoutchouc polyuréthane Caoutchouc de silicones Caoutchouc styrène-butadiène Céramique Chlorobenzène Chloroforme Chlorure de polyvinyle Chlorure de poly vinylidène Composants électroniques Composés fluorés Connecteur Copolymèred'éthylène-tétrafluoroéthylène Dacron Détecteur de particules Détecteur silicone Diala C Dichlorobenzène Dichloréthane Dobeckot Dynel Eclairage Elément de chauffage Epikote Esters Esters cellulosiques Ethers Ethylène-chlorotrifluoroéthylène Fer Fibre cellulosique Fibre optique Fibre de verre Fil de cuivre Fil électrique isolé Fil électrique, câble Flamtrol Gaine thermorétractable Hatar Hostalen Huile Huile chlorofluorocarbonée Huile fluorée Huile de graissage Huile isolante

Voir sous

HF absorber Vacuum pump accessory Acetate Cellulose acetate Ethylene vinyl acetate (EVA) Acetone Polyvinylalcohol Aromatic alkyl Asbestos cement Aniline formaldehyde

Askarel Benzene Wood Bromoform Ethyl bromide

Acrylic rubber Acrylonitrile rubber Acrylonitrile-butadiene rubber Acrylonitrile-butadiene-styrene rubber (ABS) Butyl rubber Chlorinated rubber Ethylene-propylene rubber (EPR) Polychloroprène rubber (Neoprene) Polyuréthane rubber (PUR) Silicone rubber Styrene-butadiene rubber (SBR) Ceramic Chlorobenzène Chloroform Polyvinyl chloride (PVC) Polyvinylidene chloride Electronics components Fluorinated compounds Connector Ethylene-tetrafluoroethylene copolymer (ETFE)

Particle detector Silicon detector

Dichlorobenzène Dichloroethane

Lighting Heating element

Esters Cellulose esters Ethers Ethylene-chlorotrifluoroethylene(E-CTFE) Iron Cellulose fibre Optical fibre Glass fibre Copper wire Insulated wire Cable insulation

Thermoshrinking sheath

Oil Chlorofluorocarbon oil Fluorinated oil Lubricating oil Insulating oil

11

Page 19: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Huile minérale Huile phosphatée Huile de polyglykol Huile de silicate Huile de silicones Hypalon Hypermalloy Hytrel Interrupteur Isolation de bobine d'aimant Isolation de câbles Joint (cage de roulement) Joint d'étanchéité Joint pour chambre à vide Kapton Kel-F Kevlar Kynar Laine Ligature de câbles Lupolen Makrolon Manchon isolant Matériel magnétique Mélamine-formaldéhyde Méthacrylate de polyméthyl Micatherm Microrupteur Moteur électrique Mousse Mylar Neoprene Nomex Noryl Novolac Nylon O-ring Orlon Oxyde d'aluminium Oxyde de polyphénylène Papier Peinture Peinture lumineuse Perbunan Perfluoroéthylene-propylène Pertinax Plexiglas Polyacryl Polyacrylonitrile Polyallomère éthyléne-propylène Polyamide Polyamide aromatique Polybutadiéne Polybutylène-téréphtalate Polycarbonate Polychloroprène Polychlorotrifluoroethylene Polyester Polyethylene Polyethylene chlorosulfoné Polyethylene réticulé Polyhydantoïne Polyimide Polyisobutyléne Polymère fluoré Polymères vinyl-chlorés Polyoléfine Polyphénylène (oxyde de) Polyphénylène (sulfure de) Polypropylene Polysilicate de lithium Polysiloxane Polystyrène Polytétrafluoroéthylène Polyvinylbutyral Polyvinylformal Pyrofil Quartz Radox

Mineral oil Phosphate oil Polyglykol oil Silicate oil Silicone oil

Switch Magnet coil insulation Cable insulation Joint Seal (O-ring) Vacuum gasket

Wool Cable tie

Insulating sleeve Magnetic material Melamine-formaldehyde Polyméthyl méthacrylate (PMMA)

Microswitch Motor, electric Foam

Seal

Aluminium oxide Polyphénylène oxide Paper Paint Paint, luminescent pigment

Perfluoroethylene-propylene (FEP)

Polyacryl Polyacrylonitrile Ethylene-propylene polyallomer Polyamide Aromatic polyamide Polybutadiéne Polybutylene-terephtalate (PBTP) Polycarbonate Polychloroprène (Neoprene) Polychlorotrifluoroethylene (Kel F) Polyester Polyethylene (PE) Chlorosulfonated polyethylene (CSP) Polyethylene cross-linked (XLPE) Polyhydantoin Polyimide Polyisobutyléne Fluorinated polymer Vinyl chloride polymers Polyolefin Polyphénylène oxide Polyphenylene-sulfide Polypropylene Lithium polysilicate Polysiloxane Polystyrene Polytétrafluoroéthylène (PTFE) Polyvinyl butyral Polyvinyl formal

Quartz

12

Page 20: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Rayonne Relais Résine Résine époxyde Résine phénolique Résine de polyester Résine de silicones Résine thermodurcissable Résine thermoplastique Resistofol Ruban Ruban isolant Ryton Saran Scintillateur Silicate Soie Styrène Tableau terminal 7e/7on(PTFE) Tefzel Tétrachlorure de carbone Téréphtalate de polyethylene Toluène polyvinylique Tube de chambre à vide Tuyaux (tubes) Urée-formaldéhyde Valvata Vanne Vanne pour le vide Verre Verre dopé au cérium Vestolene Viton

Rayon Relay Resin Epoxy resin Phenolic resin Polyester resin Silicone resin Thermosetting resin Thermoplastic resin

Tape Insulating tape

Scintillator Silica Silk Styrene Terminal board

Carbon tetrachloride Polyethylene terephthalate (PETP) Polyvinyl toluene Vacuum chamber tube Hoses Urea-formaldehyde

Valve Vacuum valve Glass Cerium-doped glass

13

Page 21: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 1

Names, in alphabetical order, of all materials for which test results are presented in these volumes. The main entries are in romans, the names in italics appear as cross-references.

Volume I: Cable insulating materials (Ref. 1)

Butyl rubber Chlorostop Chlorosulfonated polyethylene (CSP) Cross-linked polyethylene (XLPE) Desmopan Ethyl-acrylate rubber (EAR) Ethylene-propylene diene rubber (EPDM) Ethylene-propylene rubber (EPR) Ethylene vinyl acetate (EVA) Flamtrol Fluoropolymer Halar Hypalon Hytrel Kapton Lupolen Neoprene Nordel Polychloroprene Polyethylene (PE) Polyurethane(PUR) Polyvinyl chloride (PVC) Pyrofil Radox Semiconducting polyethylene Silicone rubber Silythene Stilan Teflon Tefzel Viton XLPE

Volume II: Thermoplastic and thermosetting resins (Ref. 2)

Araldite B Araldite D Araldite F and other Araldite resins A raldite F + Epoxy Novolac Birakrit Cevolit Crystic Dobeckan IF Dobeckot

Epikote Epoxy resins Epoxy resins + Epoxy Novolac Etronax Isoval Kerimid Kinel Makrolon Novolac Orlitherm Phenolic resins Polycarbonate resins Polyester resins Polyimide resins Polylite Polyurethane resins Resofil Ryton Samicanit Samicatherm Silicone resins Veridur Vetresit Vetronit

Volume III: Accelerator engineering materials and components (present volume)

Adhesive tape Aluminium oxide Araldite Asbestos cement Askarel Buna Cable insulation Cable tie Ceramic Cerium-doped glass Connector Copper wire Diala C Diester oil Electronic components Epoxy resin Ethylene-propylene rubber (EPR) and (EPDM) Ethylene-tetrajluoroethylene copolymer (ETFE) Fluorinated oil

14

Page 22: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Fluorinated polymer Foam Glass Glassfibre Heating element HF absorber Hoses Hostalen Hypermalloy Hytrel Insulated wire Insulating oil Insulating sleeve Insulating tape Iron Joint Kapton Kevlar Kynar Lighting Lithium polysillcate Lubricating oil Luminous paint Lupolen Magnet coil insulation Magnetic material Makrolon Micatherm Microswitch Mineral oil Motor, electric Mylar Neoprene Nitrile-butadiene rubber Nomex Noryl Novolac Nylon Oil Optical fibre O-ring Paint Paper Particle detector Pertinax Plexiglas Polyacrylate Polyamide Polybutylene terephthalate (PBTP) Polycarbonate Polychloroprene (Neoprene)

Polyester resin Polyethylene (PE) and (XLPE) Polyethylene terephthalate (PETP) Polyhydantoin Polyimide Poly olefin Polyphenylene oxide (PPO) Polyphenylene sulfide (PPS) Polypropylene (PP) Polysiloxane Polytetrafluoroethylene (Teflon PTFE) Polyurethane resin (PUR) Polyurethane rubber (PUR) Polyvinyl chloride (PVC) Polyvinyl toluene Quartz Relay Resin Resistofol Rubber Ryton Scintillator Scotchcal Seal (O-ring) Silica Silicon detector Silicone oil Silicone rubber Sleeve Styrene-butadiene rubber (SBR) Switch Tape Teflon (PTFE) Tefzel Terminal board Textile Thermoplastic resin Thermosetting resin Thermoshrinking sheath Vacuum chamber tube Vacuum gasket Vacuum pump accessory Vacuum seal Vacuum valve Valvata Valve Vestolene Viton Wire Wood

15

Page 23: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 2

Explanation of trade names and popular names

Araldlte Epoxy resin Askarel Oil, containing chlorinated diphenyls Buna Synthetic rubber Dacron Polyethylene terephthalate Diala Mineral oil Dynel Polyvinylidene chloride Epikote Epoxy resin Flamtrol Polyolefin, flame retardant Furan Thermosetting resin Halar Ethylene-chlorotrifluoroethylene Hostalen Polyethylene Hypalon Chlorosulfonated polyethylene Hypermalloy Magnetic material Hytrel Polyethylene terephthalate copolymer Kapton Polyimide Kel-F Polychlorotrifluoroethylene Kevlar Polyamide, aromatic Kynar Polyvinylidene fluoride Lupolen Polyethylene and copolymers Makrolon Polycarbonate Micatherm Glass-mica composite Mylar Polyethylene therephthalate Neoprene Polychloroprene rubber Nomex Aromatic polyamide Noryl Polyphenylene oxide Novolac Thermosetting resin Nylon Polyamide Orion Polyacryl Perbunan Acrylonitrile butadiene rubber Pertinax Paper/phenolic resin Plexiglas Polyacryl Pyrofil Ethylene-propylene rubber (EPDM) Radox Polyolefin Resistofol Polyhydantoin Ryton Polyphenylene sulfide Saran Polyvinylidene chloride Scotchcal Plastic display foil Teflon Polytetrafluoroethylene Tefzel Ethylene-tetrafluoroethylene copolymer Valvata Mineral oil Vestolene Polyethylene Viton Fluorinated copolymer

16

Page 24: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 3

List of firms who collaborated in the irradiation tests presented in this volume

The firms listed below are those who participated in a collaboration to determine the radiation resistance of products offered to CERN. They supplied us with samples for testing or they supported our work by taking part in a discussion of the results.

In the alphabetical compilation of the catalogue are also quoted standard products, which have been taken from stock for radiation testing without contacting the firms. Therefore, for these entries, the supplier is not mentioned.

It is understood that better radiation-resistant materials may be found on the market or that the qualities of the tested materials have been upgraded since.

AEG, Allgemeine Elektrizitats Gesellschaft - Telefunken, Ulm, Fed. Rep. Germany Angst & Pfister S.A., Geneva, Switzerland ASEA A/S, Allmânna Svenska Electriska AB, Odense, Denmark Bachofen AG (repr. Burgess), Cheseaux, Switzerland BICC, British Insulated Calender's Cables Ltd., Wrexham, England Burgess, see Bachofen CEM, Cie Electro-Mécanique, see CERCEM CERCEM, Centre d'études et de recherches de la CEM, Lyon, France Chance-Pilkington, St. Asaph, Flintshire, Great Britain Ciba-Geigy AG, Basle, Switzerland CMC, Carl Maier Cie, Schaffhausen, Switzerland Dow Chemical Europe, S.A., Horgen, Switzerland Draka Kabel, Amsterdam, The Netherlands Egli, Fischer & Co. Ltd. (repr. T & B), Zurich, Switzerland Felten & Guillaume Kabelwerke, Cologne, Fed. Rep. Germany Gummi Maag AG, Diibendorf, Switzerland Hellermann, see Summerer, H.C. Heraeus Quarzschmelze, Hanau, Fed. Rep. Germany Huber & Suhner, Zurich, Switzerland ITT, Div. Diffusion Composants, Bagneux, France Joint Français (Le), Bezons, France Labitzke Handels AG (repr. 3M Schweiz AG), Zurich, Switzerland Leybold Heraeus, Cologne, Fed. Rep. Germany Mâder AG, Dr. W., Killwangen, Switzerland Precision Rubber, see Riibeli & Guigoz S.A. Raychem AG, Baar, Switzerland Rohm GmbH, Darmstadt, Fed. Rep. Germany Riibeli & Guigoz S.A. (repr. Precision Rubber), Ecublens, Switzerland Schott & Gen., Mainz, Fed. Rep. Germany Shell Switzerland, Zurich, Switzerland Sperry Vickers Lucifer S.A., Geneva, Switzerland Summerer, H.C. (repr. Hellermann), Zurich, Switzerland T & B, Thomas & Betts, see Egli, Fischer & Co 3M, Minnesota Mining & Manufacturing Co., see Labitzke Handels AG VAT, Vacuum-Apparate-Technik AG, Haag, Switzerland Walther Pràzision, see Wieland & Oertli AG Wieland & Oertli AG, Illnau/Zurich, Switzerland

17

Page 25: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 4

List of abbreviations used in this volume

ABS Acrylonitrile-butadiene-styrene BBQ Benzimidazo-benzisoquinoline-7-one CSP Chlorosulfonated polyethylene CTFE C hlorotrifluoroethy lene EAR Ethylene-acrylate rubber E-CTFE Ethylene-chlorotrifluoroethylene EP Epoxy resin EPDM Ethylene-propylene difunctional monomer copolymer,

e.g. Ethylene-propylene diene rubber EPN Epoxy-phenol-Novolac resin EPR Ethylene-propylene rubber ETFE Ethylene-tetrafluoroethylene ETP-Cu Electrolytic tough-pitch copper EVA Ethylene vinyl acetate FEP Perfluoroethylene-propylene NBR Nitrile-butadiene rubber OFHC-Cu Oxygen-free, high-conductivity copper PA Polyamide PBTP Polybutylene terephthalate PE Polyethylene PETP Polyethylene terephthalate PMMA Polymethyl methacrylate PP Polypropylene PPO Polyphenylene oxide PPS Polyphenylene sulfide PTFE Polytetrafluoroethylene, Teflon PUR Polyurethane rubber PVC Polyvinyl chloride SBR Styrene-butadiene rubber SIR Silicone rubber XLPE Polyethylene, cross-linked

18

Page 26: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5

Tables of general relative radiation effects

There are tables for the following categories of items:

5.1 Cable insulations

5.2 Elastomers

5.3 G-values

5.4 Hoses

5.5 Oils

5.6 Paints

5.7 Textiles

5.8 Thermoplastic resins

5.9 Thermosetting resins

These tables are modified versions of those given in the respective references. Cross-references to these tables contained in the alphabetical data compilation section. An alphabetical index of the contents follows.

Page 27: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

List of all materials presented in this part in tables of general relative radiation effects

Acetate Acetone Acrylic rubber Acrylonitrile rubber Acrylonitrile-butadiene rubber Acrylonitrile-butadiene-styrene(ABS) Aniline-formaldehyde Aromatic alkyl Aromatic polyamide Benzene Bromoform Butyl rubber Carbon tetrachloride Cellulose esters Cellulose acetate Cellulose fibre Chlorinated rubber Chlorobenzene Chlorofluorocarbon oil Chloroform Chlorosulfonated polyethylene (CSP) Cotton Dacron Dichloroethane Dichlorobenzene Dynel Epoxy resin Esters Ethers Ethyl bromide Ethylene-chlorotrifluoroethylene(E-CTFE) Ethylene-propylene polyallomer Ethylene-propylene rubber (EPR) Ethylene-tetrafluoroethylene(ETFE) Ethylene vinyl acetate (EVA) Flamtrol Fluorinated compounds Halar Hypalon Hytrel Kapton Kel-F Melamine-formaldehyde Mineral oils Mylar Neoprene Nomex Nylon Orion

Perbunan Perfluoroethylene-propylene (FEP) Phenolic resin Phosphate oil Polyacryl Polyacrylonitrile Polyamide (Nylon) Polybutadiene Polycarbonate Polychloroprene rubber (Neoprene) Polychlorotrifluoroethylene (Kel-F) Polyester Polyethylene (PE) Polyethylene cross-linked (XLPE) Polyethylene terephthalate (PETP) Polyglycol oil Polyimide Polyisobutylene Polymethyl methacrylate (PMMA) Polyolefin Polyphenylene oxide (PPO) Polypropylene (PP) Polysiloxane (Silicone rubber SIR) Polystyrene Polytetrafluoroethylene (Teflon PTFE) Polyurethane resin (PUR) Polyurethane rubber (PUR) Polyvinyl alcohol Polyvinyl butyral Polyvinyl chloride (PVC) Polyvinyl formal Polyvinylidene chloride Pyrofil Radox Rayon Saran Silicate oil Silicone oil Silicone resin Silicone rubber (SIR) Silk Styrene Styrene-butadiene rubber (SBR) Teflon PTFE Tefzel Urea-formaldehyde Vinyl chloride polymers Wool

20

Page 28: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.1

General relative radiation effects: Cable insulation

These appreciations are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

E

Polyimide(Kapton)

Polyurethane rubber (PUR)

Ethylene-propylene rubber (EPR/EPDM)

Polyethylene/Polyolefin (e.g. PE/PP, XLPE)

Chlorosulfonated polyethylene (Hypalon)

Ethylene-chlorotrifluoroethylene(Halar)

Ethylene-propylene rubber (EPDM) flame ret. (Pyrofil) p;':' •;•;•:':•;

Ethylene-tetrafluoroethylene copolymer (Tefzel) |:-:-;:;::::::::^

Ethylene vinyl acetate (EVA) lx'-:::::::-:-:'-:

Polychloroprene rubber (Neoprene) 1:':::::::-:':-:-^

Polyethylene terephthalate copolymer (Hytrel)

Polyolefin, flame-retardant(Flamtrol, Radox)

Polyvinylchloride(PVC)

Silicone rubber (SIR)

Butyl rubber

Perfluoroethylene-propylene ( FEP)

Polytetrafluoroethylene (Teflon PTFE)

E

E E E m

r ' • • • • • ' ' • • • • • • • • ' • ' • • ' . ' • . ' v v v V A ' A W A V A V A ' A V A M

mmmmmm mmmsmm 5555H3

r T i i T » i i "ift

®mmmm%m&&

DOSE IN GRAY 103 104 105 106 107 10 DOSE IN RAD 105 10° 101 108 10' 10

USEFUL RANGE USE NOT RECOMMENDED

REFERENCES:!

21

Page 29: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.2

General relative radiation effects: Elastomer

These appreciations are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

S$$m&^W££*

^£&£&£Sftï¥S

SSS^5S^^®S^^

Polyurethane rubber (PUR) txxx-x : x : x : x : x : x : x : x :

Ethylene-propylene rubber (EPR) [-X-XX-X-X-.X-X-X-X-X-X-

Styrene-butadiene rubber (SBR) l: :X :: :: :X :X :; :x'xXX :XXX

Polychloroprene rubber (Neoprene) [:-X :: :X-x ::-X :x-x-x-: :X-x ^wS^SSSJS

Chlorosulfonated polyethylene (Hypalon) |x-:':'-x'xx-x'xx

Acrylonitrile rubber f ^ x ^ x T R ^ ^ ^ ^ f t ^ ^ ï j j a ^ ^

Acrylic rubber |x :: :X :: :X :X :X :X

Silicone rubber (SIR) | : : : : : :> : : : : : :X : :vX

Fluoro rubber |-x-x-x':'x-x-x-

Butyl rubber l++<+<:+y.1SB8BBr~ " ~ "

ssasas^Bs&Ba&aa wx-x\%-:->>:

ms^mmmmmms

REFERENCES : 36

22

105 io7 103 104 106 108

Gamma dose, Gy

Damage Utility

Incipient to mild Nearly always usable Mild to moderate Often satisfactory Moderate to severe Not recommended

Page 30: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.3

General relative radiation effects: G-value

These values are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

Compound G-value*)

Benzene: (~) 1.8

Styrène: Ç) — CH = CH 2 1.6

Chlorobenzene : <T°) —CI

o-Dichlorobenzene : — <Oz -CI -CI

17.3

30.0

Acetone : CH 3 — CO — CH 3 50.0

Ethyl bromide : CH 3 — CH2Br 28.0

1,2-Dichloroethane : CH2C1 — CH2C1 41.0

Chloroform :CHC1 3 59.5

Bromoform : CHBr 3 57.0

Carbon tetrachloride : CC14 70.0

*) G-value = number of product molecules formed or reactant molecules consumed per 100 eV of energy absorbed by the compound. The G-value quoted here is for the production of free radicals.

REFERENCES : 36, see also 43

23

Page 31: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.3

General relative radiation effects: G-value of poly mers

These values are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

Polymer G-value*) Composition

Polyethylene (PE) 2.1 H2(95.5%);C3Hg(3.4%) Polystyrene 0.03 H2(100%) Polyacrylonitrile 0.4 H2(24%); NH3(8%);

C2N2(67.5%) Polyvinyl chloride (PVC) 0.3 HCI Polyvinyl alcohol 1.7 H2(95°/o);CO(4.3%) Polybutadiene 0.2 H 2 + CH4(100%) Polymethyl methacrylate (PMMA) 1.3 H2(18%);CH4(15%);

CO(36%);C02(25%); C3H8(5.3%)

Polyisobutylene 0.87 H 2 + CH4(95.5%) C 0 2 + C3H„(4.5%)

Polytetrafluoroethylene (Teflon PTFE) 0.03 CO + CO, Polyethylene terephthalate (PETP, Mylar) 0.15 Polyamide (Nylon) 1.1 Styrene butatiene rubber (SBR) 0.15 Polyurethane rubber (PUR) 0.7 Polysiloxane 0.6 Polychloroprene (Neoprene) 0.1

*) G-value = number of product molecules formed or reactant molecules consumed per 100 eV of energy absorbed by the polymer. The G-value quoted here is for the production of all gases listed.

REFERENCES : 36, see also 43

24

Page 32: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.4

General relative radiation effects: Hoses

These appreciations are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

SSSSSSS^S >SX^wvK"KwJv

^SSSSS8S«SS88*S888Ê88888888i!

$s$$^mmmmmmmmmzm

A. Plastics

Polyphenylene oxide (PPO) [':':'•'

Polyolefins, glass reinforcement t;:: :':

Polyethylene(PE) + SR f x ^ , . Mmwmvmwwmm

Combination PE-PVC | i ^ ^ ^

Polyvinyl chloride (PVC) + SR" [x^

Polyamide (Nylon) f-X;

Polytetrafluoroethylene (Teflon PTFE)

Polytetrafluoroethylene (Tenon PTFE) •*' tigS$ffl$!ÏÏSl^?fà&ffiffîffi&$ffî!:&ïï^&îfà3Gïïffl

B. Elastomers

Ethylene-propylene rubber, glass reinforcement lxxx:-xx-XvX-x -x-x-xx-x-xxx :-xx xx»SK<w>HKI

Acrylonitrile-butadiene rubber (Perbunan) + SR [

Polychloroprene (Neoprene) + SR L

Silicone rubber + SR L;

Butyl rubber + SR R S K S K S S g S g S g 8 8 8 8 ^ ^

§^5^5J5ï5^S8S$^=gS8SSSS^^««

îSSSSS^ ÎKSSSSS^SSSSS^ 1

i io 3 10" 105 10" 10' 10»

Gamma dose, Gy

SR = synthetic reinforcement. All results for 1 bar, except *) for 1 and for 15 bar and **) for 20 bar water bursting pressure.

Damage Utility

3 Incipient to mild Nearly always usable Mild to moderate Often satisfactory Moderate to severe Not recommended

REFERENCES: 36

25

Page 33: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.5

General relative radiation effects: Oil

These appreciations are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

SSSSSSSSSS:

sasssssss^.m

Aromatic alkyl

Ethers tx :: ::-x :x :x

Mineral oils |X XX-XX

Polyglycols 1 x i ^ ! ^ ^

Silicones |X

silicates t - - : ; - ; - : - : : ; : | 8 ^ ^ ^ l

Phosphates

Chlorofluorocarbons

Fluorinated compounds

^ ^ ^ : : : : : : : : ! : : : : x

S S S S S S ^ & £ £ £ £ £

r~ 104 106 107

1 10" 105

Gamma dose, Gy, in oxygen-free atmospheres

Damage

Incipient to mild

Utility Nearly always usable

tSgggSSaajl Mild to moderate Often satisfactory Moderate to severe Not recommended

REFERENCES : 36

26

Page 34: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.6

General relative radiation effects: Paint

These appreciations are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

Epoxy resins

Phenolics

Melamine-formaldehyde

Polyurethartes

Polyesters

Vinylchloride polymers

Silicone resins

Chlorosulphonated polyethylene

m

Polychloroprene rubber ( Neoprene) [_

Chlorinated rubber

Polymethyl methacrylate

Cellulose esters

3^^M s^ssss i ffl

ssssssBsasssa

;E^^S£££S^

mmmmm®

r~ 10 4 io6 105 107 n

10s

Gamma dose, Gy

Damage Utility

t^Xiv/X-'xl Incipient to mild Nearly always usable Mild to moderate Often satisfactory Moderate to severe Not recommended

>*SN*NSS

REFERENCES : 36, see also 28

27

Page 35: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.7

General relative radiation effects: Textile

These appreciations are taken from the references cited and can only serve as a general guideline.

Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

A. Natural fibres

Wool

Acetate

Silk

Cellulose fibre (Rayon)

Cotton

E j^^fiaaaasassssas^^ H H H H S S S S ^ ^ : ^ ^ ^

B. Synthetic fibres

Aromatic polyamide (Nomex) t :: :: :: :: :: :: :: :: :: :: :: :: :: :: :x ::^

Polyester (Dacron)

Polyacryl (Orion)

Polyvinylidene chloride (Saran, Dynel) I K ^ ^

Polyamide (Nylon)

:S^&mB3338888S8888S!

^ ^ " S S ^ ^ ^ ^ ^ S ^

wwsss^^s:^

1 10"

I I 103 104

Gamma dose, Gy

105 106 io7

Damage Utility

Incipient to mild Nearly always usable Mild to moderate Often satisfactory Moderate to severe Not recommended

S S N S Ï ^

R E F E R E N C E S : 36

28

Page 36: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.8

General relative radiation effects: Thermoplastic resin

These appreciations are taken from the references cited and can only serve as a general guideline.

Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

88^S3^:B88S3&W

ssasas; w.w.v .w.v .v .w.yw

Polystyrene teWy^WÏ+Wy^^

Acrylonitrile-butadiene-styrene ( ABS) | ;X : : : : : X : X : X : X : X : X : : : x;x : X : XX x ' x ï x ï S x ^ x t ^ s t S ^ ^ t S S S S S S J ^ ^ g l

Polyvinyl chloride (PVC) | :; :: :x :: :x :x :x :x :: :x-x-x :x-x :>x•x-x :: :Fggggg§§g

Polyethylene (PE) Yyyyyyy'yy-y-yy:-yyyy'-\'-yyy^yyy.'<

Polyvinyl formal Jx-x-xx-x-XyX-x-x x x :•

Polycarbonate j i ^ i ^ ^

Ethylene-propylene polyallomer F

Polyvinylidene chloride f/

Polychlorotrifluoroethylene (Kel-F) V

Polyvinyl butyral l ::v; ::v: :>: :: :: :: :; :: :: ::o: :; :: ::v:ï: :JS!S$^„,jjUuuuuJuuyUuuujuLiLLrvwwv«

t ^ ^

Polypropylene r x ^ X Ï i ï X Ï S x ï ^ x ï x ï x E S S S S S J

Polymethyl methacrylate U.

Polyamide (Nylon) [;:;X;X;.;.;X;X;X;X;X;X;X;X

PerfluOrOethylene-prOpylene(FEP) | : ;X-:;X;X;X;X;X;X;X;X;X;X;{^»^j

Teflon PTFE and FEP (Vacuum) [>

Polytetrafluoroethylene (Teflon PTFE)

ssssssss^s*^ SSSSSSS!^ : îS^^^^^S^«3S

SS8S8S8^^:W:W::ft¥xWftïw

sssssm ssssssmm&msmm. sm$m>xxttx*x<xxx>>>>m

: ^ ^ ^ ^ : : : : : : : : : : : :

103 102 10" 105 106 I07

10»

Gamma dose. Gv

Damage Utility

ly.'-y.-'.-y.-'.-'.-'A Incipient to mild Nearly always usable RSSiC'SSSSl Mild to moderate Often satisfactory

Moderate to severe Not recommended

REFERENCES: 36, 37,43

29

Page 37: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 5.9

General relative radiation effects: Thermosetting resin

These appreciations are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate

are not taken into consideration. See also Sections 2 and 3.

Phenolic, glass laminate

Phenolic, mineral filled

Phenolic, unfilled

Epoxy, glass laminate

Epoxy, aromatic-type curing agent

Polyurethane(PUR)

Polyester, glass filled

Polyester, mineral filled

Polyester, unfilled

Polyethylene terephthalate (Mylar)

Silicone, glass-filled

Silicone, mineral-filled

Silicone, unfilled

Melamine-formaldehyde

Urea-formaldehyde

Aniline-formaldehyde

E

3 • ,t i t ' t ' i i I ' I ' I i i l l t ' l ' i V i ' i l t f i t f J

mm ~wm®

i • T-i r i-'i

• •'• • • •', «§§S55?§S§S§$SS§51:>-:;^

$$S$$S$S^^:;:£^^

3^SK E^SK

smss isssms

SSSSSSS: : :« : :« :

m 'I!»

106

T " io 7

103 104 10!

Gamma dose, Gy

Damage Utility

t-:-:-::-:-:-:::l Incipient to mild Nearly always usable Mild to moderate Often satisfactory Moderate to severe Not recommended

Ï*WSXSS>

REFERENCES: 36, 37,43

30

Page 38: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 6

Classification of materials and components contained in this volume according to the dose range up to which they may typically be used.

Materials Upper dose limit inGy = 100 rad

Acrylic scintillator 10 2 - 10" Butyl rubber 5 X 10" Electronics components (active) 1 0 2 - 1 0 3

Optical fibre 10 -10 2

Perfluoro ethylene-propylene (FEP) 5 X 10"

Phenolic resin, unfilled 10" • * Polyacryl (Plexiglas) 10' • *

Polyamide (Nylon) 1 X 105

Polyester resin, unfilled 5 X 10" Silicone oil 5 X 105

Silicone rubber 5 X 105

Tenon (PTFE) 103

Viton 1-2 X 105 J

Araldite D (epoxy resin, cured at ambient temperature)

Chlorosulfonated PE (Hypalon.CSP)

Cross-linked PE(XLPE) Ethylene-acrylate rubber (EAR) Ethylene-propylene rubber (EPR) Ethylene vinyl acetate (EVA) Flamtrol (polyolefin) 1-2 X 106

Halar(CTFE) Hytrel (PETP copolymer) Lupolen (PE) Polychloroprene (Neoprene) Polyolefin Polyvinyl chloride (PVC)

Materials Upper dose limit inGy = 100 rad

Araldite B (epoxy resin) Araldite F (epoxy resin) Epikote (epoxy resin) Epoxy Novolac Epoxy resin, aromatic hardener Glass-fibre reinforced EPR-hoses Mineral oil 1-2 X 107

Paints based on epoxy or polyurethane resins

Polyimide resin Special radiation resistant

lubricants Special radiation resistant motors

Cerium-doped glass Ryton (PPS) Inorganic filled resins: - Epoxy, aromatic hardener - Phenolic 1 X 108

- Polyester - Polyimide - Polyurethane - Silicone

Aluminium oxide Magnesium oxide Magnetic materials Metals > 10* Mica Glass fibre Quartz

*) Use of these materials in radiation areas is not recommended or to be used with precautions.

31

Page 39: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

APPENDIX 7 APPENDICE 7

Detailed description of data entry sheets Description détaillée des feuilles de données

The data entry sheets are designed to provide the

maximum information for a given item, as far as this is

available, with only the minimum use of abbreviations

and symbols, and to be largely self-explanatory (see

also Section 3 of the text). In the following list, some indi­

cations are given regarding the layout of the different

entries, especially to help understand small differences

in the presentation of the data. The list of comments

below refers to the corresponding circled numbers on the

sample data sheet reproduced on the opposite page. It

should be understood that all indications mentioned in

these comments are subject to exceptions, especially in

cases where the appropriate information was not avail­

able.

1 The alphabetic position of the keyword.

2 The keyword grouping a class of items by their usual application. This does not mean that all items under one keyword are equivalent for a given application, but that they share a characteristic property.

3 The dominant component among the base materials, or the most radiation-sensitive component. In the case of composite materials, more than one material is some­times given. See 7 for a complete description of the base materials composing the tested item.

4 The type identification of the material as given by the supplier. In some cases the trade name of a characteris­tic material component is added after a semicolon. A dash indicates that the supplier was not contacted.

5 The name, given in a shortened form (see Appendix 3 for more details), is normally that of the supplier of the finished, tested product. However, it should be noted that this supplier is not always the same as the firm produc­ing the base products. A dash indicates that the supplier was not contacted. See also 7.

6 Identification number given by the authors to the tested materials. The integer part of the first number represents the identification of a group of items, which have been tested by the same method, or which simply belong to a group of different items used together in an apparatus. The fractional part identifies the single item described. The year when the test was carried out is added as gene­ral information.

7 A description of the item and its intended application, together with details of composition as far as is known. Trade names of materials are added in brackets in some cases.

8 Application at CERN: if known to us, details are given here. If an application was only proposed but not real­ized, this is mentioned under 7.

9 Irradiation conditions. In case of reactor irradiation, the exact irradiation position together with the approximate gamma dose rate is given. More details can be found in Table 1 and Ref. 7. The contribution to the dose by other components of the complex reactor irradiation is usually less than 5%. However, if the materials are especially sensitive to particle irradiation, as with crystals or metals, the fluence of fast neutrons is given instead of the dose. For the accelerator irradiations, the position

Les feuilles de données ont été préparées de façon

qu'un maximum d'informations, dans la mesure où elles

sont disponibles, soient présentées en utilisant un mini­

mum de symboles et d'abréviations, et que ceux-ci

soient suffisamment clairs (voir aussi la section 3 du

texte). Quelques indications sont données dans la liste

suivante, concernant le schéma des pages de données

pour les divers matériaux, pour faciliter en particulier

l'interprétation des petites différences dans la présenta­

tion des données sur des matériaux comparables. Cette

liste fait référence aux numéros entourés d'un cercle sur

la feuille de données servant d'exemple à la page

ci-contre. Il va sans dire que toutes les indications don­

nées ici souffrent des exceptions, surtout si l'informa­

tion appropriée n'a pas été disponible.

1 Position du mot-clé dans l'alphabet.

2 Mot-clé pour un ensemble de matériaux groupés par application. Ceci ne signifie pas que tous les matériaux soient équivalents pour une application donnée, mais qu'ils ont en commun une propriété caractéristique.

3 Composition des matières de base ou composant le plus sensible aux radiations. Pour les matériaux composés, plusieurs matières sont parfois citées. Voir sous 7 la liste complète des matières de base qui constituent le matériau examiné.

4 Dénomination du type, donnée par le fournisseur de ce matériau. Dans quelques cas, le nom de marque d'une matière caractéristique est ajouté après un point-virgule. Un tiret signifie que le fournisseur n'a pas été contacté.

5 L'abréviation du nom du fournisseur (voii Appendice 3 pour le détail), qui est normalement le fournisseur du produit final testé. A noter que ce fournisseur n'est pas toujours celui qui a fourni les produits de base. Un tiret signifie que le fournisseur n'a pas été contacté. Voir aussi 7.

6 Numéro d'identification des matériaux testés, donné par les auteurs. La partie entière du premier nombre repré­sente l'identification d'un groupe de matériaux qui soit ont été testés d'après la même méthode, soit constituent un groupe de matériaux divers utilisés pour le même appareillage. La partie fractionnelle donne l'identifica­tion de la pièce concernée. L'année pendant laquelle l'es­sai a été effectué est rajoutée pour information.

7 Description de l'objet, et son application prévue. Elles sont données ensemble, avec le détail de la composition de l'objet, si elle est connue. Le nom de marque est rajou­té dans certains cas entre parenthèses.

8 Application au CERN: si nous la connaissons, les détails en sont donnés ici. Si une application a été propo­sée mais pas réalisée ceci sera mentionné sous 7.

9 Conditions d'irradiation. Dans le cas d'une irradiation dans le réacteur nucléaire, la position exacte de l'irradia­tion est donnée, avec le débit de dose gamma approxi­matif. Pour plus de détails, voir tableau 1 et réf. 7. La contribution à la dose par d'autres composants du champ de rayonnement dans le réacteur est en général en dessous de 5%. Toutefois si les matériaux sont spéciale­ment sensibles à l'irradiation par des particules, comme

32

Page 40: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE BASE MATERIAL: Polyamide/mica/paper, rubber adhesive

TYPE: 6610;Nomex (yj\

SUPPLIER: CMC

IDENTIFICATION: 102.5-1974

150

100

r/f(0) l%l

50

10'

© SYMBOL PROPERTY

force to take off

INITIAL VALUES

4.3 N/25 mm

S

A© ADHESIVE TAPE 0

3 ) BASE MATERIAL: Polyamide/mica/paper, rubber adhesive

4 ) TYPE: 6610;Nomex

5 ) SUPPLIER: CMC

IDENTIFICATION: 102.5 1974

DESCRIPTION OF MATERIAL: Self-adhesive film for insulation purposes. Film material: polyamide reinforced paper with mica (Nomex). Adhesive: synthetic rubber, thermosetting.

8 ) APPLICATION AT CERN:

© ®

©

IRRADIATION CONDITIONS: Type: Doses:

Reactor ASTRA, position EI in air, dose rate 30 Gy/s 5 X 10 5, 1 X 10 6, 5 X I0 6 , 1 X 10 'Gy

METHODS OF TESTING: Pieces of film (115 X 25 mm), stuck to an aluminium support of the same dimensions without heat treat­ment, were irradiated, after which the film was peeled off at a constant rate of 50 mm/min. The bending radius was fixed by a roller of 10 mm diameter and the mean force measured by a tensile testing machine.

RESULTS: Before irradiation, the peeling-off force was 4.3 N for a width of 25 mm. After irradiation, the force decreased but remained effective up to 5 X 106 Gy. At 1 X 10 1 Gy, the rubber no longer stuck to the film; instead, it adhered to the metal. The colour darkened with the dose.

Remarks:

( Î 2 ) REFERENCES: 18

M 3 j APPRECIATION: See Appendix 7

16) © (jg no test

10' 102 10' 104 105 I06 10 7 108

Dose (Gy)-<

Page 41: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

code refers to Table 1, where the characteristics of the radiation field are given; in most cases the dose as measured with our dosimeters will be sufficient for the interpretation of data.

10 The methods of testing are described. If no number of a standard covering this test is given, this means that we modified a standard test to fit our needs (see point 12 for more details). When comparing the test results of simi­lar items, it is important that the integer part of the iden­tification number (see 6) be the same, otherwise the test­ing method may have been different.

11 The results obtained are briefly described, bearing in mind the methods of testing 10 and the irradiation con­ditions and doses 9. In some cases, a cross-reference is cited under "Remarks", where data relating to similar materials can be found. This information together with the test results was used for the appreciation 13.

12 The number(s) given refer(s) to the list of references at the end of the introductory text (page 8).

13 In this appreciation, we give warning if the material is especially radiation sensitive, and show a scale where the ranges of different degrees of degradation are marked: blank — "no damage"; hatched 14 — "moderate damage"; black 15—"severe damage". If in the range considered the material is probably susceptible to damage but no test was performed, this region is marked "no test" 16. If the appreciation refers to standard mechanical properties, this is stated explicitly, in which case the beginning of 14 marks a change of 25% and of 15 of 50% of the most sensitive property (flexion test: flexural strength, tensile tests: elongation at break). Otherwise we judged the test results in relation to the intended application.

17 If the test results justify a representation in a graph, or if other additional information is given, there will be a repetition of positions 1 to 6 on the left-hand page. Otherwise, this page is left blank.

18 If there is a graph of irradiation test results, please pay attention to the scales. The abscissa may be linear or logarithmic, and the numbers on the ordinate, which nor­mally are percentage values normalized to the unirra­diated value given under 20, may sometimes give a loga­rithmic measure of this value (see 19). The graph can also be replaced by a table.

19 Identification of plotted symbols and measured func­tions. The initial values are given, and sometimes an indication of the estimated error of measurement, if available. The lines are intended only as a guide to the eye. If one of the symbols relates to a special interpreta­tion of the scale, this is stated.

par exemple les cristaux ou les métaux, la fluence de neu­trons est donnée au lieu de la dose absorbée. Pour les irradiations dans les accélérateurs, le code de position se référé au tableau 1, où la caractéristique du champ de rayonnement est donnée; dans la plupart des cas, la lec­ture des mesures de nos dosimètres sera suffisante pour l'interprétation des données.

10 Méthodes d'essais. Si l'on ne donne pas de numéro de norme pour un essai, cela signifie que les normes ont été modifiées pour satisfaire nos besoins (voir point 12 pour plus de détails). Si l'on compare les résultats d'essais de produits similaires, il est important de vérifier que le numéro d'identification (voir 6) est le même, sinon la méthode d'essai a pu être différente.

11 Les résultats obtenus sont brièvement décrits en tenant compte de la méthode utilisée pour les essais (voir 10) et des conditions d'irradiation et des doses (voir 9). Dans certains cas, une référence est citée sous "Remarks", où des résultats similaires peuvent être trouvés. Cette infor­mation a été utilisée, avec les résultats de nos essais, pour l'appréciation donnée sous 13.

12 Le(s) numéros(s) renvoie(nt) à la liste de références don­née à la fin du texte d'introduction (voir page 8).

13 Dans cette appréciation, nous donnons un avertisse­ment si le matériau est particulièrement sensible aux rayonnements; nous montrons une échelle où les diffé­rents degrés de dégradation sont indiqués: blanc — "pas de dommage"; hachuré 14 —"dommage léger"; noir 15 — "dommage sévère". Si dans la gamme considérée le matériau est susceptible d'être endommagé mais qu'au­cun essai n'a été effectué, cette région 16 sera marquée "no test" (pas d'essais). Dans le cas où l'appréciation se réfère aux essais mécaniques standard, ceci sera men­tionné explicitement; dans ce cas, le début de 14 indique un changement de 25% et le début de 15 un changement de 50% de la propriété la plus sensible (essais de flexion: résistance à la flexion; essais de traction: allongement à la rupture). Dans les autres cas, nous avons jugé les ré­sultats d'essais en relation avec l'application prévue.

17 Dans le cas où les résultats d'essais justifient la présen­tation d'un graphique ou d'une information complémen­taire, les positions 1 à 6 seront reproduites sur la page opposée. Dans le cas contraire, cette page restera blanche.

18 Dans le cas où il y a un graphique des résultats d'irra­diation, veuillez tenir compte des échelles: les abscisses peuvent être linéaires ou logarithmiques. Pour l'ordon­née, nous donnons en général les valeurs en pourcentage de dégradation, normalisées à la valeur "non irradié" donnée sous 20. Dans certains cas, l'ordonnée peut aussi représenter la dégradation des propriétés mesu­rées sur échelle logarithmique (voir 19).

19 Identification des symboles utilisés dans le graphique et des propriétés mesurées. On donne la valeur initiale, et quelquefois l'erreur de mesure estimée, si disponible. Les lignes qui relient les points de mesure sont le plus souvent tracées simplement comme guide. Dans le cas où l'un des symboles se réfère à une interprétation spé­ciale de l'échelle, ceci est mentionné ici.

34

Page 42: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

ALPHABETICAL COMPILATION OF DATA

Entries and cross-references

Acrylic resin see Paint see Scintillator

Acrylonitrile-butadiene rubber (NBR) see Seal

ADHESIVE TAPE Plastic display foil Polyamide/mica paper, rubber adhesive Polyamide paper, rubber adhesive Polyethylene terephthaiate (PETP), rubber adhesive Polyhydantoin, resin adhesive Polyimide, resin adhesive see also Insulating tape

Aluminium oxide see Ceramic

Araldite, trade name of Ciba-Geigy Epoxy resin, see Thermosetting resin

Asbestos cement see Ceramic

Askarel Chlorinated oil, see Insulating oil

Page 43: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A Materials listed in General Tables in Appendix 5

Acetate see Textile, p. 28

Acetone see G-value, p. 23

Acrylic rubber see Elastomer, p. 22

Acrylonitrile rubber see Elastomer, p. 22

Acrylonitrile-butadiene rubber see Hose, p. 25

Acrylonitrile-butadiene-styrene(ABS) see Thermoplastic resin, p. 29

Alkyl aromatics see Oil, p. 26

Aniline-formaldehyde see Thermosetting resin, p. 30

Aromatic polyamide see Textile, p. 28

37

Page 44: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE

BASE MATERIAL: Plastic display foil

TYPE: Scotchcal

SUPPLIER: Labitzke

IDENTIFICATION: 104-1975

DESCRIPTION OF MATERIAL: Self-adhesive warning sign with black letters on a yellow background, dimensions 300 X 100 mm2, made of Scotchcal

APPLICATION AT CERN: Warning signs used for various purposes in radiation areas

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position El in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Samples of dimensions 115 X 20 mm2, stuck to an aluminium sheet, were irradiated and afterwards examined qualitatively.

RESULTS: At 5 X 105 Gy, no changes were observed. At 106 Gy, the yellow background coloration became greenish. No change in contrast or adhesion. At 5 X 106 Gy, the background coloration was greenish, bubbles of 5-10 mm diameter had formed between the plastic foil and the support, and it was easy to scratch off the foil. Corrosion of the aluminium support began under the bubbles.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (Gy)-.

106 107 10s

39

Page 45: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE BASE MATERIAL: Polyamide/mica paper, rubber adhesive

TYPE: 6610;Nomex

SUPPLIER: CMC

IDENTIFICATION: 102.5-1974

f/f(0)

Dose[Gy]

SYMBOL PROPERTY

force to take off

INITIAL VALUES

4.3 N/25 mm

40

Page 46: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE

BASE MATERIAL: Polyamide/mica paper, rubber adhesive

TYPE: 6610;Nomex

SUPPLIER: CMC

IDENTIFICATION: 102.5-1974

DESCRIPTION OF MATERIAL: Self-adhesive film for insulation purposes. Film material: aromatic polyamide paper with mica(Nomex). Adhesive: synthetic rubber, thermosetting.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 106, 1 X 107 Gy

METHODS OF TESTING: Pieces of film (115 X 25 mm), stuck to an aluminium support of the same dimensions without heat treat­ment, were irradiated, after which the film was peeled off at a constant rate of 50 mm/min. The bending radius was fixed by a roller of 10 mm diameter and the mean force measured by a tensile testing machine.

RESULTS: Before irradiation, the peeling-off force was 4.3 N for a width of 25 mm. After irradiation, the force decreased but remained effective up to 5 X 106 Gy. At 1 X 107 Gy, the rubber no longer stuck to the film; instead, it adhered to the metal. The colour darkened with the dose.

Remarks:

REFERENCES: 18

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (Gy)-»

106 107 108

41

Page 47: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE BASE MATERIAL: Polyamide paper, rubber adhesive

TYPE: 6510;Nomex

SUPPLIER: CMC

IDENTIFICATION: 102.6-1974

f/f(0) [%]

DoselGyl

SYMBOL PROPERTY

force to take off

INITIAL VALUES

23 N/25 mm

42

Page 48: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE

BASE MATERIAL: Polyamide paper, rubber adhesive

TYPE: 6510;Nomex

SUPPLIER: CMC

IDENTIFICATION: 102.6-1974

DESCRIPTION OF MATERIAL: Self-adhesive film for insulation purposes. Film material: aromatic polyamide paper (Nomex). Adhesive: synthetic rubber, thermosetting.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 106, 1 X 107 Gy

METHODS OF TESTING: Pieces of film (115 X 25 mm), stuck to an aluminium support of the same dimensions without heat treat­ment, were irradiated, after which the film was peeled off at a constant rate of 50 mm/min. The bending radius was fixed by a roller of 10 mm diameter and the mean force measured by a tensile testing machine.

RESULTS: Before irradiation, the peeling-off force was 23 N for a width of 25 mm. After irradiation, the force remained comparatively high up to 5 X 106Gy (23%), but at 107 Gy the gum no longer stuck to the metal. The colour darkened with the dose.

Remarks:

REFERENCES: 18

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (Gy)-i

106 107 108

43

Page 49: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE BASE MATERIAL: Polyethylene terephthalate (PETP), rubber adhesive

TYPE: 1050; Mylar

SUPPLIER: CMC

IDENTIFICATION: 102.4-1974

300

200

f/f(0) [%1

SYMBOL PROPERTY

force to take off

INITIAL VALUES

8.6 N/25 mm

44

Page 50: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE

BASE MATERIAL: Polyethylene terephthalate (PETP), rubber adhesive

TYPE: 1050; Mylar

SUPPLIER: CMC

IDENTIFICATION: 102.4-1974

DESCRIPTION OF MATERIAL: Self-adhesive film for insulation purposes. Film material: polyethylene terephthalate (Mylar). Adhesive: synthetic rubber, thermosetting.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 106, 1 X 10 7Gy

METHODS OF TESTING: Pieces of film (115 X 25 mm), stuck to an aluminium support of the same dimensions without heat treat­ment, were irradiated, after which the film was peeled off at a constant rate of 50 mm/min. The bending radius was fixed by a roller of 10 mm diameter and the mean force measured by a tensile testing machine.

RESULTS: Before irradiation, the peeling-off force was 8.6 N for a width of 25 mm. After irradiation, the force reached 150% at 5 X 105 and 1 X 106 Gy. At the higher doses, the base mate­rial (Mylar) was too brittle to carry out this test, but the film still stuck to the support. There was no change in the colour.

Remarks: For irradiation to higher doses, see also Insulating tape

REFERENCES: 18

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (Gy)-n

106 107 108

45

Page 51: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE BASE MATERIAL: Polyhydantoin. resin adhesive

TYPE: 6210;Resistofol

SUPPLIER: CMC

IDENTIFICATION: 102.1-1974

f/f(0) [%l

Dose[Gy

SYMBOL PROPERTY

force to take off

INITIAL VALUES

8.3 N/25 mm

46

Page 52: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

ADHESIVE TAPE BASE MATERIAL: Polyhydantoin, resin adhesive

TYPE: 6210; Resistofol

SUPPLIER: CMC

IDENTIFICATION: 102.1-1974

DESCRIPTION OF MATERIAL: Self-adhesive film for insulation purposes. Film material: polyhydantoin (Resistofol). Adhesive: resin type, thermosetting.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 106, 1 X 10 7Gy

METHODS OF TESTING: Pieces of film (115 X 25 mm), stuck to an aluminium support of the same dimensions without heat treat­ment, were irradiated, after which the film was peeled off at a constant rate of 50 mm/min. The bending radius was fixed by a roller of 10 mm diameter and the mean force measured by a tensile testing machine.

RESULTS: Before irradiation, the peeling-off force was 8.3 N for a width of 25 mm. After irradiation, the film remained flexible until 1 X 107 Gy, but the peeling-off force decreased, reaching less than 1% of the initial value at this dose. The colour darkened with the dose.

Remarks:

REFERENCES: 18

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (Gy)-i

106 107 108

47

Page 53: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE BASE MATERIAL: Polyimide. resin adhesive

TYPE: 7010;Kapton

SUPPLIER: CMC

IDENTIFICATION: 102.2-1974

150,

100

f/f(0) [%l

50

104 105 106

DoselGyl

\ «

107

SYMBOL PROPERTY

force to take off

INITIAL VALUES

5.6 N/25 mm

48

Page 54: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE

BASE MATERIAL: Polyimide, resin adhesive

TYPE: 7010;Kapton

SUPPLIER: CMC

IDENTIFICATION: 102.2-1974

DESCRIPTION OF MATERIAL: Self-adhesive film for insulation purposes. Film material: polyimide (Kapton). Adhesive: resin type, thermosetting.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 106, 1 X 10 7Gy

METHODS OF TESTING: Pieces of film (115 X 25 mm), stuck to an aluminium support of the same dimensions without heat treat­ment, were irradiated, after which the film was peeled off at a constant rate of 50 mm/min. The bending radius was fixed by a roller of 10 mm diameter and the mean force measured by a tensile testing machine.

RESULTS: Before irradiation, the peeling-off force was 5.6 N for a width of 25 mm. After irradiation, the film remained flexible and even retained 45% of its initial adhesive strength at 1 X 107 Gy. However, after this dose, it could not be restuck to the metal. Slight darkening of the colour.

Remarks: At 5 X 107 and 1 X 108 Gy thin films remained flexible, but broke under relatively small tensile force.

REFERENCES: 18

APPRECIATION : See Appendix 7

1 I 1 HI no test 10' 102 103 104 105 106 107 10'

Dose (Gy)-+

49

Page 55: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE BASE MATERIAL: Polyimide, resin adhesive

TYPE: KaptonT

SUPPLIER: CMC

IDENTIFICATION: 102.3-1974

300

200 —

f/f(0) [%1

DoselGyl

SYMBOL PROPERTY

force to take off

INITIAL VALUES

4.3 N/25 mm

50

Page 56: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

A ADHESIVE TAPE

BASE MATERIAL: Polyimide, resin adhesive

TYPE: KaptonT

SUPPLIER: CMC

IDENTIFICATION: 102.3-1974

DESCRIPTION OF MATERIAL: Self-adhesive film for insulation purposes. Film material: polyimide (Kapton T). Adhesive: resin type.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 106, 1 X 10 7Gy

METHODS OF TESTING: Pieces of film (115 X 25 mm), stuck to an aluminium support of the same dimensions, were irradiated, after which the film was peeled off at a constant rate of 50 mm/min. The bending radius was fixed by a rol­ler of 10 mm diameter and the mean force measured by a tensile testing machine.

RESULTS: Before irradiation, the peeling-off force was 4.3 N for a width of 25 mm. After irradiation, the force increased to about 170% at 106 Gy, but then fell off very rapidly to less than 20%at l0 7 Gy. Slight darkening of the colour.

Remarks:

REFERENCES: 18

APPRECIATION : See Appendix 7

101 102 103 104 105 106 107 108

Dose (Gy)-»

51

Page 57: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

Buna, trade name of Chemische Werke Hiils AG Synthetic rubber, see Vacuum gasket

Materials listed in General Tables in Appendix 5

Benzene see G-value, p. 23

Bromoform see G-value, p. 23

Butyl rubber see Cable insulation, p. 21 see Elastomer, p. 22 see Hose, p. 25

Page 58: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

CABLE INSULATION Table of general relative radiation effects in Appendix 5 Chloroprene rubber (Neoprene) Ethylene-propylene rubber (EPR) Polyethylene (PE) Polyethylene, cross-linked (XLPE) Polyvinylchloride(PVC) Silicone rubber

CABLE TIE Ethylene-tetrafluoroethylene (ETFE) copolymer Polyamide Polybutylene terephthalate (PBTP) Polyethylene (PE)

CERAMIC Aluminium oxide Asbestos cement Quartz

Cerium doped glass see Glass

CONNECTOR Polyphenylene oxide (PPO) Polyphenylene sulfide (PPS)

COPPER WIRE ETP-Copper(ETP-Cu) OFHC-Copper (OFHC-Cu)

Page 59: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c Materials listed in General Tables in Appendix 5

Carbon tetrachloride see G-value, p. 23

Cellulose esters see Paint, p. 27

Cellulose fibre see Textile, p. 28

Cellulose acetate see Thermoplastic resin, p. 29

Chlorinated rubber see Paint, p. 27

Chlorobenzene see G-value, p. 23

Chlorofluorocarbon oil see Oil, p. 26

Chloroform see G-value, p. 23

Chloroprene rubber (Neoprene) see Cable insulation, p. 21 see Elastomer, p. 22 see G-value, p. 24 see Hose, p. 25 see Paint, p. 27

Chlorosulfonated polyethylene (CSP) see Cable insulation, p. 21 see Elastomer, p. 22 see Paint, p. 27

Cotton see Textile, p. 28

Page 60: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE INSULATION BASE MATERIAL: Chloroprene rubber (Neoprene)

TYPE: C1

SUPPLIER: CERCEM

IDENTIFICATION: 171.2-1974

DESCRIPTION OF MATERIAL: Cable for power supply of 1 kW electric motor, insulated with chloroprene rubber (Neoprene)

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 106Gy

METHODS OF TESTING: Coiling test, winding ten turns on a core four times the diameter of the cable (Swiss Std. VSM 23708); searching for defects with a magnifying glass. Bending test, counting the number of 360° backward and forward bends, until damage occurs (Swiss Std. VSM 23780).

RESULTS: Neither the coiling test nor the bending test ( 10 bends) revealed any defect after 106 Gy. No change in colour.

Remarks: See also Part I (Ref. 1) for results of tests on similar materials

REFERENCES: 19

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

no i est 101 102 103 104 105

Dose (Gy)-i

106 107 108

59

Page 61: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE INSULATION BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: 940

SUPPLIER: SILEC

IDENTIFICATION: C 343-1977

10-i

( MPa ) ® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

• - Ï - ; . -

: !

r t . ::-:z: f :::::::•:

3< 13 MATERIAL: EPR

TYPE: INSULATOR 940

SUPPLIER: SILEC

(%)

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

• - Ï - ; . -

: !

r t . ::-:z: f :::::::•:

3< 13 MATERIAL: EPR

TYPE: INSULATOR 940

SUPPLIER: SILEC

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

• - Ï - ; . -

: !

r t . ::-:z: f :::::::•:

X

3< 13 MATERIAL: EPR

TYPE: INSULATOR 940

SUPPLIER: SILEC

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

—!-:::}-._

• - Ï - ; . -

: !

r t . ::-:z: f :::::::•:

X 1 —

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

* r t . ::-:z: f :::::::•:

... ! . . j

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

— - * r t . ::-:z: f :::::::•:

\ — - H

H

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

"_._,-......: i f

r t . ::-:z: f :::::::•:

\ — - H

H

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

"J ' _——. -

4--

r t . ::-:z: f :::::::•:

- - , - 5 H

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

i 1 • ; • • • ...

4--

r t . ::-:z: f :::::::•:

- - , - 5

I

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

4--

I

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

4--

I

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

I

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

"^m

I

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

: r* ! — - * S

I

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

— ._ • 1 I

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

— ._ I

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

INITIAL VALUE

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -! ...

- • • • ! . -......

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

9.3 MPa

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

...L. ... ........

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

634 %

® \>

® 2 -

10? s -6 -

4 -

2

1 0 i 8 -

6

4 -

2 -

...L. ... ........

Remarks:

- * - ! • •

H-j t

l-l. -f

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness 1 7 Shore D

( , ^ i 5 10 6 5 10 Oxygen index 19.5

ABSORBED DOSE (Gy)

60

Page 62: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE INSULATION

BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: 940

SUPPLIER: SILEC

IDENTIFICATION: C 343-1977

DESCRIPTION OF MATERIAL: Moulded plates, 2 mm thick. Material used for 1 kV d.c. power cables

APPLICATION AT CERN: Power cable available in CERN stores, SCEM No. 04.08.61.994.1

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Standard tensile tests on samples of shape-type 2 (ISO/R 527-1966)

RESULTS: At 1 X 106 Gy the elongation at break was reduced by a factor of 2 but was still well above the value of 100%, which has been adopted as the end-point criterion of the useful working range at CERN. The end-point criterion of IEC 544 (50% of initial value) was reached at 8 X 105 Gy.

Remarks: Example taken from a number of equivalent materials contained in Part I (Ref. 1)

REFERENCES: 1

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105 106 107 108

Dose (Gy)->

61

Page 63: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE INSULATION BASE MATERIAL: Polyethylene (PE)

TYPE: Lupolen 1812 DXSK

SUPPLIER: Felten& Guillaume

IDENTIFICATION: C 206-1973

< MPa ) (ff

1r^r 5 rfi 5 10 7

ABSORBED DOSE (Gy)

MATERIAL: PE

TYPE: LUPOLEN 1812 DXSK

SUPPLIER: FELTEN 8 GUILLAUME

Remarks:

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

Oxygen index

INITIAL VALUE

17-8 MPa

682 %

55 Shore D

17.8

62

Page 64: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE INSULATION BASE MATERIAL: Polyethylene (PE)

TYPE: Lupolen 1812 DXSK

SUPPLIER: Felten &Guillaume

IDENTIFICATION: C 206-1973

DESCRIPTION OF MATERIAL: Moulded plates, 2 mm thick. Material used as insulation for power cables

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Standard tensile tests on samples of shape-type 2 (ISO/R 527-1966).

RESULTS: At 1 X 10* Gy the elongation at break was reduced by a factor of 6 and has reached the value of 100%, which has been adopted as the end-point criterion of the useful working range at CERN. The end-point criterion of IEC 544 (50% of initial value) was reached at 4 X 105 Gy.

Remarks: Example taken from a number of equivalent materials contained in Part I (Ref. 1)

REFERENCES: 1

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)->

106 107 108

63

Page 65: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE INSULATION BASE MATERIAL: Polyethylene, cross-linked (XLPE)

TYPE: Unknown

SUPPLIER: BICC

IDENTIFICATION: C 320-1976

MATERIAL: XLPE

TYPE: INSULATOR

SUPPLIER: BICC

Remarks:

WE P R O P E R T Y INITIAL VALUE

R Tensile strength 20.8 M Pa

E Elong. at break 450 % H Hardness 39 Shore D

Oxygen index 19.0

64

Page 66: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE INSULATION BASE MATERIAL: Polyethylene, cross-linked (XLPE)

TYPE: Unknown

SUPPLIER: BICC

IDENTIFICATION: C 320-1976

DESCRIPTION OF MATERIAL: Moulded plates, 1.5 mm thick. The material was proposed for the insulation of low-voltage power cables

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Standard tensile tests on samples of shape-type 2 (ISO/R 527-1966)

RESULTS: At 8 X 105 Gy the elongation at break was reduced by a factor of 2, and at 2 X 106 Gy it reached the value of 100%, which has been adopted as the end-point criterion of the useful working range at CERN. The end-point criterion of IEC 544 (50% of initial value) was reached at 8 X 105 Gy.

Remarks: Example taken from a number of equivalent materials contained in Part I (Ref. 1)

REFERENCES: 1

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-H

106 107 10*

65

Page 67: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE INSULATION

BASE MATERIAL: Polyethylene, cross-linked (XLPE)

TYPE: C2

SUPPLIER: CERCEM

IDENTIFICATION: 171.3-1974

DESCRIPTION OF MATERIAL: Cable for power supply of 1 kW electric motor, insulated with chemically cross-linked polyethylene (XLPE)

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 106Gy

METHODS OF TESTING: Coiling test, winding ten turns on a core four times the diameter of the cable, and searching for defects with a magnifying glass (Swiss Std. VSM 23708). Bending test, counting the number of 360° backward and forward bends until damage occurs (Swiss Std. VSM 23780).

RESULTS: Neither the coiling test nor the bending test (10 bends) revealed any defect after 106 Gy. No change in colour.

Remarks: See also previous entry and Part I (Ref. 1) for results of tests on similar materials

REFERENCES: 19

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

[4— no ^est —y\ 101 102 103 104 105 106 107

Dose (Gy)->

10'

67

Page 68: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE INSULATION BASE MATERIAL: Polyvinyl chloride (PVC)

TYPE: S 34

SUPPLIER: Felten& Guillaume

IDENTIFICATION: C 204-1974

MATERIAL: PVC

TYPE: WITHOUT FILLER, S34

SUPPLIER: FELTEN S GUILLAUME

Remarks:

CURVE P R O P E R T Y

R Tensile strength

E Elong. at break

H Hardness

Oxygen index

INITIAL VALUE

14.8 fc?a

256 %

« Shore D

ABSORBED DOSE (Gy)

68

Page 69: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE INSULATION

BASE MATERIAL: Polyvinyl chloride (PVC)

TYPE: S 34

SUPPLIER: Felten & Guillaume

IDENTIFICATION : C 204-19 74

DESCRIPTION OF MATERIAL: Moulded plates, 2 mm thick

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 106 Gy

METHODS OF TESTING: Standard tensile tests on samples of shape-type 2 (ISO/R 527-1966)

RESULTS: At 1 X 106 Gy the elongation at break was reduced by a factor of 2 but was still well above the value of 100%, which has been adopted as the end-point criterion of the useful working range at CERN. The end-point criterion of IEC 544 (50% of the initial value) w?.s reached at 8 X 105 Gy. Because of the considerable amount of corrosive hydrochloric acid (HCl) vapours released at high irradiation levels as well as during a possible fire, the use of this material is no longer recommended.

Remarks: Example taken from a number of equivalent materials contained in Part I (Ref. 1)

REFERENCES: 1

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

10' 102 103 10" 105

Dose (Gy)-i

106 107 108

69

Page 70: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE INSULATION BASE MATERIAL: Silicone rubber

TYPE: SR 1

SUPPLIER: Draka

IDENTIFICATION: C 134-1973

M A T E R I A L : SILICONE RUBBER

TYPE: SRI

SUPPLIER: DRAKA

Remarks:

CURVE P R O P E R T Y

C Eton«.«t b m t

H H a r t — M

O * r 0 * n into*

INITIAL VALUE

8-5 MP.

637 %

Shore C,0

70

Page 71: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE INSULATION

BASE MATERIAL : Silicone rubber

TYPE: SR 1

SUPPLIER: Draka

IDENTIFICATION: C 134-1973

DESCRIPTION OF MATERIAL: Moulded plates, 2 mm thick

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type : Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 10s, 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Standard tensile tests on samples of shape-type 2 (ISO/R 527-1966)

RESULTS: At 5 X 105 Gy the elongation at break was reduced to 100%, which has been adopted as the end-point criterion of the useful working range at CERN. The end-point criterion of IEC 544 (50% of the initial value) was reached at 2 X 103 Gy. At 5 X 106 Gy, no tests were possible owing to brittleness.

Remarks: Example taken firom a number of equivalent materials contained in Part I (Ref. 1)

REFERENCES: 1

APPRECIATION: *** USE IN HIGH LEVEL RADIA TION AREAS NOT RECOMMENDED *** See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-i

106 107 108

71

Page 72: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE INSULATION BASE MATERIAL: Silicone rubber

TYPE: C3

SUPPLIER: CERCEM

IDENTIFICATION: 171.4-1974

DESCRIPTION OF MATERIAL: Cable for power supply of 1 kW electric motor, insulated with silicone rubber

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position El in air, dose rate 30 Gy/s Doses: 1 X 10 6Gy

METHODS OF TESTING: Coiling test, winding ten turns on a core four times the diameter of the cable, and searching for defects with a magnifying glass (Swiss Std. VSM 23708). Bending test, counting the number of 360° backward and forward bends until damage occurs (Swiss Std. VSM 23780).

RESULTS: Before irradiation, neither tests revealed any damage. After a dose of 1 X 10* Gy, the insulation broke everywhere when bending was attempted for both tests. No change in colour.

Remarks: See also previous entry and Part I (Ref. 1) for results using similar materials

REFERENCES: 19

APPRECIATION: *** USE IN HIGH LEVEL RADIA TIONAREAS NOT RECOMMENDED *** See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-i

106 107 108

73

Page 73: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE INSULATION BASE MATERIAL: Silicone rubber

TYPE: C4

SUPPLIER: CERCEM

IDENTIFICATION: 171.5-1974

DESCRIPTION OF MATERIAL: Cable for power supply of 1 kW electric motor, insulated with silicone rubber

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air. dose rate 30 Gy/s Doses: IX 106Gy

METHODS OF TESTING: Coiling test, winding ten turns on a core four times the diameter of the cable, and searching for defects with a magnifying glass (Swiss Std. VSM 23708). Bending test, counting the number of 360° backward and forward bends until damage occurs (Swiss Std. VSM 23780).

RESULTS: Before irradiation, no defects were detected with either test ( 10 bends for the bending test). After 1 X 106 Gy, the coiling test revealed one crack only, whereas in the bending test, one bend was suf­ficient to break the cable. No change in colour.

Remarks: See also previous entry and Part I (Ref. 1) for results of tests on similar materials

REFERENCES: 19

APPRECIATION: *** USE IN HIGH LEVEL RADIATION AREAS NOT RECOMMENDED*** See Appendix 7

Degradation of mechanical properties:

101 102 10-1 104 105

Dose (Gy)-

107 10s

75

Page 74: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE TIE BASE MATERIAL: Ethylene-tetrafluoroethylene (ETFE) copolymer

TYPE: KR 6118; Tefzel

SUPPLIER: Hellermann

IDENTIFICATION: 109.3-1974

DESCRIPTION OF MATERIAL: Cable ties made from ethylene-tetrafluoroethylene copolymer (Tefzel) to be used for 40 mm diameter cable bundles

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 106, 5X 10* Gy

METHODS OF TESTING: Bending tests around a 20 mm diameter core, counting the number of bends until breaking occurs. Straight samples and samples closed to 40 mm diameter were irradiated.

RESULTS: No tests were made before irradiation. After 1 X 106 Gy, 10 bends were made before breaking occurred. At 5 X 106 Gy, the material became very brittle and broke when bending was attempted; the closed samples broke when a slight pressure was applied. The colour changed from transparent to light yellow.

Remarks:

REFERENCES: 20

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

10' 102 103 104 105

Dose (Gy)-i

106 107 108

77

Page 75: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE TIE BASE MATERIAL: Ethylene-tetrafluoroethylene(ETFE) copolymer

TYPE: TY-RAP-.Tefzel

SUPPLIER: T&B

IDENTIFICATION: 106.2-1978

150

100 —

f/f(0) l%l

DoselGyl

SYMBOL PROPERTY

number of bends hardness

INITIAL VALUES

> 100 66 Shore D

78

Page 76: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE TIE

BASE MATERIAL: Ethylene-tetrafluoroethylene (ETFE) copolymer

TYPE: TY-RAP;Tefzel

SUPPLIER: T&B

IDENTIFICATION: 106.2-1978

DESCRIPTION OF MATERIAL: Cable ties made from ethylene-tetrafluoroethylene copolymer (Tefzel)

APPLICATION AT CERN: Securing of cables in the Super Proton Synchrotron LSS2, LSS6 and neutrino cave

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 106, 1 X 107 Gy

METHODS OF TESTING: Bending test, counting the number of 180° bends until breaking occurs. Shore hardness test.

RESULTS: Before irradiation, there was still no break in the cable tie after 100 bends. At 1 X 106 Gy, it broke after 20 bends. At 5 X 106 Gy, the material was unusable. The colour changed from initial light green to dark green at the highest dose.

Remarks: According to the manufacturer, the tensile strength is increased by irradiation up to 106 Gy.

REFERENCES:

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

10' 102 103 104 105

Dose (Gy)-)

10" 107 108

79

Page 77: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE TIE BASE MATERIAL: Polyamide

TYPE: -

SUPPLIER: -

IDENTIFICATION: 107-1975

f/f(0) [%]

DoselGyl

SYMBOL PROPERTY

number of bends

INITIAL VALUES

100

80

Page 78: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE TIE BASE MATERIAL: Polyamide

TYPE: -

SUPPLIER: -

IDENTIFICATION: 107-1975

DESCRIPTION OF MATERIAL: Cable ties made from white polyamide (Nylon), two rolled to 45 mm diameter, three normal straight

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Bending tests, counting the number of 360° bends around a 2-3 mm diameter core until breaking occurs

RESULTS: Before irradiation, 100 bends were needed to break the cable tie. At 1 X 10 6Gy, 40 bends were made before breaking occurred; and at 5 X 10 6Gy, it broke after 10 bends. Colour changed to yellow (after first two doses) and then to brown.

Remarks:

REFERENCES: 20

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

10' 102 103 104 105

Dose (Gy)-i

106 107 108

81

Page 79: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE BASE MATERIAL: Polybutylene terephthalate (PBTP)

TYPE: KR 4000

SUPPLIER: Hellermann

IDENTIFICATION: 108.2-1974

DESCRIPTION OF MATERIAL: Cable ties made from polybutylene terephthalate (PBTP); 68 kg

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate approx. 10 Gy/s Doses: 1 X 106Gy

METHODS OF TESTING: Bending tests around a 20 mm diameter core, counting the number of bends until breaking occurs. Straight samples and samples closed to 40 mm diameter were irradiated.

RESULTS: Before irradiation, there was still no break in the cable tie after 100 bends. At 1 X 106 Gy, it broke at 10 bends. Closed samples in good condition.

Remarks:

REFERENCES: 20

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-i

106 107 10

Page 80: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE TIE

BASE MATERIAL: Polyethylene (PE)

TYPE: KR6/10;Hostalen

SUPPLIER: Hellermann

IDENTIFICATION: 108.1-1974

DESCRIPTION OF MATERIAL: Cable ties made from low-pressure polyethylene (Hostalen); 35 kg

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type : Reactor ASTRA, switched off reactor position 3 5 in air, dose rate approx. 10 Gy/s Doses: 1 X 106 Gy

METHODS OF TESTING: Bending test around a 20 mm diameter core, counting the number of bends until breaking occurs. Straight samples and samples closed to 40 mm diameter were irradiated.

RESULTS: Before irradiation, there was still no break in the cable tie after 100 bends. At 1 X 106 Gy, about 50 bends were necessary before breaking occurred. Closed samples in good condi­tion. The colour remained unchanged.

Remarks:

REFERENCES: 20

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

IE nc test 10' io2 103 104 105

Dose (Gy)-i

106 107 10"

85

Page 81: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE TIE

BASE MATERIAL: Polyethylene (PE)

TYPE: -

SUPPLIER: -

IDENTIFICATION: 109.1-1974

DESCRIPTION OF MATERIAL: Cable ties made from polyethylene, to be used for 40 mm diameter cable bundles

APPLICATION AT CERN: Securing of wiring in termination racks

IRRADIATION CONDITIONS: Type : Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 10 6, 5X 106Gy

METHODS OF TESTING: Bending tests around a 20 mm diameter core, counting the number of bends until breaking occurs. Straight samples and samples closed to 40 mm diameter were irradiated.

RESULTS: Before irradiation, there was still no break in the cable tie after 100 bends. At 1 X 106 Gy, about 5 bends were made before breaking occurred; and after 5 X 106, it broke after two bends. Closed samples in good condition. The colour changed from white to light yellow and dark yellow.

Remarks:

REFERENCES: 20

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-*

106 107 108

87

Page 82: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CABLE TIE BASE MATERIAL: Polyethylene (PE)

TYPE: P 5206 S; Vestolene

SUPPLIER: Hellermann

IDENTIFICATION: 109.2-1974

DESCRIPTION OF MATERIAL: Cable ties made from polyethylene (Vestolene), to be used for 40 mm diameter cable bundles. Special fire-resistant type.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 1 0 6 , 5 X 10*Gy

METHODS OF TESTING: Bending tests around a 20 mm diameter core, counting the number of bends until breaking occurs. Straight samples and samples closed to 40 mm diameter were irradiated.

RESULTS: Before irradiation, there was still no break in the cable tie after 100 bends. Already at 1 X 106 Gy, breaking occurred before the first bend. The colour changed from light grey to brown. The curved samples were broken without application of special forces, either due to elastic stress alone or during handling.

Remarks: High induced remanent radioactivity.

REFERENCES: 20

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

OH 101 102 103 104 105

Dose (Gy)-i

106 107 108

89

Page 83: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CABLE TIE

BASE MATERIAL: Polyethylene (PE)

TYPE: D

SUPPLIER: Hellermann

IDENTIFICATION: 106.1-1978

DESCRIPTION OF MATERIAL: Cable ties made from a polyethylene derivative

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position El in air, dose rate 30 Gy/s Doses: 5 X 10\ 1 X 10 6, 5 X 106, 1 X 10 7Gy

METHODS OF TESTING: Bending test, counting the number of 180° bends until breaking occurs. Shore hardness test.

RESULTS: Before irradiation, there was still no break in the cable tie after 100 bends. Already after 5 X 105 Gy it broke at the first bend, becoming more and more brittle at the higher doses. Colour changed from transparent before irradiation, over light yellow at 5 X 105 Gy, to brown at 1 X 107 Gy. Shore hardness increased from 59 D at zero dose to 64 D at 5 X 105 Gy, and to 70 D and more at 1 X 10 6Gy and above.

Remarks:

REFERENCES:

APPRECIATION : *** USE INHIGH-LE VEL RADIA TION AREA S NOT RECOMMENDED *** See Appendix 7

Degradation of mechanical properties:

no tes 10' 102 103 104 105 106 107 108

Dose (Gy)->

91

Page 84: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CERAMIC

BASE MATERIAL: Aluminium oxide

TYPE: -

SUPPLIER: -

IDENTIFICATION: 112-1974

DESCRIPTION OF MATERIAL: Tubes of dimensions 75 X 2 X 17 0 and 50 X 2 X 12 0 (in mm) made from 99.5% pure A1 20 3 were used as substrate for resistive coating

APPLICATION AT CERN: With NiCr coating, used as dumping resistors in the SPS vacuum system in large quantities ( > 2000 pieces)

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 400 Gy/s Doses: 1 X 10 8Gy

METHODS OF TESTING: Visual inspection

RESULTS: No defects found

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

101 102 103 104 105 106 107 108

Dose (Gy)->

93

Page 85: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CERAMIC

BASE MATERIAL: Aluminium oxide

TYPE: Unknown

SUPPLIER: Unknown

IDENTIFICATION: 111.6-1973

DESCRIPTION OF MATERIAL: Aluminium oxide 99.5% (A1203), of dimension 8 0 X 90 (in mm)

APPLICATION AT CERN: General applications (available from CERN stores, SCEM No. 19.63.26.081)

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 300 Gy/s Doses: 5X 107, IX 10" Gy

METHODS OF TESTING: Three-point flexural test, similar to ISO 178

RESULTS: Flexural strength: 250 N/mm 2. Modulus of elasticity: 1 X 10 3N/mm 2. No changes after irradiation up to 1 X 10* Gy.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105 106 107 108

Dose (Gy)-»

95

Page 86: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CERAMIC

BASE MATERIAL: Asbestos cement

TYPE: -

SUPPLIER: -

IDENTIFICATION: 111.11-1973

DESCRIPTION OF MATERIAL: Asbestos and cement composite material

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 300 Gy/s Doses: 5X 107, 1 X 10 8Gy

METHODS OF TESTING: Three-point flexural test, similar to ISO 178

RESULTS: Flexural strength: 44 N/mm 2. Modulus of elasticity: 8 X 103 N/mm 2. At 1 X 108Gy : Flexural strength decreases by 25% and modulus of elasticity increases by 70%.

Remarks: Results probably influenced by irradiation in water

REFERENCES:

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105 106 107 108

Dose (Gy)-+

97

Page 87: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CERAMIC

BASE MATERIAL: Quartz

TYPE: -

SUPPLIER: -

IDENTIFICATION: 111.7-1973

DESCRIPTION OF MATERIAL: Vacuum fused high-purity quartz, of dimensions 5 0 X 80 (in mm)

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 300 Gy/s Doses: 5X 107, I X 10 8Gy

METHODS OF TESTING: Three-point fiexural test, similar to ISO 178

RESULTS: Flexural strength: 70N/mm 2. Modulus of elasticity: 4.7 X 10 4N/mm 2. No major changes due to irradiation up to 1 X 108Gy.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105 106 107 108

Dose (Gy)-»

99

Page 88: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c CONNECTOR

BASE MATERIAL: Polyphenylene oxide (PPO)

TYPE: - ; Noryl

SUPPLIER: -

IDENTIFICATION: 20.1-1975

DESCRIPTION OF MATERIAL: Inserts for BNC connectors, made from Noryl (polyphenylene oxide, PPO)

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate 10 Gy/s Doses: 1 X 106, 5 X 10s Gy

METHODS OF TESTING: Connection test

RESULTS: No damage observed

Remarks: According to data published in Ref. 37, this material is radiation-resistant up to 5 X 107 Gy

REFERENCES:

APPRECIATION : See Appendix 7

I I I I I I I 1 101 102 103 104 105 106 107 108

Dose (Gy)-*

101

Page 89: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

CONNECTOR BASE MATERIAL: Polyphenylene sulfide (PPS)

TYPE: -; Ryton

SUPPLIER: -

IDENTIFICATION: 123-1975

DESCRIPTION OF MATERIAL: Inserts for multipin connectors, made from Ryton (polyphenylene sulfide, PPS) with 40% glass-fibres (Ryton-R-4)

APPLICATION AT CERN: General application (available in CERN Stores, SCEM No. 09.31.05)

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 400 Gy/s Doses: 1 X 106, 1 X 107, 5 X 107 Gy

METHODS OF TESTING: Multiple connection test (up to 5 X 107 Gy). Insulation resistance (after 10* Gy). Breakdown voltage (after 106Gy).

RESULTS: No damage was observed up to 5 X 101 Gy. At 1 X 106 Gy, mechanical and electrical tests were performed by the supplier. No damage was observed. Insulation resistance > 5 X 109 Q, dielectric breakdown voltage > 2000 V a.c.

Remarks: See also Part II (Ref. 2) for further test results on Ryton

REFERENCES:

APPRECIATION : See Appendix 7

«— no test 101 102 103 104 105

Dose (Gy)-*

106 107 108

103

Page 90: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c COPPER WIRE BASE MATERIAL: Copper

TYPE: OFHCandETP

SUPPLIER: -

IDENTIFICATION: 239-1975

1.0

/ 1 ,

6 OFHC [cold drawn

2 weeks after irradiation A

! ^

^ 5 -

O)

a •5

1 -

f3 -

6 weeks after irradiation -

Res

ist

-

/ __ /

1 1 1 1

2.0 3 0 Neutron fluence IE > 0.1 MeV]

4.0 x 1023m'2

XS

I I 6 weeks after irradiation

SYMBOL

OFHC [cold drawn]x

20

PROPERTY

30 4 0 50*10nm2

Neutron fluence [E> 01 MeV]

resistivity (I = 100 mA) a t22°C

INITIAL VALUES

not measured

REMARKS

ETP annealed OFHC cold drawn

ETP cold drawn OFHC annealed

104

Page 91: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

c COPPER WIRE

BASE MATERIAL: Copper

TYPE: OFHC and ETP

SUPPLIER: -

IDENTIFICATION: 239-1975

DESCRIPTION OF MATERIAL: Wires of 0.4 mm diameter, cold-drawn from oxygen-free high-conductivity (OFHC) copper (99.96%) and from electrolytic tough-pitch (ETP) copper (99.92%), with and without a following anneal at 300 °C

APPLICATION AT CERN: Similar material used for the Super Proton Synchrotron septum magnets

IRRADIATION CONDITIONS: Type: Reactor ASTRA, high-flux core position; flux: 7 X 101 7 n/m 2 s (E > 0.1 MeV) Fluences: between 0.7 and 5.5 X 10 2 3n/m 2

METHODS OF TESTING: Resistance bridge measurements at a current I < 100 mA on wire samples of lengths varying from 1.5 to 5 m. During irradiation the wires were loosely coiled inside an aluminium container of 20 mm diameter in close contact with the wall. The container was filled with He gas at 10s Pa, and was cooled with the pool cooling-water at 40 °C.

RESULTS: The increase in resistance was most pronounced in the high-purity annealed material, 4% at 1 X 10 2 3 n/m 2 corresponding to about 3 X 106 Gy from fast neutrons. In the ETP-type, the effect was 30% lower; and in the non-annealed samples, only 1.5% for both materials. See figures on opposite page (Ref. 10).

Remarks: A fluence of 1023n/m2corresponds to 2.6 X 106 Gy in copper or 4 X 108 Gy in organic (CH 2) n

materials

REFERENCES: 10

APPRECIATION : See Appendix 7

101 102 103 104 105 106 107 108

Dose (Gy)->

105

Page 92: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

Diala C, trade name of Shell Mineral oil, see Insulating oil

Diester oil see Lubricating oil

Materials listed in General Tables in Appendix 5

Dacron, trade name of Du Pont Polyethylene terephthalate, see Textile, p. 28

Dichloroethane see G-value, p. 23

Dichlorobenzene see G-value, p. 23

Dynel, trade name of Union Carbide Chemicals Corp. see Textile, p. 28

Page 93: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

Elastomer

Table of general relative radiation effects in Appendix 5

ELECTRONICS COMPONENTS

Epoxy resin see Paint see Thermosetting resin see Vacuum chamber tube see Vacuum pump accessory

Ethylene-propylene rubber (EPR) and (EPDM) see Cable insulation see Hoses see Seal see Valve

Ethyiene-tetrafluoroethylene copolymer (ETFE) see Cable tie

Page 94: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

E Materials listed in General Tables in Appendix 5

Epoxy resin see Paint, p. 27 see Thermosetting resin, p. 30

Esters see Oil, p. 26

Ethers see Oil, p. 26

Ethyl bromide see G-value, p. 23

Ethylene-chlorotrifluoroethylene (E-C TFE) see Cable insulation, p. 21

Ethylene-propylene polyallomer see Thermoplastic resin, p. 29

Ethylene-propylene rubber (EPR) and (EPDM) see Cable insulation, p. 21 see Elastomer, p. 22 see Hose, p. 25

Ethylene-tetrafluoroethylene(ETFE) see Cable insulation, p. 21

Ethylene vinyl acetate (EVA) see Cable insulation, p. 21

111

Page 95: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

E ELECTRONICS COMPONENTS BASE MATERIAL: Selenium

TYPE: HV diode

SUPPLIER: -

IDENTIFICATION: 18-1978

f/f(0) [%l

DoselGy

SYMBOL PROPERTY

Vr(0.01 A) Ir(5 kV)

INITIAL VALUES

100 V 100 M

112

Page 96: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

E ELECTRONICS COMPONENTS

BASE MATERIAL: Selenium

TYPE: HV diode

SUPPLIER: -

IDENTIFICATION: 18-1978

DESCRIPTION OF MATERIAL: High-voltage rectifier stack of selenium diodes

APPLICATION AT CERN: High-voltage d.c. power supplies for use in high-level radiation areas

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, standard neutron irradiation facility (SNIF); flux: 4 X 10 1 3 n /m 2 s (E > 1 MeV)

Doses: 5 X 1 0 1 8 n / m 2 ( E > 1 MeV)

METHODS OF TESTING: Measurement of forward voltage drop V f at a current of 10 mA. Measurement of reverse current I r at a voltage of 5 kV.

RESULTS: Up to a fluence of 5 X 10 1 8 n /m 2 (E > 1 MeV) there is no deterioration of the tested electrical properties; instead, there is a slight improvement. This fluence corresponds to 130 Gy in selenium or 2.1 X 10 4 Gy in (CH 2 ) n materials

Remarks: More data on radiation effects on electronics components can be found in Refs. 5, 6, 8, 21, 38 and 41

REFERENCES:

APPRECIATION : See Appendix 7

<— no ^est — •

101 10 2 10 3 104 105 10 6 107 10'

Dose (Gy)-+

113

Page 97: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

ELECTRONICS COMPONENTS BASE MATERIAL: Silicon

TYPE: -

SUPPLIER: -

IDENTIFICATION: 14-1979

DoselGyl

SYMBOL PROPERTY

9 forward voltage drop ( 100 mA) • reverse current ( 1 kV) For both properties, y — 20 log f/f(0) has been plotted (decibels)

INITIAL VALUES STD. DEV.

0.76 V < ±1.5dB 50 nA < ±5dB

114

Page 98: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

E ELECTRONICS COMPONENTS

BASE MATERIAL: Silicon

TYPE: -

SUPPLIER: -

IDENTIFICATION: 14-1979

DESCRIPTION OF MATERIAL: Rectifier diode for 1 kV

APPLICATION AT CERN: Rectifier diodes for use in power supplies that are subject to low-level radiation doses only

IRRADIATION CONDITIONS: Type: Reactor ASTRA, standard neutron irradiation facility (SNIF); flux: 4 X 101 3 n/m 2 s

(E > 1 MeV) Doses: 10 1 6, 10 1 7, 101 8, 10 , 9 n /m 2 (E> 1 MeV)

METHODS OF TESTING: Forward voltage drop V f at 100 raA forward current. Reverse current I r at reverse voltage of 1 kV.

RESULTS: The reverse current increases almost linear with fluence, whereas the forward voltage drop increases slowly up to 10 1 7 n/m2, then accelerates considerably, reaching about 70 V at 10 1 8 n/m2. At 10 n/m2, the rectifier is destroyed. This fluence corresponds to a dose of 1200 Gy from fast neut­rons in silicon or 4.1 X 10 4Gy in (CH 2) n material.

Remarks: More data on radiation effects on electronics components can be found in Refs. 5,6,8,21,38, and 41

REFERENCES:

APPRECIATION: *** USE IN RADIA TION AREAS NOT RECOMMENDED*** See Appendix 7

101 102 103 104 105 106 107 10'

Dose (Gy)-»

115

Page 99: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

E ELECTRONICS COMPONENTS BASE MATERIAL: Various

TYPE: See table below

SUPPLIER: Various

IDENTIFICATION: 133-1974

Designation Type Exposure in n/m 2 (E > lMeV)*)

10" 10' 10" 10'

Resistor: carbon 1 kfi, 5% metal film 1 kO, 1% wire wound 100 fi, 5% potmeter "cermet" 1 kfi, 78P

Capacitor: : ceramic 20 nF,30 V mica 22 pF, 300 V polyester 15 nF, 125 V polycarbonate 15 nF, 250 V MKL 0.22//F, 100 V electrolytic Al 200//F, 10 V tantalum 15//F, 20V

Diode: rectifier, Si 10D6 general-purpose, Si 1N914 general-purpose, Si BAY72 hot carrier, Si HP2900 Zener, Si ZF6.8 tunnel, Ge 1N3717

Transistor : NPN, Si 2N918 PNP, Si, rad. resist. 2N5332 PNP, Si, rad. resist. MM4261H FET, Si, N-channel 2N3819 FET, Si, P-channel 2N3820 MOSFET, P-channel 3N165 MOSFET, N-channel BSV81

Integrated : TTL gate SN7400N TTL flip-flop SN7473N TTL counter SN7493N TTL one-shot SN74121N TTL gate MC3000P TTL flip-flop MC3055P amplifier, rad. res. RSN55900 amplifier, rad. res. RSN55910 op. am pli. rad. res. RSN52709 op. ampli, rad. res. M ? 4 4 op. ampli. FET input M 7 4 0 op. ampli, gen. purpose MCI 741 comparator SN72710 op. ampli. T1303 op. ampli. T1319 op. ampli. FET input T1420

Discrete: op. ampli. TI024 DAC. 10 bits T4022

Rectifier: selenium B250C75

sz^zszz^ •2 tysssss/ss/Avztt

yr/v'/7y/y>y/yy////y,//ss/s///s.

YSSMrSjVS/SZVZa •VAvyMVAwyyyMWMMVJ^

j

vr/M^/y/A'///^///>y/////,

vs/ssy/y///ASSA'>'//////s'. V/////////////ZZ^2Z* VSS"SSS/S//SZV7Z00a

WSSSSSSMWZB* VSSSSSSMWJI!Za

V/MMWA vssrsssssssssssssss.

'/y/y/,//,///s/////. W^S/S/SA'.

V//MWM\ 'SSSSSSSSSSSS/SSSS.

'S///////S/A

VS/MUZ

V///AW1/// E: V///////AÏ

t/ssssss/ss,

'/////////s. YA^yyyyyyy.

'/ztzwity. 'SSS/SS/SSSSSSSSSs

'/W0WMWW W/////A

WSSSSSSSS/SSSSSSSA 'SAfS/S/SSSS.

L VSSAVAW///MU/S/A

'S/SSS/A'SS'

wvv>vy////ys/s////x*

V///////////////////////////?i

') Conversion factor 10' 7 n /m 2 ( E > 1 MeV) ~ 410Gy in organic ( C H ; ) materials or 12 Gy in silicon.

L" stable damaged broken

16

Page 100: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

E ELECTRONICS COMPONENTS

BASE MATERIAL: Various

TYPE: See table on opposite page

SUPPLIER: Various

IDENTIFICATION: 133-1974

DESCRIPTION OF MATERIAL: Resistor, capacitor, diode, transistor, integrated TTL circuit, discrete monolithic units, selenium recti­fier.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, standard neutron irradiation facility (SNIF); flux: 4 X 10 1 3 n/m 2 s

(E > 1 MeV); dose rate: 0.4 Gy/s Doses: Various

METHODS OF TESTING: See reference

RESULTS: See table on opposite page

Remarks: More data on radiation effects on electronics components can be found in Refs. 5, 6, 8, 21, 38, and 41

REFERENCES: 8

APPRECIATION: *** USE IN RADIA TION AREAS NOT RECOMMENDED*** See Appendix 7

101 102 103 104 105 106 107 108

Dose (Gy)-f

117

Page 101: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

Fluorinated oil see Insulating oil see Vacuum seal

Fluorinated polymer see Cable tie see Heating element see Seal see Vacuum seal

FOAM Polyurethane foam

Materials listed in General Tables in Appendix 5

Flamtrol, trade name of Raychem Polyolefin, see Cable insulation, p. 21

Fluorinated compounds see Cable insulation, p. 21 see Elastomer, p. 22 see Hose, p. 25 see Oil, p. 26 see Thermoplastic resin, p. 29

Page 102: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

F FOAM

BASE MATERIAL: Polyurethane foam

TYPE: Non-elastic

SUPPLIER: Unknown

IDENTIFICATION: 40-1978

DESCRIPTION OF MATERIAL: Test samples of PUR foam used for thermal insulation of tubings, non-elastic type

APPLICATION AT CERN: Used for insulation of tubings in Super Proton Synchrotron tunnel neutrino cave

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5X 105, 1 X 10 6Gy

METHODS OF TESTING: Qualitative, mechanical and visual

RESULTS: Visual appearance was unchanged after irradiation without mechanical forces applied; slight darkening of colour. At 1 X 106Gy, the foam was very brittle and crumbled easily.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

10' 102 103 104 105

Dose (Gy)-i

106 107 108

121

Page 103: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

G Entries and cross-references

G-value Table of general relative radiation effects in Appendix 5

GLASS Cerium-doped glass see also Optical fibre

Glass fibre see Optical fibre

123

Page 104: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

G GLASS BASE MATERIAL: Cerium-doped glass

TYPE: See table

SUPPLIER: Chance-Pilkington; Schott & Gen.

IDENTIFICATION: 146-1974

Types of glass (in order of increasing Ce content) and reduction of light transmission (X = 450 nm) in percent at 1 X 106, 1 X 107, and 5 X 107 Gy.

(Manufacturer: Schott, except Nos. 9 and 10: Pilkington.)

No. Glass type ç e Q Reduction of light transmission (A = 450 nm) in percent at a dose of

content 1 X 106Gya> 1 X 10 7 Gy b ) 5 X 10 7 Gy b )

9 RSF 0.5 60 16 SF19G7 0.7 13 18 SF8G7 0.7 11 19 SF1G7 0.7 0 3 W G 9 G 9 0.9 4

12 SK10G10 1.0 10 5 BAK1G12 1.2 2

14 F2G12 1.2 3 15 SF16G12 1.2 3 8 SK4G13 1.3 7 1 BK7G14 1.4 2 7 LF5G15 1.5 0

17 LAKN9G15 1.5 18 10 OW 10 1.7 7.3 11 F2G20 2.0 0 2 BK7G25 2.5 0 4 GG375G34 3.4 1 6 LF4G34 3.4 3

13 F6G40 4.0 2

63 78 26 30 12 12 22 21 20 29 23 37 12 13 5 6 3 12

28 49 13 21

1 6 64 74

22.5 32 1 3

13 16 8 24

11 15 9 11

a) Reactor irradiation position E1 b) Reactor irradiation position 11

For both (a) and b) irradiation positions, the exposure dose in organic ( C H ^ materials is given, which will represent the true dose from y-radiations in these glasses within measurement error. The transmission values are normalized for a thickness of 2.5 mm.

124

Page 105: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

G GLASS

BASE MATERIAL: Cerium-doped glass

TYPE: See table opposite page

SUPPLIER: Chance-Pilkington; Schott & Gen.

IDENTIFICATION: 146-1974

DESCRIPTION OF MATERIAL: Glass with cerium content varying from 0.5% to 4.0%

APPLICATION AT CERN: Windows for beam observation equipment

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position El in air, 30 Gy/s; position 11 in water, 300 Gy/s Doses: 5 X 104, 1 X 105, 5 X 105, 1 X 106, 5 X 105, 1 X 107, 5 X 107 Gy

METHODS OF TESTING: Percentage change in spectral transmission between 350 nm and 550 nm

RESULTS: Noeffectuptol0 6Gy. Reduction in light transmission of less than 10% at 10 7Gy. Reduction of light transmission of less than 20% at 5 X 107 Gy. For details, see table on opposite page.

Remarks: More data and transmission spectra can be found in Ref. 9

REFERENCES: 9

APPRECIATION : See Appendix 7

101 102 103 104 105 106 107 108

Dose (Gy)-»

125

Page 106: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

HEATING ELEMENT

Teflon

HF ABSORBER

HOSE Ethylene-propylene rubber (EPR)/glass fibre EPR/Kevlar fibre EPR/polyester fibre Polyethylene terephthalate copolymer

Hostalen, trade name of Hoechst Polyethylene, see Cable tie

Hypermalloy see Magnetic material

Hytrel, trade name of Du Pont Polyethylene terephthalate copolymer see Hose

Materials listed in General Tables in Appendix 5

Halar, trade name of Allied Chemical Ethylene-chlorotrifluoroethylene see Cable insulation, p. 21

Hypalon, trade name of Du Pont Chlorosulfonated polyethylene (CSP), see Cable insulation, p. 21 see Elastomer, p. 22 see Paint, p. 27

Hytrel, trade name of Du Pont PETP copolymer, see Cable insulation, p. 21

Page 107: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

H HEATING ELEMENT

BASE MATERIAL: Teflon

TYPE: -

SUPPLIER: -

IDENTIFICATION: 291-1980

DESCRIPTION OF MATERIAL: Flexible heating element of total width 68 mm consisting of a carbonized tissue (woven fibres) of width 38 mm embedded in an insulating coating of Teflon

APPLICATION AT CERN: Heating element for vacuum chamber bakeout at the Intersecting Storage Rings and at the Super Proton Synchrotron LSS4 and LSS5

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate 10 Gy/s Doses: 1 X 105, 1 X 10 6Gy

METHODS OF TESTING:

RESULTS: Teflon matrix was severely damaged at 1 X 106 Gy. After some handling to test flexibility, the electrical resistance was greater than 2 X 106 Q. At the lower dose of 1 X 105 Gy, however, the Teflon did not break, and the electrical resistance was 6.6 X 103 Q at a length of 15 cm.

Remarks:

REFERENCES:

APPRECIATION: *** USE IN HIGH LEVEL RADIA TION AREAS NOT RECOMMENDED *** See Appendix 7

101 102 103 104 105

Dose (Gy)-i

106 107 108

129

Page 108: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

H HF ABSORBER

BASE MATERIAL: Resistive fibres

TYPE: -

SUPPLIER: -

IDENTIFICATION: 150-1974

DESCRIPTION OF MATERIAL: High-frequency (microwave) absorber material composed of rubberized lossy fibres, proposed as anti-reflexion material in RF-accelerating cavity systems. Dimensions: 50 0 X 170 (in mm).

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5X 103, 1 X 10 6Gy

METHODS OF TESTING: Qualitative mechanical test

RESULTS: No damage detected up to 106 Gy

Remarks: Not used because of vacuum problems.

REFERENCES:

APPRECIATION : See Appendix 7

1 <— no 1 est —•

10' 102 103 104 105 106 107 10'

Dose (Gy)->

131

Page 109: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

H HOSE BASE MATERIAL: Ethylene-propylene rubber (EPR)/glass fibre

TYPE: Flexible insulating water hose

SUPPLIER: Gummi-Maag

IDENTIFICATION: 260-1970

f/f(0) [%l

Dose[Gy|

SYMBOL PROPERTY

bursting pressure

INITIAL VALUES

11.3MPa

132

Page 110: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

H HOSE

BASE MATERIAL: Ethylene-propylene rubber (EPR)/glass fibre

TYPE: Flexible insulating water hose

SUPPLIER: Gummi-Maag

IDENTIFICATION: 260-1970

DESCRIPTION OF MATERIAL: Ethylene-propylene rubber tubes reinforced with flass fibres; diameter: internal 8 mm, external 17 mm

APPLICATION AT CERN: Used for the Intersecting Storage Rings magnet cooling system

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 5 X 105, 1 X 106, 2 X 106, 5 X 10 6Gy

METHODS OF TESTING: Bursting pressure tests

RESULTS: Fulfilled specification requirements; no expansion of hoses before bursting

Remarks:

REFERENCES: 36

APPRECIATION: See Appendix 7

! «— no test—•

101 102 103 104 105

Dose (Gy)-i

106 107 108

133

Page 111: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

H HOSE

BASE MATERIAL: EPR/Kevlar fibre

TYPE: Flexible insulating water hose

SUPPLIER: Gummi-Maag

IDENTIFICATION: 261-1980

DESCRIPTION OF MATERIAL: Ethylene-propylene rubber tubes reinforced with Kevlar (aromatic polyamide) fibre. Over-all resistivity higher than 105 Q • m. Inner diameters: 8, 13, 19, and 25 mm

APPLICATION AT CERN: Used for Super Proton Synchrotron magnet cooling system. Installed in 1980/81.

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 1 X 10 6Gy

METHODS OF TESTING: Pressure test at 6.4 MPa

RESULTS: No damage; pressure test passed

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

k- n °J no lest 101 102 103 104 105 106 107 108

Dose (Gy)->

135

Page 112: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

H HOSE

BASE MATERIAL: EPR/polyester fibre

TYPE: Flexible insulating water hose

SUPPLIER: Angst &Pfister

IDENTIFICATION: 225-1974

DESCRIPTION OF MATERIAL: Ethylene-propylene rubber tubes reinforced with polyester fibres, inner diameters 8, 13, 19, and 25 mm.

APPLICATION AT CERN: Used for Super Proton Synchrotron water hoses, 1975 to 1980, and partially also thereafter

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 1 X 10 6Gy

METHODS OF TESTING: Pressure test at 6.4 MPa(= 4 X operating pressure). Bursting pressure test.

RESULTS: No damage, passed pressure test. Bursting pressure: non-irradiated: 35 MPa

irradiated 1 X 106: 34 MPa.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

no i est 101 102 103 10" 105

Dose (Gy)-i

106 107 108

137

Page 113: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

H HOSE

BASE MATERIAL: Polyethylene terephthalate (PETP) copolymer

TYPE: - ; Hytrel 55D

SUPPLIER: -

IDENTIFICATION: 226-1974

DESCRIPTION OF MATERIAL: Semi-rigid water hoses made from polyethylene terephthalate (PETP) copolymer (Hytrel), diameter 6 mm, wall thickness 4 mm

APPLICATION AT CERN:

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 1 X 10 6 Gy

METHODS OF TESTING: Bursting pressure test

RESULTS: No radiation damage found. Before irradiation the bursting pressure was about 57 X 10 5 Pa. After irradiation, 57.8 ± 3.6 X 10 5 Pa were measured.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

«— no jest —•

10 1 10 2 10 3 104 105 106 10 7 101

Dose (Gy)->

139

Page 114: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries

INSULATED WIRE PETP/Polyamide Polyamide-imide Polyester-imide

INSULATING OIL Chlorinated oil Fluorinated oil Mineral oil Silicone oil

INSULATING SLEEVE Silicone rubber/glass fibres see also Thermoshrinking sheath

INSULATING TAPE Paper Polyamide paper Polyethylene terephthalate (PETP) PETP/asbestos PETP/epoxy PETP/PETP fibres PETP/polyamide PETP, thermoadhesive Polypropylene see also Adhesive tape

Iron see Magnetic material

Page 115: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATED WIRE BASE MATERIAL: Polyethylene terephthalate (PETP)/Polyamide; Polyamide-imide resin

TYPE: F l andF2

SUPPLIER: CERCEM

IDENTIFICATION: 240.1-1974

f/f(0) [%l

DoselGyl

SYMBOL PROPERTY INITIAL VALUES REMARKS

• • A •

torsion resistance pencil hardness torsion resistance pencil hardness

240 m"' 81.3%

320 m"' 75%

I Type F1

I Type F2

142

Page 116: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATED WIRE

BASE MATERIAL: Polyethylene terephthalate (PETP)/Polyamide; Polyamide-imide resin

TYPE: F l andF2

SUPPLIER: CERCEM

IDENTIFICATION: 240.1-1974

DESCRIPTION OF MATERIAL: Insulated wire for field coils of 1 kW electric motor. Insulation for type F1 is made from PETP with Nylon topcoating; for type F2 from modified amide-imide with topcoat.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 5 X 106, 1 X 107Gy

METHODS OF TESTING: Elasticity: Twisting together two, 125 mm long, pieces of wire, and noting the number of turns per unit length needed to produce cracks that are visible with the aid of a magnifying glass (Swiss Std. VSM 23780). Hardness: Pencil hardness used to attack the insulation: scale ranging from 6B to 9H in 16 steps (Swiss Std. VSM 23714).

RESULTS: Elasticity: Whereas type 155 showed no change after irradiation, type 170 did so only up to 5 X 106 Gy, but showed cracks after 1 X 107Gy. Hardness: Changed one step for type 155; no change for type 170.

Remarks:

REFERENCES: 19

APPRECIATION : See Appendix 7

III 111 no test 101 102 103 104 105 106 107 10'

Dose (Gy)-+

143

Page 117: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATED WIRE BASE MATERIAL: Polyester-imide resin

TYPE: F3

SUPPLIER: CERCEM

IDENTIFICATION: 240.2-1974

0 0.5 1.0X107 1.5 DoselGy]

SYMBOL PROPERTY INITIAL VALUES

# torsion resistance 400 m _ 1

• pencil hardness 94%

144

1 J W

100

f/f(0) [%]

50

Page 118: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATED WIRE

BASE MATERIAL: Polyester-imide resin

TYPE: F3

SUPPLIER: CERCEM

IDENTIFICATION: 240.2-1974

DESCRIPTION OF MATERIAL: Insulated wire for field coils of 1 kW electric motor. The insulation is made from polyester-imide resin.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type : Reactor ASTRA, switched-off reactor position 3 5 in air, dose rate approx. 10 Gy/s Doses: 5X 106, I X 10 7Gy

METHODS OF TESTING: Elasticity: Twisting together two, 125 mm long, pieces of wire, and noting the number of turns per unit length needed to produce cracks that are visible with the aid of a magnifying glass (Swiss Std. VSM 23780). Hardness: Pencil hardness used to attack the insulation: scale ranging from 6B to 9H in 16 steps (Swiss Std. VSM 23714).

RESULTS: Elasticity: No irradiation effect up to 400 turns/m at 5 X 106 Gy and 320 turns/m at 1 X 107 Gy. Hardness: No irradiation effect at either dose; the high value of 8H (94% of the scale) was retained. No visible alteration up to 1 X 10 7Gy.

Remarks:

REFERENCES: 19

APPRECIATION : See Appendix 7

no test 101 102 103 10" 105 106 107 10'

Dose (Gy)-*

145

Page 119: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL BASE MATERIAL: Chlorinated oil

TYPE: Askarel

SUPPLIER: -

IDENTIFICATION: 52.2-1973

300

DoselGy]

SYMBOL PROPERTY

breakdown voltage viscosity insulation resistance

INITIAL VALUES

18kV/mm 98mPa-s

8X 10"fi /m For A, y = - 10 log f/fl(0) is plotted (in decibels)

146

Page 120: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL

BASE MATERIAL: Chlorinated oil

TYPE: Askarel

SUPPLIER: -

IDENTIFICATION: 52.2-1973

DESCRIPTION OF MATERIAL: Synthetic oil containing chlorinated diphenyls (Askarel) used as an insulating liquid. Proposed for pulsed magnet insulation; not inflammable.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 28 Gy/s Doses: 3 X 105, 1 X 106Gy

METHODS OF TESTING: High-voltage breakdown test in a 'Baur'-type set-up with spherical electrodes of 12.5 mm diameter at a distance of 2 mm. Variable voltage supply of 0-150 kV at 40 MQ resistance. Steps of 2 kV every minute after 20 min to 2 days rest for each sample. Four samples, three tests per sample. Dynamic viscosity using "Viscotemp Eprecht", t = 20°C.

RESULTS: Breakdown voltage was slightly lower at 3 X 105 Gy. At 1 X 106 Gy, the sample volume was too small for the test. Viscosity increased by a factor of 2. The dielectric constant decreased from 5.75 at dose 0 to 5.4 at 106 Gy. The insulation resistance was about 1% of the initial value and already rather low at both doses (10 1 0Q/m). The colour changed from transparent before irradiation to greenish-brown after both irradiation doses. Strong HC1 gases evaporated from the irradiated liquid. The chlorine content was 41.9% and decreased after irradiation to about 41.1 %.

Remarks: Gas evolution (partly HC1) was 1.3 and 2.6 times the volume of the liquid at the two doses, respectively

REFERENCES: 22

APPRECIATION: *** USE IN RADIA TIONAREAS NOTRECOMMENDED*** See Appendix 7

ro test 101 102 103 104 10s

Dose (Gy)-»

106 107 108

147

Page 121: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL

BASE MATERIAL : Fluorinated oil

TYPE: -

SUPPLIER: -

IDENTIFICATION: 52.4-1973

DESCRIPTION OF MATERIAL: Synthetic fluorinated oil used as an insulating liquid

APPLICATION AT CERN: Insulation in high-voltage feedthrough of the Super Proton Synchrotron electrostatic septa (LSS2, LSS6)

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 28 Gy/s. Doses: 1 X 10 6Gy

METHODS OF TESTING: High-voltage breakdown test in a 'Baur'-type set-up with spherical electrodes of 12.5 mm diameter at a distance of 2 mm. Variable voltage supply of 0-150 kV at 40 MQ resistance. Steps of 2 kV every minute after initial rest of 5 min. Ten tests were performed. Dynamic viscosity using "Viscotemp Eprecht", t = 20°C.

RESULTS: Owing to high gas evolution, no tests were possible after irradiation. Before irradiation, the breakdown voltage measured yielded very high values. At the end of a testing series, 62 kV/mm were obtained; whereas at the beginning of a series, 24 kV/mm were measured. Vis­cosity was very low. According to the manufacturer, the liquid will show only minor changes after a dose of 1 X 106 Gy. The measured content of fluorine decreased from 78.6% to 71.7% at this dose, and some acidity (8 X 10~5

mol/kg) was detected in the liquid. During service in electrostatic septa, about 0.05 mol/kg HF were liberated after a dose of 105 Gy, the acid being neutralized continuously by special equipment.

Remarks: Gas evolution was 10 times the volume of the liquid at the dose 1 X 106 Gy, the gas being very strong and toxic

REFERENCES: 22,23

APPRECIATION: *** USE IN RADIATION AREAS NOT RECOMMENDED*** See Appendix 7

not tested beciuse of oitgassing osses 101 102 103 104 105

Dose (Gy)-i

106 107 108

149

Page 122: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL BASE MATERIAL: Mineral oil

TYPE: DialaC

SUPPLIER: Shell

IDENTIFICATION: 52.1-1973

0 0.5 1.0X106 I DoselGyl

SYMBOL PROPERTY INITIAL VALUES

# breakdown voltage 22 kV/mm • dynamic viscosity 32mPa*s • insulation resistance 3 .7X10 1 5 Q/m For A. y = - 10 log f/f(0) is plotted (decibels)

150

1 J U

100

f/f(0) [%]

50

Page 123: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL

BASE MATERIAL: Mineral oil

TYPE: DialaC

SUPPLIER: Shell

IDENTIFICATION: 52.1-1973

DESCRIPTION OF MATERIAL: Naphtenic insulating oil, subsequently renamed diala oil b

APPLICATION AT CERN: Insulation and cooling of terminating resistors and of matching boxes of the Super Proton Synchrotron fast pulsed magnets

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 3X 105, 1 X 10 6Gy

METHODS OF TESTING: High-voltage breakdown test in a 'Baur'-type set-up with spherical electrodes of 12.5 mm diameter at a distance of 2 mm. Variable voltage supply of 0-150 kV at 40 MQ resistance. Steps of 2 kV every minute after initial rest of 5 min. Ten tests were performed. Dynamic viscosity using "Viscotemp Eprecht", t = 20°C.

RESULTS: Breakdown voltage slightly lowered to 89% and 81% at both doses. Viscosity increased only about 12%. The dielectric constant decreased by 4% from an initial value of 2.25. The insulation resistance went down by a factor of 1.6 X 10~\ but the absolute value was still compara­tively high. Colour changed from light yellow at zero dose to dark brown at both doses. No change was noticed in infrared spectra after irradiation; only saturated hydrocarbon bands. No chlorine or free acids were detected.

Remarks: Gas evolution was 2.0 and 5.3 times the volume of the liquid at the two doses, respectively

REFERENCES: 22

APPRECIATION : See Appendix 7

no 1 est 10' 102 103 104 105

Dose (Gy)-i

105 107 108

151

Page 124: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL BASE MATERIAL: Mineral oil

TYPE: Valvata460

SUPPLIER: Shell

IDENTIFICATION: 189-1979

f/f(0) [%l

DoselGy

SYMBOL PROPERTY

dynamic viscosity (24 °C)

INITIAL VALUES

1.4Pa-s

152

Page 125: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL

BASE MATERIAL: Mineral oil

TYPE: Valvata460

SUPPLIER: Shell

IDENTIFICATION: 189-1979

DESCRIPTION OF MATERIAL: A refined mineral oil formerly known as Valvata 79.

APPLICATION AT CERN: Used as insulating oil in the 300 kV and 400 kV plugs for the HV circuits of the electrostatic septa and electrostatic separators in the Super Proton Synchrotron (LSS2, LSS6, LSS5)

IRRADIATION CONDITIONS:

Type: 6 0 C o gamma source Doses: 1 X 10 4, 5 X 10 4, 1 X 10 5, 5 X 10 5, 1 X 10 6 Gy, dose rate 2.8 Gy/s

METHODS OF TESTING: Dynamometric viscosity measurement at 24 °C using concentric cylinders at several speeds

RESULTS: Viscosity decreased about 4% up to 5 X 10 4 Gy, and then increased again, reaching a value 11% higher than the initial value. Samples have also been taken after 3 years of operational exposure under high tension. The accumulated dose has been estimated to be about 1 X 105 Gy. In this case, the viscosity increased about 5% (meas­ured at 25 °C), indicating that during operational exposure, only 36% of the dose is needed to get the same damage as in the test.

Remarks:

REFERENCES: 23,24

APPRECIATION : See Appendix 7

<— no jest —•

10' 10 2 10 3 104 105 106 10 7 10'

Dose (Gy)->

153

Page 126: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL

BASE MATERIAL: Mineral oil

TYPE: -

SUPPLIER: -

IDENTIFICATION: 12-1975

DESCRIPTION OF MATERIAL: Used as dielectric and cooling agent in 50 H RF load (Bird model 8408: power 600 W, frequency 0 to 3 GHz)

APPLICATION AT CERN: Used for Super Proton Synchrotron accelerating cavities during 1977-1978

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 104, 1 X 105, 5.5 X 105 Gy

METHODS OF TESTING: Static measurement of viscosity using a 'Ubbelonde'-type set-up. Operational test in accelerator.

RESULTS: Up to 1 X 105 Gy there was almost no change in viscosity; up to 5 X 105 an increase of only 30%. The colour changed from transparent below 5 X 104 Gy to yellow at 5.5 X 105 Gy. Operational test: No difference in RF properties have shown up during the service period of 1.5 years. The doses received were rather low.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

no tjest —» 101 102 103 104 105 106 107 10'

Dose (Gy)->

155

Page 127: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING OIL

BASE MATERIAL: Silicone oil

TYPE: DC 200-50

SUPPLIER: Dow Chemical

IDENTIFICATION: 52.3-1973

DESCRIPTION OF MATERIAL: Silicone oil polydimethyl-siloxane used as an insulating liquid, proposed for pulsed magnet insulation. Flash-point temperature above 280°C.

APPLICATION AT CERN: Insulation at the pulse-forming networks of the fast pulsed magnets of the Super Proton Synchrotron (operating voltage 60 k V)

IRRADIATION CONDITIONS: Type: Doses:

Reactor ASTRA, position E1 in air, dose rate 28 Gy/s 3 X 105, 1 X 106 Gy

METHODS OF TESTING: High-voltage breakdown test in a 'Baur'-type set-up with spherical electrodes of 12.5 mm diameter at a distance of 2 mm. Variable voltage supply of 0-150 kV at 40 MQ resistance. Steps of 2 kV every minute after initial rest of 5 min. Ten tests were performed. Dynamic viscosity using "Viscotemp Eprecht', t = 20°C.

RESULTS: Both the breakdown voltage and the viscosity increased by about 13%; the dielectric constant remained unchanged at 2.5. The insulation resistance was reduced to 33%, but the absolute value was still very high. These values were measured at 5 X 105 Gy. At 1 X 106 Gy, the liquid had gelatinized and no test was possible. No change noticed in infrared spectra after irradiation. No chlorine or free acids detected.

Remarks: Gas evolution was 3.3 and 4.9 times the volume of the liquid at the two doses, respectively. At 1 X 106 Gy, the fluid has gelatinized to a gum-type solid. According to supplier, methyl-phenyl siloxane fluids have much better radiation resistance.

REFERENCES: 22

APPRECIATION: See Appendix 7

*** USE IN RADIA TION AREAS NOTRECOMMENDED ***

101 102 103 104 10s

Dose (Gy)->

10" 107 108

157

Page 128: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING SLEEVE BASE MATERIAL: Silicone rubber/glass fibres

TYPE: Gl

SUPPLIER: CERCEM

IDENTIFICATION: 182.8-1974

SYMBOL PROPERTY

coiling test number of bends

INITIAL VALUES

100% 100

158

Page 129: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING SLEEVE

BASE MATERIAL: Silicone rubber/glass fibres

TYPE: Gl

SUPPLIER: CERCEM

IDENTIFICATION: 182.8-1974

DESCRIPTION OF MATERIAL: Tubing made from glass-fibre braid coated with silicone rubber, for the insulation of leads in a 1 kW elec­tric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Coiling test, made by winding the tube 10 times around a core 10 times its own diameter and noting the defects by inspection with a magnifying glass (Swiss Std. VSM 23 708). Bending test, made by counting the number of 360°backward and forward bends until visible damage occurs (Swiss Std. VSM 23780).

RESULTS: Coiling test: Before irradiation and after 1 X 106 Gy no defects were seen. After 5 X 106 Gy,

the sample broke immediately. Bending test 360°: Before irradiation, still no defects after 100 bends. After 1 X 106 Gy, only five

bends were necessary before breaking; after 5 X 106 Gy, breaks occurred immediately.

Colour: No differences after irradiation.

Remarks:

REFERENCES: 19

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

106 107 10 s

159

101 102 10' 104 105

Dose (Gy)->

Page 130: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING SLEEVE BASE MATERIAL: Silicone rubber/glass fibres

TYPE: G2

SUPPLIER: CERCEM

IDENTIFICATION: 182.9-1974

f/f(0) [%1

0 2.0 4.0 X 106

DoselGyl

'MBOL PROPERTY INITIAL VALUES

• •

coiling test number of bends

100% 100

6.0

160

Page 131: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING SLEEVE

BASE MATERIAL: Silicone rubber/glass fibres

TYPE: G2

SUPPLIER: CERCEM

IDENTIFICATION: 182.9-1974

DESCRIPTION OF MATERIAL: Tubing made from glass-fibre braid coated with silicone rubber, for the insulation of leads in a 1 kW elec­tric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 106, 5 X 105Gy

METHODS OF TESTING: Coiling test, made by winding the tube 10 times around a core 10 times its own diameter and noting the defects by inspection with a magnifying glass (Swiss Std. VSM 23708). Bending test, made by counting the number of 360° backward and forward bends until visible damage occurs (Swiss Std. VSM 23780).

RESULTS: Coiling test:

Bending test 360°:

Colour:

Before irradiation and after 1 X 106 Gy no defects were seen. After 5 X 106 Gy, breaks occurred after one sixth of a turn. Before irradiation, still no defects after 100 bends. After 1 X 106 Gy, only nine bends were necessary before breaking; after 5 X 106 Gy, breaks occurred immediately. Changed from white to grey.

Remarks:

REFERENCES: 19

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (Gy)-H

106 107 108

161

Page 132: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: Paper

TYPE: -

SUPPLIER: -

IDENTIFICATION: 13.1-1978

DESCRIPTION OF MATERIAL: Insulating paper used as layer insulation for high-voltage transformers, to be impregnated after winding

APPLICATION AT CERN: Transformer inter-winding insulation, used with araldite impregnation

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 10 6 Gy

METHODS OF TESTING: Qualitative mechanical test

RESULTS: The paper became very brittle after 5 X 106 Gy

Remarks:

REFERENCES:

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

10' I0 2 103 104 105

Dose (Gy)-n

106 107 108

163

Page 133: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: Polyamide paper

TYPE: E3;Nomex

SUPPLIER: CERCEM

IDENTIFICATION: 182.3-1974

DESCRIPTION OF MATERIAL: Coil slot insulation made from aromatic polyamide paper composite, for a 1 kW electric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 10 7Gy

METHODS OF TESTING: Bending test, counting the number of 360° backward and forward bends (Swiss Std. VSM 23780) on samples of dimensions 100 X 10 mm2

RESULTS: Before irradiation, the material still showed no damage after 100 bends. After a dose of 107 Gy, there was also almost no damage after 100 bends. A slight change in colour was noticed.

Remarks: See also Adhesive tape

REFERENCES: 19

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

no test 10* 10 2 103 10 4 105 106 10 7 10'

Dose (Gy)->

165

Page 134: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: Polyamide paper

TYPE: Nomex

SUPPLIER: -

IDENTIFICATION: 13.2-1978

DESCRIPTION OF MATERIAL: Aromatic polyamide paper composite (Nomex), used as layer insulation for high-voltage transformers

APPLICATION AT CERN: Transformer inter-winding insulation

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Qualitative mechanical test

RESULTS: No damage detected

Remarks: See also previous entry and Adhesive tape for higher doses

REFERENCES:

APPRECIATION : See Appendix 7

<- no tes^-» 10' 102 10' 104 105

Dose (Gy)-)

107 HY

!<-•'

Page 135: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: Polyethylene terephthalate (PETP)

TYPE: E l ; Mylar

SUPPLIER: CERCEM

IDENTIFICATION: 182.1-1974

DESCRIPTION OF MATERIAL: Coil slot insulation made from polyethylene terephthalate (Mylar), for a 1 kW electric motor.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 107Gy

METHODS OF TESTING: Bending test, counting the number of 360° backward and forward bends (Swiss Std. VSM 23780) on samples of dimensions 100 X 10 mm2

RESULTS: Before irradiation, the material still showed no damage after 100 bends. After a dose of 107 Gy, the foil became very brittle and broke before the first complete bend. The colour changed from white to yellow.

Remarks: See also Adhesive tape for lower doses

REFERENCES: 19

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-)

106 107 108

169

Page 136: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: Polyethylene terephthalate (PETPVAsbestos

TYPE: E8

SUPPLIER: CERCEM

IDENTIFICATION: 252-1974

DESCRIPTION OF MATERIAL: Coil slot insulation made from asbestos bonded by PETP film, for a 1 kW electric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: I X 10 7 Gy

METHODS OF TESTING: Bending test, counting the number of 360° backward and forward bends (Swiss Std. VSM 23780) on samples of dimensions 90 X 20 mm 2

RESULTS: Before irradiation, the material still showed no damage after 100 bends. After a dose of 10 7 Gy, no major damage was observed.

Remarks:

REFERENCES: 19

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

III 1 no test

101 102 10' 104 105 10" 10 7 108

Dose (Gy)-»

171

Page 137: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: PETP/Epoxy/PETP fibres

TYPE: E6

SUPPLIER: CERCEM

IDENTIFICATION: 182.6-1974

DESCRIPTION OF MATERIAL: Coil slot insulation made from a composite of polyethylene terephthalate (PETP) film and epoxy resin filled with PETP fibres, for a 1 kW electric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position El in air, dose rate 30 Gy/s Doses: 1 X 107Gy

METHODS OF TESTING: Bending test, counting the number of 360° backward and forward bends (Swiss Std. VSM 23780) on samples of dimensions 100 X 10 mm2

RESULTS: Before irradiation, the material still showed no damage after 100 bends. This material was of compara­tively high strength. After a dose of 101 Gy, it broke before the first complete bend.

Remarks:

REFERENCES: 19

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

10' 102 103 104 105

Dose (Gy)-i

no test 106 107 108

173

Page 138: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: PETP/PETP fibres

TYPE: E7

SUPPLIER: CERCEM

IDENTIFICATION: 182.7-1974

DESCRIPTION OF MATERIAL: Coil slot insulation made from a composite of polyethylene terephthalate (PETP) film and PETP fibres, for a 1 kW electric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: I X 10 7 Gy

METHODS OF TESTING: Bending test, counting the number of 360° backward and forward bends (Swiss Std. VSM 23780) on samples of dimensions 100 X 10 mm 2

RESULTS: Before irradiation, the material showed no damage after 100 bends. After a dose of 107 Gy, it broke before the first complete bend.

Remarks:

REFERENCES: 19

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

10l 102 I0 3 104 105

Dose (Gy)-i

no test 106 107 10"

175

Page 139: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: PETP/Polyamide

TYPE: E4

SUPPLIER: CERCEM

IDENTIFICATION: 182.4-1974

DESCRIPTION OF MATERIAL: Coil slot insulation made from aromatic polyamide and polyethylene terephthalate composite, for a 1 kW electric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: I X 10 7 Gy

METHODS OF TESTING: Bending test, counting the number of 360° backward and forward bends (Swiss Std. VSM 23780) on samples of dimensions 100 X 10 mm 2

RESULTS: Before irradiation, the material still showed no damage after 100 bends. After a dose of 10 1 Gy, there was also no damage after 100 bends. The colour changed.

Remarks:

REFERENCES: 19

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

1 1 no test

101 102 103 104 105 106 10 7 10'

Dose (Gy)->

177

Page 140: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: PETP/Polyamide

TYPE: E5

SUPPLIER: CERCEM

IDENTIFICATION: 182.5-1974

DESCRIPTION OF MATERIAL: Coil slot insulation made from aromatic polyamide and polyethylene terephthalate (PETP) composite with coating, for a 1 kW electric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 10 7 Gy

METHODS OF TESTING: Bending test, counting the number of 360° backward and forward bends (Swiss Std. VSM 23780) on samples of dimensions 100 X 10 mm 2

RESULTS: Before irradiation, the material still showed no damage after 100 bends. After a dose of 10 7 Gy, the tape broke after 50 bends.

Remarks:

REFERENCES: 19

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

1 no test

10' 102 10' 104 10-" 10" 107 10'

Dose (Gy)->

179

Page 141: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: Polyethylene terephthalate (PETP). thermoadhesive

TYPE: E2; Mylar

SUPPLIER: CERCEM

IDENTIFICATION: 182.2-1974

DESCRIPTION OF MATERIAL: Coil slot insulation, made from polyethylene terephthalate (Mylar) treated to obtain thermoadhesive pro­perties of the tape, for a 1 kW electric motor

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 107Gy

METHODS OF TESTING: Bending test, counting the number of 360° backward and forward bends (Swiss Std. VSM 23780) on samples of dimensions 100 X 10 mm2

RESULTS: Before irradiation, the material still showed no damage after 100 bends. After a dose of 107 Gy, the foil became very brittle and broke before the first complete bend. The colour changed from white to yellow.

Remarks: See also Adhesive tape for lower doses

REFERENCES: 19

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-i

106 107 108

181

Page 142: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

I INSULATING TAPE

BASE MATERIAL: Polypropylene (PP)

TYPE: -

SUPPLIER: -

IDENTIFICATION: 105-1979

DESCRIPTION OF MATERIAL: Tape made of polypropylene (PP) for fixing conductors inside cables of dimensions about 10 mm wide and less than 0.1 mm thickness

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106, 5 X 10 6Gy

METHODS OF TESTING: Bending test

RESULTS: Already at 5 X 105 Gy the material did not withstand one bend. At 1 X 106 Gy, it easily broke into pieces, and at 5 X 106 Gy, it deteriorated into small flakes.

Remarks: Inside an air-tight cable, the performance of such thin material may be satisfactory.

REFERENCES:

APPRECIATION: *** USE IN RADIATION AREAS NOT RECOMMENDED*** See Appendix 7

Degradation of mechanical properties:

10' 102 103 104 105

Dose (Gy)-i

106 107

183

Page 143: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

JOINT Phenolic paper see also Seal

185

Page 144: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

JOINT, BASE MATERIAL: Phenolic paper

TYPE: Pertinax

SUPPLIER: Leybold Heraeus

IDENTIFICATION: 43.1-1979

DESCRIPTION OF MATERIAL: Ballbearing cage made from phenolic paper (Pertinax), for a turbopump

APPLICATION AT CERN: To be used in rough vacuum pumping stations in the Super Proton Synchrotron vacuum system

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, s witched-off reactor position 35 in air, dose rate approx. 10Gy/s Doses: 1 X 10 4, 1 X 105 Gy

METHODS OF TESTING: After irradiation the ball bearing was reassembled and inserted into a pump for operational testing

RESULTS: No damage was detected

Remarks:

REFERENCES:

APPRECIATION: See Appendix 7

<— no test - •

10' 102 103 104 105 10 6 10 7 10'

Dose (Gy)-»

187

J MECHANICAL

Page 145: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

Kapton, trade name of Du Pont Polyimide, see Adhesive tape

Kevlar, trade name of Du Pont Aromatic polyamide, see Hose

Kynar, trade name of Pennwalt Chemical Corp. Polyvinylidene fluoride, see Thermoshrinking sheath

Materials listed in General Tables in Appendix 5

Kapton, trade name of Du Pont Polyimide, see Cable insulation, p. 21

Kel-F, trade name of Minnesota Mining & Manufacturing Co. Polychlorotrifluoroethylene, see Thermoplastic resin, p. 29

Page 146: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

L Entries and cross-references

LIGHTING Polycarbonate Silicone rubber

Lithium polysilicate see Paint

LUBRICATING OIL Diester oil

Luminous paint see Paint

Lupolen, trade name of BASF Polyethylene, see Cable insulation

191

Page 147: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

L LIGHTING

BASE MATERIAL: Polycarbonate; Silicone rubber

TYPE: -

SUPPLIER: -

IDENTIFICATION: 179-1979

DESCRIPTION OF MATERIAL: Items from a standard neon lamp, as follows: 1) rapid-exchange-type tube sockets made from polycar­bonate (Makrolon); 2) lamp starter St 111; 3) electrical connecting wires, insulated with glass-fibre-reinforced silicone rubber.

APPLICATION AT CERN: Lighting along the passageway in the Super Proton Synchrotron tunnel neutrino cave (SPS-TNC), in­stalled in 1979

IRRADIATION CONDITIONS: Type : Reactor ASTRA, switched-off reactor position 3 5 in air, dose rate approx. 10 Gy/s Doses: 1 X 10 6 Gy

METHODS OF TESTING: Qualitative mechanical test on items 1 and 3

RESULTS: Item 1: The plastic material Makrolon was more rigid than before irradiation and broke easily when pressure was applied to the plastic attachment spring. Item 2: No tests were made. Glass capsule of lamp starter became dark brown. Item 3: The silicone rubber was very brittle and broke at the smallest mechanical load, leaving the con­ductors naked. The glass-fibre reinforcement remained unchanged.

Remarks: After one year of operation in the SPS-TNC, failure of cables due to shrinkage of the insula­tion (silicone rubber); estimated absorbed dose 1 X 105 Gy. The cables had to be changed. See also Cable insulations.

REFERENCES:

APPRECIATION : See Appendix 7

10' 10 2 10 3 104 105

Dose (Gy)-»

106 10 7 10 8

193

Page 148: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

L LIGHTING

BASE MATERIAL: Various

TYPE: 65 W

SUPPLIER: -

IDENTIFICATION: 176-1977

DESCRIPTION OF MATERIAL: Transistorized power supply unit including a nickel-cadmium accumulator to provide emergency opera­tion in case of mains failure. Complete with standard neon lamp. Specified capacity: 1 hour operation with mains off.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Accelerator irradiation, CERN Intersecting Storage Rings (ISR-I3-ID2) Doses: 3.5 X 102, 5 X 103Gy

METHODS OF TESTING: Irradiation under tension (charging conditions). After irradiation, the most sensitive elements — the transistors 2N 3704 and BD 179 the Electronics Workshop.

were checked in

RESULTS: After a dose of 3.5 X 102 Gy, the light from the lamp was very feeble and flickering, i.e. there was no igni­tion. The batteries did not hold their charge. After a dose of 5 X 103 Gy, the lamp did not work at all; no light and no battery charge owing to failure of the electronic circuit. The amplification factor of the tran­sistors was already reduced by a factor of 10 after 3.5 X 102 Gy.

Remarks:

REFERENCES: 25

APPRECIATION: *** USE IN RADIA TION AREAS NOT RECOMMENDED*** See Appendix 7

102 103 104 105

Dose (Gy)-i

106 107 108

195

Page 149: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

LIGHTING BASE MATERIAL: Various

TYPE: -

SUPPLIER: -

IDENTIFICATION: 178-1973

f/f(0)

0 2.5 DoselkGyl

2.5+ 24h charging

SYMBOL PROPERTY INITIAL VALUES

• • •

battery voltage no load battery voltage charging battery voltage safety operation

2.81V 2.83 V 2.61V

f(0) = 2.81V

196

Page 150: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

L LIGHTING

BASE MATERIAL: Various

TYPE: -

SUPPLIER: -

IDENTIFICATION: 178-1973

DESCRIPTION OF MATERIAL: Safety lamp with buffered power supply to provide about 30 W for two electric bulbs in case of mains failure, with pilot lamp monitoring, charging during mains supply

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Accelerator irradiation, CERN Intersecting Storage Rings (ISR-I3-ID1), dose rate approx.

2Gy/h Doses: 2.5 X 103Gy

METHODS OF TESTING: Measurement of battery voltage for three cases: a) idle; b) charging + pilot lamp; c) safety operation. Tests were carried out before irradiation, after irradiation and two weeks' rest (no load, no charging), and after 24 h charging after irradiation and rest periods.

RESULTS: No significant damage after a dose of 2.5 X 103 Gy. After the rest period of two weeks, the battery voltage was down 15% but easily recovered, after 24 h charging, to a value only 5% lower than before irradiation.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

no te»t 101 102 103 10" 105

Dose (Gy)-)

106 107 108

197

Page 151: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

L LUBRICATING OIL

BASE MATERIAL: Diesteroil

TYPE: Aeroshell fluid 12

SUPPLIER: Shell

IDENTIFICATION: 45.2-1974

DESCRIPTION OF MATERIAL: Lubricating oil used for ball bearings in vacuum turbopumps.

APPLICATION AT CERN: Used in 150 rough pumping stations in the Super Proton Synchrotron vacuum system since 1976

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 3 X 105Gy

METHODS OF TESTING: Operational testing in the pump

RESULTS: No damage was detected

Remarks:

REFERENCES:

APPRECIATION: See Appendix 7

<— no tesjt —•

10' 102 10 3 104 105 106 107 108

Dose (Gy)-+

199

Page 152: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

L LUBRICATING OIL

BASE MATERIAL: Unknown

TYPE: -

SUPPLIER: -

IDENTIFICATION: 45.1-1974

DESCRIPTION OF MATERIAL: Lubricating oil used in vacuum pumping units

APPLICATION AT CERN: The oil was replaced by a more radiation-resistant one

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 3 X 105 Gy

METHODS OF TESTING:

RESULTS: Viscosity and colour changes (black). Could no longer be used.

Remarks:

REFERENCES:

APPRECIATION: *** USE IN RADIA TION AREAS NOT RECOMMENDED *** See Appendix 7

101 102 103 104 105 106

Dose (Gy)->

107 108

201

Page 153: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

Magnet coil insulation see Thermosetting resin

MAGNETIC MATERIAL Hypermalloy Iron, magnetically soft Iron 3% Si Iron 50% Co Iron 50% Ni

Makrolon, trade name of Bayer Polycarbonate, see Lighting

Micatherm, trade name of Allen Bradley Glass/mica composite, see Switch

Microswitch see Switch

Mineral oil see Insulating oil

MOTOR, ELECTRIC

Mylar, trade name of Du Pont Polyethylene terephthalate, see Adhesive tape see Insulating tape

Materials listed in General Tables in Appendix 5

Melamine-formaldehyde See Paint, p. 27 see Thermosetting resin, p. 30

Mineral oils see Oil, p. 26

Mylar, trade name of Du Pont Polyethylene terephthalate, see G-value, p. 24 see Thermosetting resin, p. 30

Page 154: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL BASE MATERIAL: Hypermalloy

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.8-1974

-200

B (T) ^

non-irradiated; no changes after irradiation to 9 X 10 2 3 n/m

204

Page 155: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL

BASE MATERIAL: Hypermalloy

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.8-1974

DESCRIPTION OF MATERIAL: Laminated ring cores of Hypermalloy. Thickness of laminations 0.5 mm. Mylar insulation between layers.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position RG in air; flux 4.3 X 10 1 7 n/m2 s (> 0.1 MeV) Doses: 9 X 10" n/m 2 (E > 0.1 MeV) Temperature : 150 ° C

METHODS OF TESTING: Using a 50 Hz ring core transformer method, hysteresis loops were evaluated on an oscilloscope before and after irradiation, to obtain the following functions:

B = fi(H): induction as a function of magnetic field, /u = fi(B): permeability as a function of induction, H c = I1(BR): coercitive force as a function of remanent induction.

RESULTS: No change in properties after irradiation up to 9 X 101 9 n/m 2

Remarks: A fluence of 10 2 4 n/m 2 (E > 0.1 MeV) corresponds to a dose of 2.2 X 107 Gy in iron or 4 X 109 Gy in organic (CH 2) n materials

REFERENCES: 26

APPRECIATION : See Appendix 7

10' 102 103 10" 105

Dose (Gy)-i

106 107 108

205

Page 156: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL

BASE MATERIAL: Iron, magnetically soft

TYPE: Fe 99.99%

SUPPLIER: -

IDENTIFICATION : 244.11 -19 74

DESCRIPTION OF MATERIAL: Laminated ring cores of iron (Fe 99.99%). Thickness of laminations 0.5 mm. Mylar insulation between layers.

APPLICATION AT CERN: Core and septa of splitter magnets in the Super Proton Synchrotron

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position RG in air; flux 5.3 X 101 7 n/m2 s (> 0.1 MeV) Doses: 1 X 10 2 4 n/m 2 (E > 0.1 MeV) Temperature : 150 ° C

METHODS OF TESTING: Using a 50 Hz ring core transformer method, hysteresis loops were evaluated on an oscilloscope before and after irradiation, to obtain the following functions:

B = f(H): induction as a function of magnetic field, H = f(B): permeability as a function of induction, H c = f(BR): coercitive force as a function of remanent induction.

RESULTS: The test did reveal no major change in properties. The permeability was increased by less than 10%. The test was not appropriate to measure the static properties which govern the service conditions.

Remarks: A fluence of 10 2 4 n/m 2 (E > 0.1 MeV) corresponds to a dose of 2.2 X 107 Gy in iron or 4X 10 9Gy in organic (CH 2) n materials

REFERENCES: 26

APPRECIATION: See Appendix 7

101 102 103 104 105

Dose (Gy)-i

106 107 108

207

Page 157: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL

BASE MATERIAL: Iron, magnetically soft

TYPE: Low-carbon steel

SUPPLIER: -

IDENTIFICATION: 244.20-1974

DESCRIPTION OF MATERIAL: Laminated ring cores of iron. Thickness of laminations 1.5 mm, insulated with Mylar foil of 0.2 mm thickness.

APPLICATION AT CERN: Laminated magnets (quadrupoles and dipoles) in the Super Proton Synchrotron

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, position RG in air; flux 5.0 X 10 1 7 n /m 2 s ( > 0.1 MeV) Doses: I X 10 2 4 n /m 2 (E > 0.1 MeV) Temperature : 15 0 ° C

METHODS OF TESTING: Using a 50 Hz ring core transformer method, hysteresis loops were evaluated on an oscilloscope before and after irradiation, to obtain the following functions:

B = f(H): induction as a function of magnetic field, H = f(B): permeability as a function of induction, H c = f(BR): coercitive force as a function of remanent induction.

RESULTS: The test did reveal no major change in properties. Below 1.8 T, the permeability increased by less than 10%, and also near 2 T an increase was noted. However, the test was not appropriate to measure the static properties which govern the service conditions.

Remarks: A fluence of 10 2 4 n/m 2 (E > 0.1 MeV) corresponds to a dose of 2.2 X 10 7 Gy in iron or 4 X 10 9 Gy in organic ( C H a ) n materials

REFERENCES: 26

APPRECIATION : See Appendix 7

10' 102 103 104 10 s

Dose (Gy)->

10" 10 7 108

209

Page 158: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL

BASE MATERIAL: Iron, magnetically soft

TYPE: Low-carbon steel

SUPPLIER: -

IDENTIFICATION: 244.19-1974

DESCRIPTION OF MATERIAL: Laminated ring cores, cut from 1.5 mm thickness punched and specially annealed C-cores from low-carbon ( < 0.1%), low-silicon steel. The heat treatment was at 700-750 °C in reducing atmosphere. The ring cores were not annealed and not insulated.

APPLICATION AT CERN: Used for main magnet cores of the 28 GeV Proton Synchrotron in the year 1957.

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position RG in air; flux 5.4 X 10 1 7 n/m 2 s (> 0.1 MeV) Doses: 1.3 X 1 0 2 4 n / m 2 ( E > 0.1 MeV) Temperature : 15 0 ° C

METHODS OF TESTING: Using a 50 Hz ring core transformer method, hysteresis loops were evaluated on an oscilloscope before and after irradiation, to obtain the following functions:

B = f(H): induction as a function of magnetic field, (i = f(B): permeability as a function of induction, H c = f(BR): coercitive force as a function of remanent induction.

RESULTS: The test did reveal no major change in properties. Only above 1.9 T, the permeability ft is gradually reduced by 15% at maximum. However, the method of test chosen was not appropriate to measure the static properties governing the service conditions, nor could it detect small changes in the working range B < 1.7T.

Remarks: A fluence of 10 2 4 n/m 2 (E > 0.1 MeV) corresponds to a dose of 2.2 X 107 Gy in iron or 4 X 109 Gy in organic (CH 2) n materials

REFERENCES: 26

APPRECIATION : See Appendix 7

10' 102 10 3 104 105 106 107 10 8

Dose (Gy)-»

211

Page 159: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL BASE MATERIAL: Iron, silicon (3%)

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.3-1974

(7

t E <

i r

H c =F(B r ) I L

0

i r

,'#B= f (H)

y,-- f (B )

J L

B ( T ) — -

800

600

400

200

0

non-irradiated irradiated to 1.0 X 10 2 4n/m 2

212

Page 160: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL

BASE MATERIAL: Iron, silicon (3%)

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.3-1974

DESCRIPTION OF MATERIAL: Laminated ring cores of iron-silicon alloy. Thickness of laminations 0.4 mm. Mylar insulation between layers.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position RG in air; flux 4.8 X 10 1 7 n/m2 s (> 0.1 MeV) Doses: 1 X 10 2 4 n/m 2 (E > 0.1 MeV) Temperature: 150 °C

METHODS OF TESTING: Using a 50 Hz ring core transformer method, hysteresis loops were evaluated on an oscilloscope before and after irradiation, to obtain the following functions:

B = f(H): induction as a function of magnetic field, fi = f(B): permeability as a function of induction, H c = f(BR): coercitive force as a function of remanent induction.

RESULTS: No major change in properties. See graph on opposite page

Remarks: A fluence of 10 2 4 n/m2 (E > 0.1 MeV) corresponds to a dose of 2.2 X 107 Gy in iron or 4 X 109 Gy in organic (CH 2) n materials

REFERENCES: 26

APPRECIATION: See Appendix 7

10' 102 103 104 105

Dose (Gy)-H

106 107 108

213

Page 161: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL BASE MATERIAL: Iron, cobalt (50%)

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.14-1974

i e <

B (T)

non-irradiated irradiated to 1.1 X 10 2 4n/m 2

214

Page 162: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL

BASE MATERIAL: Iron, cobalt (50%)

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.14-1974

DESCRIPTION OF MATERIAL: Laminated ring cores of iron-cobalt. Thickness of laminations 0.3 mm. Mylar insulation between layers.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position RG in air; flux 5.3 X 10 1 7 n/m2 s (> 0.1 MeV) Doses: 1.1 X 10 2 4n/m 2(E > 0.1 MeV) Temperature : 15 0 ° C

METHODS OF TESTING: Using a 50 Hz ring core transformer method, hysteresis loops were evaluated on an oscilloscope before and after irradiation, to obtain the following functions:

B = f(H): induction as a function of magnetic field, H = f(B): permeability as a function of induction, H c = f(BR): coercitive force as a function of remanent induction.

RESULTS: No major change in properties, see graph on opposite page

Remarks: A fluence of 10 2 4 n/m 2 (E > 0.1 MeV) corresponds to a dose of 2.2 X 107 Gy in iron or 4 X 109 Gy in organic (CH 2) n materials

REFERENCES: 26

APPRECIATION : See Appendix 7

10' 102 103 104 105

Dose (Gy)-)

10" 107 108

215

Page 163: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL BASE MATERIAL: Iron, nickel (50%)

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.7-1974

1 E

<

B (T) — ^

non-irradiated irradiated to 1.2 X 10 2 4n/m 2

216

Page 164: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL

BASE MATERIAL: Iron, nickel (50%)

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.7-1974

DESCRIPTION OF MATERIAL: Laminated ring cores of iron-nickel. Thickness of laminations 0.3 mm. Mylar insulation between layers.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position RG in air; flux 5.5 X 10 1 7 n/m2 s (> 0.1 MeV) Doses: 1.2 X 10 2 4 n/m2 (E > 0.1 MeV) Temperature : 150 ° C

METHODS OF TESTING: Using a 50 Hz ring core transformer method, hysteresis loops were evaluated on an oscilloscope before and after irradiation, to obtain the following functions:

B = f(H): induction as a function of magnetic field, fi = f(B): permeability as a function of induction, H c = f(BR): coercitive force as a function of remanent induction.

RESULTS: No major change in properties, see graph on opposite page

Remarks: A fluence of 10 2 4 n/m2 (E > 0.1 MeV) corresponds to a dose of 2.2 X 107 Gy in iron or 4 X 109 Gy in organic (CH 2) n materials

REFERENCES: 26

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (Gy)-i

106 107 108

217

Page 165: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL BASE MATERIAL: Iron, nickel (50%)

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.4-1974

i E

<

B ( T )

non-irradiated irradiated to 8 X 10"n/m 2

218

Page 166: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MAGNETIC MATERIAL

BASE MATERIAL: Iron, nickel (50%)

TYPE: -

SUPPLIER: Unknown

IDENTIFICATION: 244.4-1974

DESCRIPTION OF MATERIAL: Laminated ring cores of iron-nickel. Thickness of laminations 0.3 mm. Mylar insulation between layers.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position RG in air; flux 3.8 X 10 1 7 n/m2 s (> 0.1 MeV) Doses: 8 X 10 2 3n/m 2(E > 0.1 MeV) Temperature: 150 °C

METHODS OF TESTING: Using a 50 Hz ring core transformer method, hysteresis loops were evaluated on an oscilloscope before and after irradiation, to obtain the following functions:

B = f(H): induction as a function of magnetic field, jx = f(B): permeability as a function of induction, H c = f(BR): coercitive force as a function of remanent induction.

RESULTS: No major change in properties, see graph on opposite page

Remarks: A fluence of 10 2 4 n/m2 (E > 0.1 MeV) corresponds to a dose of 2.2 X 107 Gy in iron or 4 X 109 Gy in organic (CH 2) n materials

REFERENCES: 26

APPRECIATION : See Appendix 7

10' 102 103 104 105

Dose (Gy)-H

106 107 108

219

Page 167: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR, ELECTRIC

BASE MATERIAL: Various

TYPE: GR32.0

SUPPLIER: ITT

IDENTIFICATION: 285-1980

DESCRIPTION OF MATERIAL: Motor with built-in speed reducer. Radiation-sensitive items: Phenolic resin (rotor support), polyamide, epoxy resins.

APPLICATION AT CERN: Used in electrostatic septa in the Super Proton Synchrotron LSS5

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reractor position 35 in air, dose rate 10 Gy/s Doses: I X 106Gy

METHODS OF TESTING: Operational test

RESULTS: Slight degradation of support of commutator brushes. No change in electrical properties, working well.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

«- no ^est —• 101 102 103 104 105 106 107 10'

Dose (Gy)-»

221

Page 168: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR BASE MATERIAL: Various

TYPE: AXEMF9M4 with gears E90

SUPPLIER: CEM

IDENTIFICATION: 270-1975

Results of manufacturer's check after irradiation

Tested property Result of test

Measured electromotive force at 16.7s '

Measured torque atO, 16.7 s~\ 33.3 s~'. and 50 s~' Insulation test

Mechanical test on bond of magnets

Mechanical test on bond of rotor

Mechanical test on ball bearing

Lubrification grease of stepping down gears

Colour of insulation of rotor and magnets

Reduction of 3% within error

Within +6/—8% of initial value (within error)

Good at 350 V

Good

Good

Good

Seems good

Slightly brownish

222

Page 169: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR

BASE MATERIAL: Various

TYPE: AXEM F9M4 with gears E90

SUPPLIER: CEM

IDENTIFICATION: 270-1975

DESCRIPTION OF MATERIAL: Servomotor with disk-type rotor, 55 W/24 d.c., with reduction 1/75 delivering 12.7 Nm at 0.67 s - ' .

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: 6 0 Co source, dose rate 3 Gy/s Doses: I X 106 Gy

METHODS OF TESTING: Mechanical and electrical tests before and after irradiation performed by the supplier

RESULTS: No change of mechanical or electrical properties within measurement error. Slight change in colour of ad­hesive and insulation resins noticed.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

<— no ^est —•

10' 102 103 104 105 106 107 10'

Dose (Gy)-+

223

Page 170: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR, ELECTRIC BASE MATERIAL: Various, see table

TYPE: MEUA 90S4, COMPAX

SUPPLIER: CEM

IDENTIFICATION: 181-1975

Results of insulation tests on windings 5 kV dry insulation resistance: greater than 20 GQ. Tampon moistened with salty water, 5 kV: only one feeble point found. Breakdown voltage at 50 Hz: minimum 3.9 kV, more than twice the specified value.

Check on radiation effects in the especially selected radiation-resistant components (after disassembly of motor)

Functional item

Selected material, brand name

Results

Coil impregnation

Norsodyne292T: tetrahydrophthalic polyester

No visible cracks; no change of colour; no other change

Wire insulation PortàBinson type IV: resin ester-imide

Resists coiling and uncoiling test on core 4 X dia.

Coil slot insulation

Nomex: aromatic polyamide/paper

Good resistance to tearing and 'bending en bloc'

Interphase insulation

ThernomidE40NC: aromatic polyamide/PETP

Good resistance to 'bending en bloc'

Cable insulation

Neoprene Breaks in coiling test on core 10 X dia. Sufficient for service conditions

Insulating sleeve

Couzin 453: glass fibre/silicone

Still soft

Filler Tergal fibres, impregnated Good resin impregnation, compact

Terminal board Charged polyester Perfect

Fan Polyamide A4K Colour deep yellow. Still soft enough.

Lubricating grease

APL700 Some leakage, but the lubricant did not become detached. Still homogeneous.

224

Page 171: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR, ELECTRIC

BASE MATERIAL: Various, see table on opposite page

TYPE: MEUA90S4,COMPAX

SUPPLIER: CEM

IDENTIFICATION: 181-1975

DESCRIPTION OF MATERIAL: Motor COMPAX 1.1 kW, 220/380 V triple phase. Prototype with selected constituents according to irradiation tests (Réf. 19) (see table) to obtain operation up to 10 6Gy.

APPLICATION AT CERN: Installed in the Super Proton Synchrotron for adjustment of beam transport elements and for moving beam dumps.

IRRADIATION CONDITIONS: Type: 6 0 Co source, dose rate approx. 1 Gy/s Doses: 10 6Gy

METHODS OF TESTING: After homogeneous irradiation under tension (no load, free running), the motor was tested and then dis­assembled by the research laboratories of the supplier, to judge the damage to the different constituents.

RESULTS: Apart from a slight deterioration of the insulation of the fixed leads and a slight coloration of the plastic parts, no changes were detected after disassembly. Results of insulation tests were well superior to those given in the specification. For detailed results, see table on opposite page.

Remarks:

REFERENCES: 19

APPRECIATION : See Appendix 7

no est 101 102 103 104 105

Dose (Gy)-i

106 107 108

225

Page 172: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR, ELECTRIC BASE MATERIAL: Various, see table

TYPE: MEFA90L8

SUPPLIER: CEM

IDENTIFICATION: 262-1975

Description of material

Wire insulation:

Slot and phase insulation:

Cable insulation:

Insulating sleeves:

Impregnation:

Terminal board:

Lubricant:

Fan:

Ester-imide resin. Port à Binson, type IV

Nomex (aromatic polyamide paper)

Kapton + silicone-impregnated glass-fibre braid

Kapton tape

Norsodyne 292T (polyester resin)

none

Chevron NRRG 235

Suppressed

226

Page 173: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR, ELECTRIC

BASE MATERIAL: Various, see table on opposite page

TYPE: MEFA90L8

SUPPLIER: CEM

IDENTIFICATION: 262-1975

DESCRIPTION OF MATERIAL: Asynchronous motor, triple phase, 220/380 V, 1.1 kW at 750 r/min. Designed operation time 5 min/h. For a further description of materials, see table on opposite page.

APPLICATION AT CERN: Used for adjustment and remote handling of beam transport elements in the Super Proton Synchrotron neutrino beam facility

IRRADIATION CONDITIONS: Type : 6 0 C o source, dose rate 2 Gy/s Doses: 1 X 107,3 X 107Gy

METHODS OF TESTING: Insulation resistance and high-voltage tests (1, 2, 3, and 4 kV) between phase windings and winding to cage. Thereafter operation under intermittent load for 24 hours.

RESULTS: No defects found, still operating according to specifications

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

III no test 101 102 103 104 105 106 107 10'

Dose (Gy)-+

227

Page 174: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR, ELECTRIC BASE MATERIAL: Various, see table

TYPE: MT 100, LB 28, F 215-8

SUPPLIER: ASEA

IDENTIFICATION: 263-1975

Description of material

Wire insulation:

Slot and phase insulation:

Cable insulation:

Insulating sleeves:

Coil impregnation:

Terminal board:

Fan:

Lubricant:

Corrosion protection:

Polyimide

Kapton

Kapton 4- silicone-impregnated glass-fibre braid

Epoxy resin with glass-fibre braid

AralditeF(CY205 + HY905)

Steatit

Aluminium

Chevron NRRG

Zinc chromate

228

Page 175: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

M MOTOR, ELECTRIC

BASE MATERIAL: Various, see table on opposite page

TYPE: MT100,LB28,F215-8

SUPPLIER: ASEA

IDENTIFICATION: 263-1975

DESCRIPTION OF MATERIAL: Asynchronous motor, triple phase, 380 V, 1.1 kW at 700 r/min. Designed operation time 2 min/h. For a further description of materials, see table on opposite page. Proposed for moving beam transport ele­ments in the Super Proton Synchrotron.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: 6 0 Co source, dose rate 2 Gy/s Doses: 1 X 107,2 X 107, 3 X 107 Gy

METHODS OF TESTING: Operation under intermittent load for 24 hours. Insulation resistance and high-voltage tests (1, 2, 3, and 4 kV) between phase windings and winding to cage.

RESULTS: Still operating according to specifications. Breakdown during the last 4 kV test.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

1 no test 101 102 103 104 10s 106 107 10'

Dose (Gy)-»

229

Page 176: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

Neoprene Chloroprene rubber, see Cable insulations

Nitrile-butadiene rubber (NBR) see Seal

Nomex, trade name of Du Pont Polyamide paper, see Adhesive tape see Insulating tape

Noryl, trade name of General Electric Polyphenylene oxide, see Connector

Novolac see Thermosetting resin

Nylon Polyamide, see Cable tie see Adhesive tape see Insulating tape see Vacuum valve

Materials listed in General Tables in Appendix 5

Neoprene Polychloroprene rubber see Cable insulation, p. 21 see Elastomer, p. 22 see G-value, p. 24 see Hose, p. 25 see Paint, p. 27

Nomex, trade name of Du Pont Aromatic polyamide, see Textile, p. 28

Nylon Polyamide, see G-value, p. 24 see Hoses, p. 25 see Textile, p. 28 see Thermoplastic resin, p. 29

Page 177: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

o Entries and cross-references

Oil Table of general relative radiation effects in Appendix 5 see Insulating oil see Lubricating oil

OPTICAL FIBRE Glass Glass/B,Ge,Sb,Pb Glass/Ge Silica/F

O-ring see Seal

Materials listed in General Tables in Appendix 5

Orion, trade name of Du Pont Polyacryl, see Textile, p. 28

233

Page 178: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

o OPTICAL FIBRE

BASE MATERIAL: Glass

TYPE: -

SUPPLIER: -

IDENTIFICATION: 142-1979

DESCRIPTION OF MATERIAL: Two fibre-optic faceplate disks of thickness 5 mm and 7.5 mm

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Accelerator CERN Intersecting Storage Rings (ISR-I3-ID2) Doses: 2X 10 2Gy

METHODS OF TESTING: Transmission measurement by manufacturer using a densicron and collimated white light

RESULTS: The light transmission was 65% and 60% for the 5 mm and 7.5 mm plates, respectively, before irradia­tion. After a dose of 2 X 102 Gy, the transmission decreased about 8%, yielding 60% and 55%.

Remarks:

REFERENCES: 17

APPRECIATION : See Appendix 7

r no te >t —•

101 102 103 104 105 106 107 10'

Dose (Gy)->

235

Page 179: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

o OPTICAL FIBRE BASE MATERIAL: Glass B. Ge. Sb. Pb

TYPE: SCT345.SCT350.SCT368.SCT426

SUPPLIER: Schott&Gen.

IDENTIFICATION: 1.3-1978

150

f-f(0) [dB/km]

DoselGy

SYMBOL PROPERTY INITIAL VALUES REMARK

• 1 6.7 dB/km SCT345 • attenuation 3.9 dB/km SCT350 • at850nm 8.1 dB/km SCT368 • J 4.2 dB/km SCT426

o "l 3.6 dB/km SCT345 • attenuation 2.2 dB/km SCT350 A at 1080 nm 6.0 dB/km SCT368 O . 2.2 dB/km SCT426

236

Page 180: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

o OPTICAL FIBRE

BASE MATERIAL: Glass B, Ge, Sb, Pb

TYPE: SCT345,SCT350,SCT368,SCT426

SUPPLIER: Schott & Gen.

IDENTIFICATION: 1.3-1978

DESCRIPTION OF MATERIAL: Gradient fibres made from glass (Si0 2, B 20,), as follows: SCT345 (Doped with GeO) Corediam. 49//m Ext. diam. 130/im SCT350 GeO,Sb) 40 pm 137^/m SCT368 Sb) 42/um 135jum SCT426 Pb 2 0 5 ) 56/im 135/im

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Accelerator CERN Intersecting Storage Rings (ISR-I3-ID2) Doses: 1.5 X 102Gy

METHODS OF TESTING: Attenuation and pulse dispersion at 850 and 1080 nm measured by manufacturer

RESULTS: After 1.5 X 102 Gy, the attenuation had increased by 25 to 46 dB/km, or 300 to 40,000 times on a linear scale for the operational wavelength of 850 nm. At 1080 nm, for which wavelength the fibres were not designed, the attenuation after irradiation of types 368 and 426 increased by only 8 and 7 dB/km, res­pectively.

Remarks:

REFERENCES: 27

APPRECIATION : *** USE IN RADIA TIONAREAS NOT RECOMMENDED*** See Appendix 7

10' 102 103 104 105 106 107 108

Dose (Gy)->

237

Page 181: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

o OPTICAL FIBRE BASE MATERIAL: Glass/Ge

TYPE: ATF172

SUPPLIER: AEG-Telefunken

IDENTIFICATION: 1.1-1978

300

f/f(0) [%l

DoselGy]

SYMBOL PROPERTY

attenuation at 850 nm attenuation at 1080 nm

INITIAL VALUES

5.2dB/km 4.3dB/km

238

Page 182: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

o OPTICAL FIBRE

BASE MATERIAL: Glass/Ge

TYPE: ATF172

SUPPLIER: AEG-Telefunken

IDENTIFICATION: 1.1-1978

DESCRIPTION OF MATERIAL: Gradient fibre, mainly Ge doped. Attenuation 5.2 dB/km at 860 nm, core diameter 44/um, external diame­ter 128/im.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Accelerator CERN Intersecting Storage Rings (ISR-I3-ID1) Doses: 5 X 102,1 X 10 3Gy

METHODS OF TESTING: Measurement of attenuation at 850 and 1080 nm by the manufacturer

RESULTS: After 5 X 102 Gy, the attenuation had already increased by 145 dB/km making the fibre totally useless at the operation wavelength of 850 nm. Extrapolated value at 1.5 X 102 Gy: increase of 43 dB/km. However, at 1080 nm the attenuation was only 10 dB/km after 5 X 102 Gy or 5 dB/km at 1.5 X 102 Gy, leaving the fibre still useful at this wavelength.

Remarks:

REFERENCES: 27

APPRECIATION : *** USE IN RADIA TION AREAS NOT RECOMMENDED * See Appendix 7

101 102 103 104 105 106 107 108

Dose (Gy)-*

239

Page 183: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

o OPTICAL FIBRE BASE MATERIAL: Silica/F

TYPE: HQS067, HQSIOO

SUPPLIER: HeraeusQuarzschmelze

IDENTIFICATION: 1.2-1978

f-f(O) [dB/kml

DoselGy

SYMBOL

: }

PROPERTY

attenuation at850nm

attenuation at 1080 nm

INITIAL VALUES

3.8dB/km 3.6dB/km 1.5dB/km 1.8dB/km

REMARKS

HQS067 HQS 100 HQS067 HQS 100

240

Page 184: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

BASE MATERIAL: Silica/F

TYPE: HQS067,HQS100

SUPPLIER: Heraeus Quarzschmelze

IDENTIFICATION: 1.2-1978

DESCRIPTION OF MATERIAL: Type i.d. o.d. Base material

Cum) (jum)

o OPTICAL FIBRE

Doping Attenuation

HQS 067, step profile HQS 100, gradient fibre

100 45

125 125

Si0 2 pure Si0 2pure

3% F max. 3% F

3.8dB/km(860nm) 3.6dB/km(860nm)

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Accelerator CERN Intersecting Storage Rings (ISR-I3-ID2) Doses: 1.5 X 102Gy

METHODS OF TESTING: Attenuation at 860 and 1060 nm measured by manufacturer

RESULTS: After 1.5 X 102Gy, the attenuation had increased by 39 and 106dB/km,or8 X 10 3 and4X 10'° times on a linear scale for the operational wavelength of 860 nm. At 1060 nm, the increase in attenuation was 19 and 29 dB/km, respectively.

Remarks:

REFERENCES: 27

APPRECIATION: *** USE IN RADIATION AREAS NOT RECOMMENDED*** See Appendix 7

101 102 103 104 105

Dose (Gy)^

106 107 108

241

Page 185: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

PAINT Table of general relative radiation effects in Appendix 5 Acrylic resin, luminescent pigment Epoxy resin Lithium polysilicate Polyacrylate Polyurethane

Paper see Insulating tape

Particle detector see Silicon detector

Pertinax, trade name of Felten & Guillaume Phenolic paper, see Joint

Plexiglas, trade name of Roehm & Haas Polyacryl, see Scintillator

Polyacrylate see Paint see Scintillator

Polyamide see Adhesive tape see Cable tie see Insulated wire see Insulating tape see Vacuum valve

Polybutylene terephthalate (PBTP) see Cable tie

Polycarbonate see Lighting

Polychloroprene (Neoprene) see Cable insulation see Seal

Polyester resin see Insulated wire see Terminal board see also Polyethylene terephthalate

Polyethylene (PE) and (XLPE) see Cable insulation see Cable tie

Polyethylene terephthalate (PETP) see Adhesive tape see Hose see Insulated wire see Insulating tape

Page 186: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

p Polyhydantoin

see Adhseive tape

Polyimide see Adhesive tape

Polyolefin see Cable insulation see Thermoshrinking sheath

Polyphenylene oxide (PPO) see Connector

Polyphenylene sulfide (PPS) see Connector

Polypropylene (PP) see Insulating tape

Polysiloxane see Silicone rubber

Polytetrafluoroethylene (Teflon PTFE) see Heating element

Polyurethane resin (PUR) see Paint see Foam

Polyurethane rubber (PUR) see Seal

Polyvinylidene fluoride see Thermoshrinking sheath

Polyvinyl chloride (PVC) see Cable insulation

Polyvinyl toluene see Scintillator

244

Page 187: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

p Materials listed in General Tables in Appendix 5

Perbunan, trade name of Bayer Acrylonitrile-butadiene rubber, see Hose, p. 25

Perfluoro(ethylene/propylene)(FEP) see Cable insulation, p. 21 see Thermoplastic resin, p. 29

Phenolic resin see Thermosetting resin, p. 27 see Paint, p. 30

Phosphate oil see Oil, p. 26

Polyacryl see Textile, p. 28

Polyacrylonitrile see G-value, p. 24

Polyamide (Nylon) see G-value, p. 24 see Hose, p. 25 see Textile, p. 28 see Thermoplastic resin, p. 29

Polybutadiene see G-value, p. 24

Polycarbonate see Thermoplastic resin, p. 29

Polychloroprene (Neoprene) see Cable insulation, p. 21 see Elastomer, p. 22 see G-value, p. 24 see Hose, p. 25 see Paint, p. 27

Polychlorotrifluoroethylene(PCTFE) see Thermoplastic resin, p. 29

Polyester see Paint, p. 27 see Textile, p. 28 see Thermosetting resin, p. 30

Polyethylene (PE) and (XLPE) see Cable insulation, p. 21 see G-value, p. 24 see Hose, p. 25 see Thermoplastic resin, p. 29

245

Page 188: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

p Polyethylene terephthalate (PETP)

see Cable insulation, p. 21 see G-value, p. 24 see Thermosetting resin, p. 30

Polyglycol oil see Oil, p. 26

Polyimide see Cable insulation, p. 21

Polyisobutylene see G-value, p. 24

Polymethyl methacrylate (PMM A) see G-value, p. 24 see Paint, p. 27 see Thermoplastic resin, p. 29

Polyolefin see Cable insulation, p. 21 see Hose, p. 25

Polyphenylene oxide (PPO) see Hose, p. 25

Polypropylene (PP) see Cable insulation, p. 21 see Thermoplastic resin, p. 29

Polysiloxane (Silicone rubber, SIR) see Cable insulation, p. 21 see Elastomer, p. 22 see G-value, p. 24 see Hose, p. 25

Polystyrene see G-value, p. 24 see Thermoplastic resin, p. 29

Polytetrafluoroethylene (Teflon PTFE) see Cable insulation, p. 21 see G-value, p. 24 see Hose, p. 25 see Thermoplastic resin, p. 29

Polyurethane resin (PUR) see Paint, p. 27 see Thermosetting resin, p. 30

Polyurethane rubber (PUR) see Cable insulation, p. 21 see Elastomer, p. 22 see G-value, p. 24

246

Page 189: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Polyvinyl alcohol see G-value, p. 24

Polyvinyl butyral see Thermoplastic resin, p. 29

Polyvinyl chloride (PVC) see Cable insulation, p. 21 see G-value, p. 24 see Hose, p. 25 see Thermoplastic resin, p. 29

Polyvinyl formal see Thermoplastic resin, p. 29

Poly vinylidene chloride see Textile, p. 28 see Thermoplastic resin, p. 29

Pyrofïl, trade name of Daetwyler Ethylene-propylene rubber, see Cable insulation, p. 21

Page 190: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

PAINT BASE MATERIAL: Acrylic resin, luminescent pigment

TYPE: -

SUPPLIER: -

IDENTIFICATION: 267-1978

DESCRIPTION OF MATERIAL: Luminous paint glowing green in the dark, used for warning signs. Special luminescent pigment bonded with pure acrylic resin, no radioactive doping element. According to manufacturer, 8% of initial luminosi­ty retained after 30 min.

APPLICATION AT CERN: Used in Super Proton Synchrotron underground tunnels as indication signs in case of power cut.

IRRADIATION CONDITIONS: Type: Accelerator, in the CERN Super Proton Synchrotron tunnel neutrino cave Doses: 1.5 X 10 5Gy

METHODS OF TESTING: Paint applied on cardboard strips of 5 X 20 X 200 mm3. Visual check of glow effect.

RESULTS: No damage was detected

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

no est 10' 102 103 104 105

Dose (Gy)n

107

249

Page 191: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

PAINT BASE MATERIAL: Epoxy resins

TYPE: Epikote

SUPPLIER: Dr. W. Màder AG

IDENTIFICATION: 247.1-1973

Material Dose

(Gy)

Impact hardness

SNV137112

Grid scarifi-cation31

SNVI37111

IHV h Visual judgement

Epoxy two-component coating. 0 135 Epikote type 1001 hardened 5 X 105 127 in situ with a solvent containing 1 X 106 151 aliphatic amine adduct. 5 X 106 124

White, silky, glossy 900 Slight colour change 900 Important colour change

1200 Brown, film disintegrated

Epoxy two-component coating. 0 140 Epikote type 1009 hardened 5 X 105 145 with a solvent containing I X 106 154 aromatic diisocyanate. 5 X 106 135

White, glossy tin ( Slight colour change 480 J 300 Colour changed to yellow

Epoxy two-component laminate. Epikote type 828, hardened with a solvent-free aromatic amine.

0 5 X 105

1 X 106

5X 106

154 156 149 153

Reddish brown 430 Unchanged 700 Slight colour change 600 Important colour change

a) Appreciation: 0 = very good, 1 = good, 2 = moderate to good, 3 = moderate, 4 = bad b) IHV = Infinitesimal hardness before film swelling in steam.

250

Page 192: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

p PAINT

BASE MATERIAL: Epoxy resins

TYPE: Epikote

SUPPLIER: Dr. W. Màder AG

IDENTIFICATION: 247.1-1973

DESCRIPTION OF MATERIAL: Epoxy two-component coating, Epikote type, hardened with aromatic and aliphatic amines

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105,1 X 106,5 X 10 6Gy

METHODS OF TESTING: Impact hardness, grid scarification, infinitesimal hardness, and visual judgement

RESULTS: See table on opposite page

Remarks:

REFERENCES: 28

APPRECIATION : See Appendix 7

«— no jest —•

101 102 103 104 105 106 107 101

Dose (Gy)->

251

Page 193: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

p PAINT BASE MATERIAL: Epoxy and lithium polysilicate resins

TYPE: See table

SUPPLIER: Dr. W. Màder AG

IDENTIFICATION: 246-1972

Material Dose

(Gy)

Impact hardness

SNV 137112

Grid sacrifi-cation"'

SNV 137111

Visual judgement

Epoxy two-component coating, Novolac type, hardened with a solvent containing aromatic amine.

0 5X 10' 8X 10' 2X 10'

190-196 203-206 177-170 183-192

2 3 4 4

} White, glossy

Spotted, slight colour change

Partial detachment of layers

Epoxy two-component coating, Epikote type 1001, hardened in situ with a solvent containing aliphatic amine adduct.

0 5X 10' 8X 10' 2X 10'

139-135 131-135

1 0

} Grey, glossy Unchanged Spotted, slight colour change. partial detachment of layers

Epoxy two-component laminate, Epikote type 828, hardened with a solvent-free aromatic amine.

0 5X 10' 8X 10' 2X 10'

202-214 207-211

3-4 3-4

} Reddish brown, glossy Slight colour change Important colour change, most parts detached

Lithium polysilicate/zinc-dust paint, diluted with water.

0 5X 10' 8X 10'

123-140 116-124 111-117

0-1 Grey Unchanged Unchanged

a) Appreciation:*) = very good, 1 = good, 2 = moderate to good, 3 = moderate, 4 = bad

252

Page 194: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

PAINT BASE MATERIAL: Epoxy and lithium polysilicate resins

TYPE: See table on opposite page

SUPPLIER : Dr. W. Màder AG

IDENTIFICATION: 246-1972

DESCRIPTION OF MATERIAL: Epoxy-type two-component coatings hardened with aromatic or aliphatic amines. Lithium polysilicate/ zinc-dust paint

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105,8 X 106, 2 X 107 Gy

METHODS OF TESTING: Impact hardness, grid scarification test, and visual judgement

RESULTS: See table on opposite page

Remarks:

REFERENCES: 28

APPRECIATION : See Appendix 7

10' 102 103 I0 4 105

Dose (Gy)-i

106 107 108

Page 195: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

PAINT BASE MATERIAL: Epoxy. polyacrylate. and polyurethane resins

TYPE: See table

SUPPLIER: Dr. W. Màder AG

IDENTIFICATION: 245-1973

Material Dose

(Gy)

Grid scarifi-cation a )

SVN137111

IHVb Visualjudgement

2 X epoxy primer hardened with aromatic diisocyanate. 2 X PUR topcoat hardened with aliphatic diisocyanate.

0 3 X 10' 5X 10' 1 X 10'

490 430 280 313

White, glossy Very little colour change

Little colour change

1 X ethyl silicate/zinc dust primer. 0 1 X epoxy primer hardened with 3 X 10' aromatic diisocyanate. 5 X 10' 2 X polyacrylate topcoat con- 1 X 10' taining a hydroxyl group, hardened with aliphatic diisocyanate.

1 3 0

2-3

200 333 475 425

White, glossy Very little colour change

Little colour change

2 X epoxy primer hardened with polyamino amide. 2 X epoxy topcoat hardened with aromatic diisocyanate.

0 3X 10' 5X 10' 1 X 10'

320 345 185 280

White, glossy Colour changed to yellow

Colour changed to dark yellow

2 X epoxy primer hardened with polyamine adduct. 2 X epoxy topcoat hardened with aromatic amine, low solvent content.

0 3X 10' 5X 10' 1 X 10'

0 0 0

0-1

275 245 270 250

White, glossy Slight colour change to yellow

Colour changed to yellow

3 X epoxy laminate hardened with aromatic amine, low solvent content.

0 3X 10' 5 X 10' 1 X 10'

0 0 0 0

275 250 210 190

Grey Colour changed to brown

Colour changed to dark brown

a) Appreciation: 0 = very good. I = good. 2 = moderate to good. 3 = moderate. 4 = bad b) IHV = Infinitesimal hardness before film swelling in steam.

254

Page 196: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

p PAINT

BASE MATERIAL: Epoxy, polyacrylate, and polyurethane resins

TYPE: See table on opposite page

SUPPLIER: Dr. W. Màder AG

IDENTIFICATION: 245-1973

DESCRIPTION OF MATERIAL: Complete coating systems essentially based on expoxy resins with corrosion protection primer and top­coat

APPLICATION AT CERN: Super Proton Synchrotron beam dump coatings

IRRADIATION CONDITIONS: Type: Accelerator, CERN Proton Synchrotron, targets 1 and 8 Doses: 3 X 10 6 ,5 X 106, 1 X 10 7 Gy

METHODS OF TESTING: Grid scarification, infinitesimal hardness, and visual judgement

RESULTS: Apart from colour changes, no important alterations were seen; see table on opposite page

Remarks:

REFERENCES: 28

APPRECIATION: See Appendix 7

no test 101 102 10' 104 105 10" 107 101

Dose (Gy)-*

255

Page 197: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

PAINT BASE MATERIAL: Polyurethane resins

TYPE: See table

SUPPLIER: Dr. W. Màder AG

IDENTIFICATION: 247.2-1973

Material Dose

(Gy)

Impact hardness

SNV137112

Grid scarifi-cation3'

SNV137111

IHV b Visual judgement

Polyurethane two-component coating hardened with a solvent containing aromatic diisocyanate.

0 5 X 106

8X 10" 2X 107

141-145 172-175

0 2-3

White, glossy Colour change Important colour change Formation of bubbles

Polyurethane two-component coating hardened with a solvent containing aliphatic diisocyanate.

0 5 X 105

1 X 106

5X I0 6

163 165 174 162

White, glossy Unchanged Slight colour change

Polyurethane two-component coating with polyvinyl butyrate wash primer hardened with a solvent containing aliphatic diisocyanate.

0 5X 10' 1 X 106

5X 10"

165 168 172 166

450 425 300

White, glossy

a) Appreciation: 0 = very good, I = good, 2 = moderate to good, 3 = moderate, 4 = bad b) IHV = Infinitesimal hardness before film swelling in steam.

256

Page 198: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

PAINT BASE MATERIAL: Polyurethane resins

TYPE: See table on opposite page

SUPPLIER: Dr. W. Màder AG

IDENTIFICATION: 247.2-1973

DESCRIPTION OF MATERIAL: Polyurethane two-component coating, hardened with aromatic and aliphatic diisocyanates

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105,1 X 106, 5 X 106,8 X 106,2 X 107Gy

METHODS OF TESTING: Impact hardness, grid scarification test, and visualjudgement

RESULTS: See table on opposite page

Remarks:

REFERENCES: 28

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (GyH

10" 107 108

257

Page 199: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Q Entries and cross-references

Quartz see Ceramic

259

Page 200: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

RELAY

Resin see Thermoplastic resin see Thermosetting resin

Resistofol, trade name of Bayer see Adhesive tape

Rubber see Cable insulation see Ethylene-propylene rubber see Polychloroprene see Polyurethane rubber see Seal see Silicone rubber see Vacuum gasket

Ryton, trade name of Phillips Petroleum, USA Polyphenylene sulfide, see Connector

Materials listed in General Tables in Appendix 5

Radox, trade name of Huber & Suhner Polyolefin, see Cable insulation, p. 21

Rayon Cellulose fibre, see Textile p. 28

Rubber see Cable insulation, p. 21 see Elastomer, p. 22 see G-value, p. 24 see Hose, p. 25 see Paint, p. 27

Page 201: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

R RELAY BASE MATERIAL: Various

TYPE: See table below

SUPPLIER: -

IDENTIFICATION: 7-1973

Id. No.

Supplier Coil rating

Test Current

[A|

M* sasured values" Change after irradiation Dose Contact Standard Hysteresis Contact Hysteresis

resistance deviation resistance r 5(r) H Ar/P*" AH/H 0

[Gyl Imfil I%1 [%] [%] l%l

0 12.8 32 35.5 44 4- I0 3 15.2 15 32.4 27 ± 2 2 - 9 1 • 10-" 97 53 35.6 690 ± 420 +0.3

220 V.

10 - 6V a c 0.25 0 28.4 4 48.6 (4) _ 10 4- 103 29.2 0.5 28.6 2.8 ± 4 - 4 1 10 1 -10* 30 - 50.0 5.6 ± 4 + 3

110 V..

MOV., 0.25

0 4- 103

I • I0 5

0 4-10 3

1 • 10 !

14.5 18.8 52

14.1 12.9 16.7

7.9 6.6 37 29 5

9.4

28.6 27.5 30.3 22.5 22.2 21.2

8.2 52 ± 31

260 ± 170 69

- 1 ± 1.7 50 ± 4 3

- 3 . 7 + 6.0

- 1 . 2 - 5 . 9

20 1

14 20

2 2

220 V.

24 V,

0 4-10 3

1-105

1-10* 0

4-10 3

16.4 17.4 16.1 21.2 14.3 17.2

2.5 3.4 7.2 11

5.7 4.3

5.2 7.0 10.8 3.7

43.8 42.5

7.0 1 4 ± 8 7 ± 7

47 ± 2 2 16.0

24 ± 4

- 1 7 +0.6 - 2 9

- 3

22 II 16 22

24 V, 1 0.1 0.3

1

0 4-10 3

1 • 10 !

1-10'

58.5 74.6 59.2 53.9

4.5 7.7

8.5

34.2 34.2 45.7 53.8

(4.5) 17± 13

- 0 . 8 ± 0.6 - 8 ± 12

+ 1.4 + 10 + 57

19 4

19

220 V., 0 4- 103

1 • 105

47.4 27.2 59

21 17 35

37.5 29.7 33.3

51 160 ± 70 30 ± 29

- 6 - I I

23 17 23

18

60 V, 0 1 - 10* 1- 10"

16.9 17.4 16.8

4.8 1.8 2.0

48 V,

48 V,

220 V. 0.25

0 4- in' i • io'

o 4- 10' I • 10' 1 • 10"

0 4- 10'

13.7 31.8 17.1

12.2 12.4 16.1 I 1.1 12." 14.6

S.9 29 12

3.4 9.9

93.3 90.8 92.1

60.7 57

60.9

27.3 69.8 79.4 79.7 21.7 15.9

1 1 4 ± 4 . 4

3.8 ± 2.8

4 5 ± 130 3" ± 4 1

lO 52 ± 19 32 ± 20

-7.5 ± 3.5 6.1

I 8 ± 12

+ 2 - 1.3

+ 3.6 + 0.3

+ 6.7 - 3 . 6 + 190

— 17

*' The bar sign indicates .n erasing over the results ot'individual con tacs. **' For zero dose, the ranee of measured •. rtlues is gnen in percent. For non /cm dose, a weighted mean of the radiation el feet s ol the single con

tacts is given, i.e. .t is the most significant radiation e'Tect measured »hat is snow n. **' Tested under 24 Y J t .

262

Page 202: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

R RELAY

BASE MATERIAL: Various

TYPE: See table on opposite page

SUPPLIER: -

IDENTIFICATION: 7-1973

DESCRIPTION OF MATERIAL: Various types of relays for a rated load current of 10 A at 220/380 V a.c. Proposed for the Super Proton Synchrotron rough pumping station (VPTM) control units placed in intermagnet gaps, and at quadru­p les in short straight sections.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 1 X 105, 1 X 1 0 6 G y ; + 4 X 103 Gy accelerator irradiation, CERN Intersecting Storage Rings

(ISR-I3-ID1)

METHODS OF TESTING: Insulation test up to 1.5 kV. Coil resistance test. Contact resistance test at 1 A, with some exceptions. Voltage necessary for switch-on. Voltage insufficient to hold contact.

RESULTS: See table on opposite page. One relay contained an internal diode, which broke down already at 4 X 103 Gy. Generally, at 105 Gy no obvious defects were found. At 1 X 106 Gy, however, some contacts were unreliable, and obvious deterioration of plastic construction materials and insulations were observed. However, all types but one were still functional. Changes in coil resistance were generally insignificant, and contact resistance increased to some extent. Insulation test passed by all units.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

1 1 1 1 1 IIIHIll W ^ 10' 102 103 104 105 106 107 108

Dose (Gy)->

263

Page 203: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

R RELAY

BASE MATERIAL: Various

TYPE: -

SUPPLIER: -

IDENTIFICATION: 38-1978

DESCRIPTION OF MATERIAL:

Relay using liquid-mercury switches

APPLICATION AT CERN:

IRRADIATION CONDITIONS:

Type: Accelerator, CERN Intersecting Storage Rings (ISR-I3-ID2) Doses: 2X 103Gy

METHODS OF TESTING: The relay was irradiated under load. Before and after irradiation, the contact resistance was measured.

RESULTS: The contact resistance was 50 mfi before irradiation and increased only slightly up to about 70 mfi at 2 X 103 Gy. No radiation-induced defect was found at this dose.

Remarks:

REFERENCES:

APPRECIATION: See Appendix 7

<— no test — •

101 102 103 104 105 106 107 101

Dose (Gy)-»

265

Page 204: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s Entries and cross-references

SCINTILLATOR Polyacryl Polyvinyl toluene

Scotchcal, trade name of 3M, see Adhesive tape

SEAL(O-ring) Ethylene-propylene rubber (EPR) Fluorinaterd copolymer Nitrile-butadiene rubber (NBR) Polyurethane rubber (PUR) Styrene-butadiene rubber (SBR) see also Vacuum gasket see also Vacuum seal

Silica see Ceramic see Optical fibre

SILICON DETECTOR

Silicone oil see Insulating oil

Silicone rubber see Cable insulation see Insulating sleeves see Lighting

Sleeve see Insulating sleeve

Styrene-butadiene rubber (SBR) see Seal

SWITCH Glass/mica Thermoplastic resin Thermosetting resin

267

Page 205: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s Materials listed in General Tables in Appendix 5

Saran, trade name of the Dow Chemical Co. Polyvinylidene chloride, see Textile, p. 28

Silicate oil see Oil, p. 26

Silicone oil see Oil, p. 26

Silicone resin see Paint, p. 27 see Thermosetting resin, p. 30

Silicone rubber (SIR) see Cable insulation, p. 21 see Elastomer, p. 22 see G-value, p. 24 see Hose, p. 25

Silk see Textile, p. 28

Styrene see G-value, p. 23

Styrene-butadiene rubber (SBR) see Elastomer, p. 22 see G-value, p. 24

269

Page 206: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR BASE MATERIAL: Polyacryl

TYPE: Plexiglas GS 1921

SUPPLIER: Roehm GmbH

IDENTIFICATION: 50.3-1978

f/f(0) [%]

DoselGy

SYMBOL PROPERTY

transmission at 400 nm transmission at 500 nm

INITIAL VALUES

85% 93%

270

Page 207: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR

BASE MATERIAL: Polyacryl

TYPE: Plexiglas GS 1921

SUPPLIER: Roehm GmbH

IDENTIFICATION: 50.3-1978

DESCRIPTION OF MATERIAL: Acrylic scintillator, standard type of dimensions 36 X 1 2 X 4 mm 3 ; low-cost scintillator

APPLICATION AT CERN :

IRRADIATION CONDITIONS:

Type: a) 6 0 C o source b) Reactor ASTRA, standard neutron irradiation facility (SNIF) Doses: a) 1 0 2 , 1 0 \ 10\ 10 5 Gy b) Flux: 10 1 6 , 10 1 7 , 1 0 1 8 , 1 0 1 9 n /m 2 (E > 1 MeV)

Dose « 40,400,4 X 10 3 ,4 X 104 Gy

METHODS OF TESTING: Spectral transmission between 400 and 800 nm through a sample 4 mm thick, using a Beckmann grating spectrophotometer

RESULTS: For 500 nm wavelength, the transmission decreased slowly (16% at 105 Gy). For 400 nm wavelength, however, this decrease was reached at 5 X 103 Gy, leaving only a 24% transmission at 10 5 Gy.

Remarks: Reference 29 contains the complete transmission spectra and further data. A fluence of 10 1 9 n /m 2 corresponds to a dose of 2.3 X 10 4 Gy in polyacryl or 4 X 10 4 Gy in organic (CHj)n materials

REFERENCES: 29

APPRECIATION: *** USE IN RADIA TION AREAS ACCORDING TO APPLICA TION*** See Appendix 7

1 11 111 V- no test — •

101 102 103 104 105 106 10 7 10'

Dose (Gy)-»

271

Page 208: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR BASE MATERIAL: Polyacryl

TYPE: Plexiglas GS 233

SUPPLIER: Roehm GmbH

IDENTIFICATION: 50.1-1978

f/f(0) [%l

DoselGyl

SYMBOL PROPERTY

• transmission at 400 nm • transmission at 500 nm

INITIAL VALUES

90% 91%

272

Page 209: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR

BASE MATERIAL: Polyacryl

TYPE: Plexiglas GS 233

SUPPLIER: Roehm GmbH

IDENTIFICATION: 50.1-1978

DESCRIPTION OF MATERIAL: Acrylic glass, UV-absorbing, of dimensions 30 X 12 X 10mm3

APPLICATION AT CERN: Generally used for light-guides.

IRRADIATION CONDITIONS: Type: a) 6 0 Co source b) Reactor ASTRA, standard neutron irradiation facility (SNIF) Doses: a) 102, 103, 104, 105 Gy b) Flux: 10 1 6,10 1 7, 101 8, 10 1 9 n/m 2 (E > 1 MeV)

Dose « 40,400,4 X 103,4 X 104 Gy

METHODS OF TESTING: Spectral transmission between 400 and 800 nm through a sample 10 mm thick, using a Beckmann grat­ing spectrophotometer

RESULTS: For 500 nm wavelength, the transmission decreased slowly (20% at 105 Gy). For 400 nm wavelength, however, this decrease was reached at 3 X 103 Gy, leaving only a 42% transmission at 105 Gy.

Remarks: Reference 29 contains the complete transmission spectra and further data. A fluence of 101 9 n/m 2 corresponds to a dose of 2.3 X 104 Gy in polyacryl or 4 X 104 Gy in organic (CH 2) n materials

REFERENCES: 29

APPRECIATION: *** USE IN RADIA TIONAREASA CCORDING TOAPPLICA TION *** See Appendix 7

I | ~ 1 lilllllll^ Inotestl q 101 102 103 104 105 106 107 108

Dose (Gy)-*

273

Page 210: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SCINTILLATOR BASE MATERIAL: Polyacryl

TYPE: Plexiglas GS 218

SUPPLIER: RoehmGmbH

IDENTIFICATION: 50.2-1978

f/f(0) l%]

DoselGyl

SYMBOL PROPERTY

transmission at 500 nm

INITIAL VALUES

92%

274

Page 211: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR

BASE MATERIAL: Polyacryl

TYPE: Plexiglas GS 218

SUPPLIER: Roehm GmbH

IDENTIFICATION: 50.2-1978

DESCRIPTION OF MATERIAL: Acrylic scintillator, standard type of dimensions 36 X 12 X 10 mm3, doped with 80 mg/i?BBQ

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: a) 6 0 Co source b) Reactor ASTRA, standard neutron irradiation facility (SNIF) Doses: a) 10 2,10 3,10 4, 105 Gy b) Flux: 10 1 6 ,10 1 7 , 101 8, 10" n/m2 (E > 1 MeV)

Dose » 40,400,4 X 10\ 4 X 104 Gy

METHODS OF TESTING: Spectral transmission between 400 and 800 nm through a sample 10 mm thick, using a Beckmann grat­ing spectrophotometer

RESULTS: For 500 nm wavelength, the decrease in transmission was 24% at 3 X 104 Gy and 33% at 105 Gy

Remarks: Reference 29 contains the complete transmission spectra and further data. A fluence of 101 9 n/m 2 corresponds to a dose of 2.3 X 104 Gy in polyacryl or 4 X 104 Gy in organic (CH 2) n materials.

REFERENCES: 29

APPRECIATION: *** USE IN RADIA TIONAREAS ACCORDING TO APPLICATION*** See Appendix 7

1 1 I II III ||<— 1 no test —»|

10' 102 103 104 105 105 107 10'

Dose (Gy)->

275

Page 212: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR BASE MATERIAL: Polyacryl

TYPE: Plexiglas GS 2002

SUPPLIER: RoehmGmbH

IDENTIFICATION: 50.4-1978

DoseiGy]

SYMBOL PROPERTY

# transmission at 400 nm • transmission at 500 nm

INITIAL VALUES

89.5% 92.5%

276

Page 213: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR

BASE MATERIAL: Polyacryl

TYPE: Plexiglas GS 2002

SUPPLIER: Roehm GmbH

IDENTIFICATION: 50.4-1978

DESCRIPTION OF MATERIAL: Acrylic scintillator, emitting in the near-ultraviolet spectral range. Two types: 50.41, of dimensions 3 6 X 1 2 X 1 0 mm3; 50.42, of dimensions 1000 X 200 X 3 mm3.

APPLICATION AT CERN: Low-cost scintillator to be used in conjunction with wavelength-shifter readout techniques.

IRRADIATION CONDITIONS: Type: a) 6 0 Co source b) Accelerator, CERN Intersecting Storage Rings (ISR-I3-ID1) Doses: a) 10 2,10 3,10 4, 105Gy b) 2 X 1 0 3 G y

METHODS OF TESTING: Spectral transmission between 360 and 600 nm using a Beckmann grating spectrophotometer (samples type 50.41). Self-absorption measurement with source placed at different distances I from the detector, counting the number of photoelectrons per minimum ionizing particle (samples type 50.42).

RESULTS: Whereas the transmission begins to decrease only at about 104 Gy (—18% at 400 mm), the self-absorp­tion, i.e. the quantity best characterizing the operational efficiency, has already decreased by 27 and 36% for^= 10 and 80 cm, respectively, at 1-2 X 103Gy

Remarks: Reference 29 contains the complete transmission spectra and further data

REFERENCES: 29

APPRECIATION: *** USE IN RADIATION AREAS ACCORDING TO APPLICATION*** See Appendix 7

1 1 l!!| 'I.,'., 11,1 11'i',!.!.^ j n o t e s t | ^ 10' 102 103 104 105 106 107 108

Dose (Gy)-»-

277

Page 214: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR BASE MATERIAL: Polyvinyl toluene

TYPE: -

SUPPLIER: -

IDENTIFICATION: 220.2-1979

150

f/f(0) 1%I

DoselGy

SYMBOL PROPERTY

• transmission at 410 nm • transmission at 500 nm

INITIAL VALUES

96% 96.3%

278

Page 215: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SCINTILLATOR

BASE MATERIAL: Polyvinyl toluene

TYPE: -

SUPPLIER: -

IDENTIFICATION: 220.2-1979

DESCRIPTION OF MATERIAL: Plastic scintillator of 10 mm thickness

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Accelerator a) CERN Intersecting Storage Rings (ISR-I3-ID1)

b) CERN Super Proton Synchrotron (SPS-LSS5) Doses: a) 10 3Gy,b) 6X 10 2 ,9X 104 Gy

METHODS OF TESTING: Measurement of light transmission through scintillator material using a Beckmann grating spectro­photometer

RESULTS: The decrease in transmission was less than 4% up to a dose of 103 Gy. At 105 Gy, about 23% loss in transmission has been measured at 410 nm, which was the maximum in absorption in the visible to near ultraviolet spectral range.

Remarks:

REFERENCES: 17,30

APPRECIATION : See Appendix 7

I I I .'illl1 M I l V I notestl ^ 10' 102 103 104 105 106 107 108

Dose (Gy)-»

279

Page 216: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SEAL (O-ring) BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: KW75

SUPPLIER: Angst & Pfister

IDENTIFICATION: 159.7-1973

0 1.0 2.0X106 3.0 Dose[Gy]

SYMBOL PROPERTY INITIAL VALUES

• elongation at break 202% • tensile strength 10.9 MPa • hardness 32 Shore D • compression set (20) For • , y is not normalized to fl^O). The initial value given was measured under different conditions by manufacturer

280

Page 217: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SEAL (O-ring) BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: KW 75

SUPPLIER: Angst & Pfister

IDENTIFICATION: 159.7-1973

DESCRIPTION OF MATERIAL: A ring of circular cross-section 3.53 mm and of i.d. 23.40 mm (O-ring), made from ethylene-propylene rubber (EPR)

APPLICATION AT CERN: Seals for vacuum systems in the range P > 100 Pa

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 5 X 105, 1 X 106,3 X 10 6Gy

METHODS OF TESTING: Elongation and tensile stress at break were measured with samples mounted on a silicone-lubrified fitting disk whose two halves were separated at a speed of 100 mm/min. Hardness Shore test. The compression set (modified French standard NF-T 46.011) is given as the permanent deformation in percent of the deformation under compression during irradiation (25%) as measured after a settling time of 30min.

RESULTS: The elongation at break reached the 100% end-point value at 6 X 105 Gy, and the ring started to shrink at a dose of I X 106Gy

Remarks:

REFERENCES: 31

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (GyH

106 107 108

281

Page 218: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SEAL (O-ring) BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: EPR/F234

SUPPLIER: GummiMaag

IDENTIFICATION: 159.5-1973

150

f/f(0) [%]

Dose[Gy]

SYMBOL PROPERTY

• elongation at break • tensile strength • hardness • compression set For • , y is not normalized to f\0)

INITIAL VALUES

342% U M P a

34 Shore D

REMARKS

a t5X 10 5Gy a t5X 10 5Gy

282

Page 219: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SEAL (O-ring)

BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: EPR/F234

SUPPLIER: Gummi Maag

IDENTIFICATION: 159.5-1973

DESCRIPTION OF MATERIAL: A ring of circular cross-section 2.62 mm, and of i.d. 18.72 mm (O-ring), made from ethylene-propylene rubber

APPLICATION AT CERN: Seals for vacuum systems in the range P > 100 Pa

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 5 X 105,1 X 106, 3 X 106 Gy

METHODS OF TESTING: Elongation and tensile stress at break were measured with samples mounted on a silicone-lubrified fitting disk whose two halves were separated at a speed of 100 mm/min. Hardness Shore test. The compression set (modified French standard NF-T 46.011) is given as the permanent deformation in percent of the deformation under compression during irradiation (25%) as measured after a settling time of 30min.

RESULTS: The elongation at break reached the limiting value of 100% at a dose of 3 X 106 Gy. However, the com­pression set measurement indicated a loosening of the compressed ring already at 10* Gy.

Remarks:

REFERENCES: 31

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-»

106 107 108

283

Page 220: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SEAL (O-ring) BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: EP851ENA

SUPPLIER: Walther Prâzision

IDENTIFICATION: 160-1975

300

0 0.5 DoselGyl

1.0X1

SYMBOL PROPERTY INITIAL VALl

•} elongation at break 587% 342% 404%

O •

<

tensile strength 4.5 MPa 8.3 MPa 8.5 MPa

<>•

hardness 25 Shore D 14 Shore D

DIMENSIONS TYPE a TYPEb

Inner diameter (mm) Outer diameter (mm) Thickness (mm) Section

25 37.5

4 Y-shaped

44 50 3

circle

TYPE

a b c a b c a c

TYPEc

15 25 2

square

284

Page 221: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SEAL (O-ring)

BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: EP851ENA

SUPPLIER: Walther Prâzision

IDENTIFICATION: 160-1975

DESCRIPTION OF MATERIAL: O-rings of different cross-sections (see types a, b. c, in the table on opposite page), all made from ethylene-propylene rubber

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate approx. 400 Gy/s Doses: 5X 106,1 X 107Gy

METHODS OF TESTING: Elongation and tensile stress at break were measured with samples mounted on a silicone-lubrified fitting disk whose two halves were separated at a speed of 100 mm/min. Hardness Shore test.

RESULTS: Whereas the value of 100% for the elongation at break was situated between 0.7 and 0.9 X 107 Gy for all three types of cross-sections, at 1 X 107 Gy the circular type remained the best with 83%, with the other two at half this value. The tensile stress at break remained nearly unchanged for the circular cross-section but decreased by a factor of 2.3 for type (a) and 3.5 for type (c). The hardness test also yielded different results, but was not applicable for type (b).

Remarks:

REFERENCES: 32

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

106 107 101

285

101 102 103 10" 105

Dose (Gy)->

Page 222: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SEAL (O-ring) BASE MATERIAL: Fluorinated copolymer

TYPE: Viton E60C

SUPPLIER: Gummi Maag

IDENTIFICATION: 159.4-1973

0 1.0 2.0X106 3.0 DoselGyl

SYMBOL PROPERTY INITIAL VALUES

• elongation at break 201% • tensile strength 7.8 MPa • hardness 44.5 Shore D • compression set -[%] For • , y is not normalized to f(0)

286

Page 223: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SEAL (O-ring) BASE MATERIAL: Fluorinated copolymer

TYPE: Viton E60C

SUPPLIER: Gummi Maag

IDENTIFICATION: 159.4-1973

DESCRIPTION OF MATERIAL: A ring of circular cross-section 2.7 mm and of i.d. 18.4 mm (O-ring), made from a copolymer of viny-lidene fluoride and hexafluoropropylene (Viton)

APPLICATION AT CERN: Seals for vacuum systems not exposed to radiation.

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 5 X 10 5,1 X 106, 3 X 10 6Gy

METHODS OF TESTING: Elongation and tensile stress at break were measured with samples mounted on a silicone-lubrified fitting disk whose two halves were separated at a speed of 100 mm/min. Hardness Shore test. The compression set (modified French standard NF-T 46.011) is given as the permanent deformation in percent of the deformation under compression during irradiation (25%) as measured after a settling time of 30min.

RESULTS: The elongation at break decreased very rapidly, and already reached 100% at 2.5 X 105 Gy (extra­polated). At all doses tested (above 5 X 105 Gy), the ring loosened because of shrinking during irradia­tion when compressed to 75%.

Remarks:

REFERENCES: 31

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-i

106 107 108

287

Page 224: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SEAL (O-ring) BASE MATERIAL: Nitrile-butadiene rubber (NBR)

TYPE: PRP 138-70

SUPPLIER: Precision Rubber

IDENTIFICATION: 159.2-1973

f/f(0) [%l

Dose|Gy

SYMBOL PROPERTY

# elongation at break • tensile strength • hardness • compression set For • , y is not normalized to f(0)

INITIAL VALUES

474% 17.1 MPa

38.5 Shore D 28%

288

Page 225: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SEAL (O-ring)

BASE MATERIAL: Nitrile-butadiene rubber (NBR)

TYPE: PRP 138-70

SUPPLIER: Precision Rubber

IDENTIFICATION: 159.2-1973

DESCRIPTION OF MATERIAL: A ring of circular cross-section 2.6 mm and of i.d. 18.7 mm (O-ring), made from a blend of nitrile-buta­diene rubber (NBR) with polyurethane and polychloroprene rubber, especially for use in a radiation environment.

APPLICATION AT CERN: Various vacuum seals

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 5 X 105, 1 X 106, 3 X 106 Gy

METHODS OF TESTING: Elongation and tensile stress at break were measured with samples mounted on a silicone-lubrified fitting disk whose two halves were separated at a speed of 100 mm/min. Hardness Shore test. The compression set (modified French standard NF-T 46.011) is given as the permanent deformation in percent of the deformation under compression during irradiation (25%) as measured after a settling time of 30min.

RESULTS: The elongation at break reached 100% at about 2 X 106 Gy. The compression set measurements indicat­ed no loosening of the seal at 3 X 106 Gy.

Remarks:

REFERENCES: 31

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

101 10' 103 104 105

Dose (Gy)-i

106 107 108

289

Page 226: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SEAL (O-ring) BASE MATERIAL: Polyurethane rubber (PUR)

TYPE: UR76

SUPPLIER: Angst & Pfister

IDENTIFICATION: 159.6-1973

f/f(0) [%]

Dose(Gyl

SYMBOL PROPERTY INITIAL VAU

• elongation at break 193% • tensile strength 12.7 MPa • hardness 43 Shore D • compression set -

For4 , y is not normalized to f(0)

290

Page 227: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SEAL (O-ring) BASE MATERIAL: Polyurethane rubber (PUR)

TYPE: UR 76

SUPPLIER: Angst & Pfister

IDENTIFICATION: 159.6-1973

DESCRIPTION OF MATERIAL: A ring of circular cross-section 2.62 mm and of i.d. 12.37 mm (O-ring), made from polyurethane rubber (PUR)

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10Gy/s Doses: 5 X 105,1 X 106, 3 X 10 6Gy

METHODS OF TESTING: Elongation and tensile stress at break were measured with samples mounted on a silicone-lubrified fitting disk whose two halves were separated at a speed of 100 mm/min. Hardness Shore test. The compression set (modified French standard NF-T 46.011) is given as the permanent deformation in percent of the deformation under compression during irradiation (25%) as measured after a settling time of 30min.

RESULTS: The elongation at break already reached 100% value at 7 X 105 Gy. At all doses, the compression set was > 100%, i.e. the seal had loosened.

Remarks:

REFERENCES: 31

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

101 102 103 104 105

Dose (Gy)-i

106 107 108

291

Page 228: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SEAL (O-ring) BASE MATERIAL: Styrene-butadiene rubber (SBR)

TYPE: JoinfraniteS6510

SUPPLIER: Le Joint Français

IDENTIFICATION: 159.1-1973

f/f(0) [%]

DoselGy

SYMBOL PROPERTY

• elongation at break • tensile strength • hardness • compression set For • , y is not normalized to f(0)

INITIAL VALUES

548% 17.8 MPa

36 Shore D 23%

292

Page 229: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SEAL (O-ring) BASE MATERIAL: Styrene-butadiene rubber (SBR)

TYPE: JoinfraniteS6510

SUPPLIER: Le Joint Français

IDENTIFICATION: 159.1-1973

DESCRIPTION OF MATERIAL: A ring of circular cross-section 2.70 mm and of i.d. 18.40 mm (O-ring), made from styrene-butadiene rubber especially for nuclear application

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 5 X 105,1 X 106,3 X 106Gy

METHODS OF TESTING: Elongation and tensile stress at break were measured with samples mounted on a silicone-lubrified fitting disk whose two halves were separated at a speed of 100 mm/min. Hardness Shore test. The compression set (modified French standard NF-T 46.011) is given as the permanent deformation in percent of the deformation under compression during irradiation (25%) as measured after a settling time of30min.

RESULTS: The elongation at break reached 100% at a dose of 2 X 106 Gy. The compression set measurements indi­cated no loosening at 3 X 105 Gy.

Remarks:

REFERENCES: 31

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

1 1 ll 101 103 104 105

Dose (Gy)-H

106 107 108

293

Page 230: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SILICON DETECTOR BASE MATERIAL: Silicon crystal

TYPE: Various, see table below

SUPPLIER: -

IDENTIFICATION: 21-1976

List of particle detectors irradiated in the ASTRA reactor

Supplier Model Type Dimensions (mrrr X //m)

Fluence (n/m !)

- ITC 29-100-456 BTC 100-300-453

Implanted Surface barrier

30.2 X 105 110.4X305

1 X 10" 4 X 10"

- FD. 100.20.300 C/S/02 FD.200.20.500 C/S/02

Keyhole s.b. Keyhole s.b.

100.0 X 312 200.0X515

4 X 10" 4 X 10"

- TI-020-025-100/15-829A TD-010-030-100/15-828F

Implanted Keyhole s.b.

25.0 X 101.4 30.0 X 90

1 X 10 1 8

1 X 10"

- BPY-83-300/DI464 Surface barrier 105.0X288 2X 10"

- 030-PIN-100-TM-C-100-PIN-300-TM-C-

•01 -02

Diffused Diffused

30.0 X 107 100.0 X 310

1 X 10" 4 X 10"

Result of defect evaluation by thermally stimulated current methods. Comparison of muon, gamma, and neutron irradiation

Material Energy level of Muons Gamma rays Neutrons

Material defect

E T(eV)

E = 2 GeV

up to

6 0 Co

up to

E > 0 . 1 MeV

Resistivity Type

defect

E T(eV)

E = 2 GeV

up to

6 0 Co

up to up to (fi-m) 2.5 X 1 0 n m - ! 5.6 X 106 Gy 10" m" 2

4 N 0.29 ± 0.02 Yes (10) No No 10 N 0.34 ± 0.02 No Yes No 46 N 0.40 ± 0.02 Yes (20) No Yes/No 46 N 0.44 ± 0.02 No Yes (10" 2) Yes 50 P 0.26 ± 0.02 Yes (3) Yes (10-"') No

Yes and No indicate whether a certain defect was found. The values in brackets give the introduction rate of this defect; that is. the number of defects introduced per unit volume and unit irradiation fluence, in units of m _ l .

294

Page 231: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SILICON DETECTOR

BASE MATERIAL: Silicon crystal

TYPE: Various, see table on opposite page

SUPPLIER: -

IDENTIFICATION: 21-1976

DESCRIPTION OF MATERIAL: Silicon particle detectors (see table on opposite page) as received, and high-resistivity slices of silicon crystals, P-type and N-type, ranging from 7-90 fi • m for the evaluation of defects

APPLICATION AT CERN: Particle detectors in the neutrino beam monitoring system Silicon target telescope High-resolution vertex detector (silicon microstrip detector)

IRRADIATION CONDITIONS: Type: Reactor ASTRA, standard neutron irradiation facility (SNIF) flux: 4.8 X 10 1 3 n/m 2 s

(E>0.1MeV) Fluences: 4 X 10 1 6,2 X 101 7, 1 X 10 1 8 n/m2

METHODS OF TESTING: Reverse-current measurement of the detectors; quality of 2 4 1 Am «-spectra obtained with these detectors; mechanical tests. For the raw samples, characterization of introduced defects using thermally stimulated current (TSC) techniques (Ref. 33).

RESULTS: All detectors were useless for measuring an a -particle spectrum after irradiation. Up to a fluence of ~ 10 n n /m 2 , they were still useful for the detection of strong particle flux. Reverse currents increased up to about 100 mA/m2 (zero dose values: 2-20), but after one year they have recovered to 10-20 mA/ra2. The TSC measurement revealed the absence of two shallow defect levels usually found in charged particle and gamma irradiation, whereas the two deeper ones were present.

Remarks: For the fluence-to-dose conversion, the factor of 4 X 10 1 5 Gy • m 2 for ( C H ^ material was applied (see Section 2) for comparison purposes. The true dose in silicon is obtained by app­lying a factor of 1.2 X 1 0 - | 6 G y m 2 (Ref. 15).

REFERENCES: 33

APPRECIATION : See Appendix 7

101 102 103 104 105 106 107 108

Dose (Gy)-»

295

Page 232: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

SWITCH BASE MATERIAL: Glass/mica

TYPE: GV3FN;Micatherm

SUPPLIER: Burgess

IDENTIFICATION: 23-1977

Dose[Gyl

SYMBOL PROPERTY

# breakdown voltage case • breakdown voltage lever • dielectrical resistance core

dielectrical resistance lever • For-

INITIAL VALUES

13 kV 7.5 kV

3 X 101 3Q 4 X 10 1 2fi

and • , y = - 1 0 log f/f(0) has been plotted (decibels)

296

Page 233: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SWITCH

BASE MATERIAL: Glass/mica

TYPE: GV3FN;Micatherm

SUPPLIER: Burgess

IDENTIFICATION: 23-1977

DESCRIPTION OF MATERIAL: Microswitch: casing made from Micatherm (glass and mica); lever made from AljO, with Teflon coating. Metallic parts were not irradiated. This switch is especially designed for nuclear applications, and of com­patible dimensions with the standard type GV3 (see Switch, made of thermosetting resin).

APPLICATION AT CERN: Used for interlock switches in the Super Proton Synchrotron splitter magnets

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 400 Gy/s Doses: 5X 107,1 X 10 8Gy

METHODS OF TESTING: Resistance and dielectric breakdown measurements, through the Micatherm casing ( 1 mm thick)

RESULTS: The breakdown voltage decreased a little at 108 Gy but was still sufficiently high (9.5 and 8 kV, for the casing and the lever, respectively). Also, the resistance of the casing decreased by about three decades, but still remained sufficient with 10 1 0 fi. Only the Teflon coating of the lever disappeared, indicating that there might be some increase in the force needed to operate the switch.

Remarks: See page 303 for standard version of the same type

REFERENCES: 34

APPRECIATION: See Appendix 7

101 102 103 104 105

Dose (Gy)-n

106 107 10"

297

Page 234: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SWITCH

BASE MATERIAL: Thermoplastic resin

TYPE: -

SUPPLIER: -

IDENTIFICATION: 2-1976

DESCRIPTION OF MATERIAL: Turning switch used in vacuum equipment, rated 220 V, 10 A to 500 V, 5 A. The lever axis consists of a plastic tube, 15 0 X 60 (in mm), to cover the rather long distances from panel to equipment.

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type : Reactor ASTRA, switched-off reactor position 3 5 in air, dose rate approx. 10 Gy/s Doses: 2.4 X 106Gy

METHODS OF TESTING: Operational test

RESULTS: No longer worked. Lever-handle axis damaged; plastic nut damaged.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

no test 101 102 103 104 105

Dose (Gy)n

106 107 10"

299

Page 235: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SWITCH

BASE MATERIAL: Thermoplastic resin

TYPE: -

SUPPLIER: -

IDENTIFICATION: 32-1979

DESCRIPTION OF MATERIAL: Limit switch, 10 A. 500 V a.c.. metallic casing. Only organic materials, such as cam-rolls for pulley drive, were irradiated. The switch itself is ceramic and metal.

APPLICATION AT CERN: Limit switch for the hadron absorber in the Super Proton Synchrotron muon beam. Radiation-sensitive elements have been replaced by Vetronit (insulator) and metal parts.

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 1 X 106, 5 X 10" Gy

METHODS OF TESTING: Qualitative mechanical test

RESULTS: Irradiated items did not break but showed increased brittleness

Remarks: As a precautionary measure, the sensitive items were replaced by more radiation-resistant ones for application at CERN

REFERENCES:

APPRECIATION : See Appendix 7

1 11 |«-po test-* 10' 102 103 104 105 10 6 10 7 101

Dose (Gy)->

301

Page 236: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

s SWITCH

BASE MATERIAL: Thermosetting resin

TYPE: GV3

SUPPLIER: Burgess

IDENTIFICATION: 24-1977

DESCRIPTION OF MATERIAL: Microswitch for standard applications. Case made of a thermosetting resin.

APPLICATION AT CERN: Various; CERN stores No. SCEM 06.92.32.560.7

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 3 X 106 Gy

METHODS OF TESTING: No tests possible, broken

RESULTS: Organic parts were brittle and broken

Remarks: See page 297 for radiation-resistant version of the same type

REFERENCES:

APPRECIATION : See Appendix 7

10' 102 103 104 105 106

Dose (Gy)-»

107 108

303

Page 237: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

Tape see Adhesive tape see Insulating tape

Teflon (PTFE), trade name of Du Pont see Heating element

Tefzel, trade name of Du Pont ETFE copolymer, see Cable tie

TERMINAL BOARD Polyester, filled

Textile Table of general relative radiation effects in Appendix 5

Thermoplastic resin Table of general relative radiation effects in Appendix 5

THERMOSETTING RESIN Table of general relative radiation effects in Appendix 5 Epoxy-phenol-novolac resin Epoxy resin

THERMOSHRINKING SHEATH

Page 238: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

T Materials listed in General Tables in Appendix 5

Teflon, trade name of Du Pont Polytetrafluoroethylene (PTFE) see Cable insulation, p. 21 see G-value, p. 24 see Hose, p. 25 see Thermoplastic resin, p. 29

Tefzel, trade name of Du Pont Ethylene-tetrafluoroethyiene copolymer see Cable insulation, p. 21

Tetrachloromethane see G-value, p. 23

Tribromomethane see G-value, p. 23

Trichloromethane see G-value, p. 23

307

Page 239: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

T TERMINAL BOARD

BASE MATERIAL: Polyester, filled

TYPE: PI

SUPPLIER: CERCEM

IDENTIFICATION: 171.3-1974

DESCRIPTION OF MATERIAL: Contact board for 1.1 kW electric motor made from mineral and glass-charged polyester

APPLICATION AT CERN:

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10Gy/s Doses: 1 X 106Gy

METHODS OF TESTING: Visual only

RESULTS: Colour changed from grey before irradiation to black after 1 X 106 Gy. There were no other apparent defects.

Remarks:

REFERENCES: 19

APPRECIATION : See Appendix 7

<— no jest —•

101 102 103 104 105 106 107 10'

Dose (Gy)->

309

Page 240: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

THERMOSETTING RESIN BASE MATERIAL: Epoxy-phenol-novolac resin

TYPE: EPN1138/MY745/CY221/HY905

SUPPLIER: Ciba-Geigy

IDENTIFICATION: R297-1976

N* 2 9 7

S .M

1 0

1 O

§5

1 0

1 0

) F = = 4 = - = = = i = = = — *! - i ^ 3 ; — 3 1

^

_.. 1; * '

MM 2 ' -=—_,_

\

I I 4 U . . . . .

1

MM! PÊÊÊ!! 4 .....

—\r o /_J—LL

1 0

MATERIAL: EPN 1138+MY 74 5 + CY 221+HY 905-»XB2687

! SUPPLIER: C I B A - GEIGY

REMARKS : I S R - R E S I N

1 0 '

CURVE PROPERTY INITIAL VALUE

1 0 - 1 s ULTIMATE FLEXURAL STRENGTH 126.0 M p *

D DEFLEXION HT BRERK

M MODULUS OF ELASTICITY

12.0 n u n

3BII0.0 M P a

1 0

10° 10'

ABSORBED DOSE tGy)

10'

310

Page 241: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

T THERMOSETTING RESIN

BASE MATERIAL: Epoxy-phenol-novolac resin

TYPE: EPN1138/MY745/CY221/HY905

SUPPLIER: Ciba-Geigy

IDENTIFICATION: R297-1976

DESCRIPTION OF MATERIAL: Resins: EPN1138, Araldite MY745, Araldite CY22I (epoxy-phenol-novolac, Bisphenol A. modified); anhydride hardener HY905; accelerator XB2687 (ammonium phenolate), in the concentration of 50:50:20:120:0.3 parts per weight. Curing: 24 h at 120 °C.

APPLICATION AT CERN: Vacuum impregnation of Intersecting Storage Rings magnet coils

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 400 Gy/s Doses: 5 X 106, 1 X 107,2.5 X 107, 5 X 10 7Gy

METHODS OF TESTING: Standard flexion test (ISO 178) according to IEC 544

RESULTS: See opposite page

Remarks: More information on thermosetting resins can be found in Part II (Ref. 2)

REFERENCES: 16

APPRECIATION : See Appendix 7

Degradation of mechanical properties:

10 7 108

311

101 102 103 104 105 106

Dose (Gy)->

Page 242: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

THERMOSETTING RESIN BASE MATERIAL: Epoxy resin

TYPE: Araldite MY 745/HY 906

SUPPLIER: Ciba-Geigy

IDENTIFICATION: R298-1976

N* 2 9 8 S , M

1 O

1 0

1 0

1 0

1 • " • -

•4 1

1 ^ j

Ira „..i^X * - . B - - -ir V I . H'

V

3 \ c

2 i h1 l - ~ - ! f e ::::=§ sz :::::

-5 V \

1

- ^ -Y s

MATERIAL:

i SUPPLIER: t o 1

REMARKS s

1 0 °

MY 7 4 5 H- HY 9 0 6 X B 2 6 8 7

C I B A - G E I G Y

S P S - R E S I N

CURVE PROPERTY INITIAL V9LUE

1 0 " S M.TIIWTE FLEXUBflL STRENGTH 100.0 t ^ P a

D DEFLEXION RT BREAK

M M00ULUS OF ELBSTICITT

S. 4 m m

3780.0 M P <

1 0 - 2

1 0 ' 1 0 1 0 '

ABSORBED DOSE t G y )

312

Page 243: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

T THERMOSETTING RESIN

BASE MATERIAL: Epoxy resin

TYPE: Araldite MY 745/HY 906

SUPPLIER: Ciba-Geigy

IDENTIFICATION: R298-1976

DESCRIPTION OF MATERIAL: Epoxy resin: Araldite MY 745, (Bisphenol A, modified); hardener: HY 906 (methyl nadic anhydride MNA); accelerator: XB 2687 (anmmonium phenolate) in the concentration 100:90:1.5. Curing: 5 h at 110°Cand l6ha t l25°C.

APPLICATION AT CERN: Vacuum impregnation of Super Proton Synchrotron magnet coils

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 400 Gy/s Doses: 5 X 106, 1 X 107,2.5 X 107, 5 X 107 Gy

METHODS OF TESTING: Standard flexion test (ISO 178) according to IEC 544

RESULTS: See opposite page

Remarks: More information on thermosetting resins can be found in Part II (Ref. 2)

REFERENCES: 16

APPRECIATION: See Appendix 7

Degradation of mechanical properties:

I I I 1 I 1 I I B M 101 102 103 104 105 106 107 108

Dose (Gy)-»

313

Page 244: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

T THERMOSHRINKING SHEATH BASE MATERIAL: Polyolefins. poly vinylidene fluoride

TYPE: See table below

SUPPLIER: Raychem

IDENTIFICATION: 151-1974

Type Property I dose in Gy I

RNF 100/2 DR 25 Kynar

Elastomer Polyolefin Polyvinylidene fluoride

0.3 0.5 0.2 3,4 3,4 3,4

6.8 Unchanged

6.5 Unchanged

5.8 Unchanged

White transp. Yellow transp.

Black Black

White transp. Yellow transp.

Base material Polyolefin

Wall thickness (mm) 0.3 Core diameter (mm) 4

External diameter (mm) , „ 6 . . , ' , 110 I Unchanged

r . (105l White C o , 0 u r [10*1 Wh,te

314

Page 245: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

THERMOSHRINKING SHEATH BASE MATERIAL: Polyolefins, polyvinylidene fluoride

TYPE: See table on opposite page

SUPPLIER: Raychem

IDENTIFICATION: 151-1974

DESCRIPTION OF MATERIAL: Tubes of thermoshrinking material (for dimensions, see table on opposite page), used as electrical insulation sleeves, made from radiation cross-linked polyolefins. and from polyvinylidene fluoride (Kynar)

APPLICATION AT CERN :

IRRADIATION CONDITIONS:

Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: I X 10\ 1 X 10 6 Gy

METHODS OF TESTING: Samples of length ~ 70 to 100 mm, with the inner part shrunk on a cylindrical aluminium core of 3 or 4 mm diameter, were irradiated and afterwards tested qualitatively for elasticity and tightness of grip in the shrunken zone

RESULTS: At both doses there was no change in the external diameter of the unshrunken part nor in the tightness of the adherence of the shrunken part to the core. Disassembly is not possible by hand without tearing the sheath into pieces. The unshrunken part apparently did not lose its flexibility.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

no est 101 102 103 104 105

Dose (Gy)-i

106 107

315

Page 246: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

u Materials listed in General Tables in Appendix 5

Urea-formaldehyde see Thermosetting resin, p. 30

Page 247: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

Entries and cross-references

VACUUM CHAMBER TUBE Epoxy/stratified glass fibres

VACUUM GASKET Synthetic rubber

VACUUM PUMP ACCESSORY Epoxy-resin/carbon

VACUUM SEAL Fluoroalkyl-polyether

VACUUM VALVE Polyamide

Valvata, trade name of Shell Mineral oil, see Insulating oil

VALVE

Vestolene, trade name of Chemische Werke Hiils AG Polyethylene, see Cable tie

Viton, trade name of Du Pont Fluorinated copolymer, see Seal

Materials listed in General Tables in Appendix 5

Vinylchloride polymers see Cable insulation, p. 21 see G-value, p. 24 see Hose, p. 25 see Paint, p. 27 see Thermoplastic resin, p. 29

Vinyl fibres see Textile, p. 28

Page 248: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

V VACUUM CHAMBER TUBE

BASE MATERIAL: Epoxy/stratified glass fibres

TYPE: S.V.E., roving type E

SUPPLIER: -

IDENTIFICATION: 204-1979

DESCRIPTION OF MATERIAL: Tube of dimensions 100 mm 0 X 3.5 mm wall thickness, made from epoxy resin reinforced with 75% stratified glass fibres (circumferential direction); use intended for beam vacuum chamber sections

APPLICATION AT CERN: Vacuum pipe in fast pulsed dipole magnet (type MDFP) installed in Super Proton Synchrotron TT20

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position 11 in water, dose rate 400 Gy/s Doses: 5 X 106,1 X 107, 5 X 10 7Gy

METHODS OF TESTING: Controlling of surface with a mechanical micrometer

RESULTS: According to the supplier, the internal surface roughness is 1 to 1.5 fim before irradiation. At 5 X 106 Gy, only a change in colour was noticed. At 1 X 107 Gy, bubbles about 10/im high were found at the surface, and at 5 X 107 Gy these bubbles attained a height of 200//m and a diameter of 5 mm.

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

101 102 103 104 105 106 107 108

Dose (Gy)->

321

Page 249: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

V VACUUM GASKET

BASE MATERIAL: Synthetic rubber

TYPE: Buna

SUPPLIER: Unknown

IDENTIFICATION: 46.2-1974

DESCRIPTION OF MATERIAL: Gaskets made from synthetic rubber (Buna) and employed in vacuum valves

APPLICATION AT CERN: Super Proton Synchrotron sector valves

IRRADIATION CONDITIONS: Type : Reactor ASTRA, switched-off reactor position 3 5 in air, dose rate approx. 10 Gy/s Doses: 1 X 106Gy

METHODS OF TESTING: Operational test

RESULTS: Satisfactory operation after this dose

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

<— no jest —•

10' 102 103 104 105 106 107 10'

Dose (Gy)->

323

Page 250: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

V VACUUM PUMP ACCESSORY

BASE MATERIAL: Epoxy resin/carbon

TYPE: -

SUPPLIER: Leybold Heraeus

IDENTIFICATION: 48-1977

DESCRIPTION OF MATERIAL: Epoxy resin coated with activated charcoal for pumping element in cryopumps

APPLICATION AT CERN: Used in cryopump for polarized hydrogen targets to be installed in the Super Proton Synchrotron vacuum system

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 1 X 10 6 ,5X 106Gy

METHODS OF TESTING: Remounted into equipment for operational testing

RESULTS: Operated satisfactory after these doses

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

1 1 1 <—\\o test-» 10' 102 103 104 105 106 107 10'

Dose (Gy)->

325

Page 251: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

V VACUUM SEAL

BASE MATERIAL: Fluoroalkyl-polyether

TYPE: -

SUPPLIER: -

IDENTIFICATION: 186-1976

DESCRIPTION OF MATERIAL: Vacuum feedthrough for mechanical motion transfer, consisting of an iron cylinder in an annular per­manent magnet, the gap between them being filled by magnetic fluid

APPLICATION AT CERN: Rotary feedthrough for collimator XCHV in the Super Proton Synchrotron

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 1 X 10 6 ,5X 10 6Gy

METHODS OF TESTING: Mechanical operational check

RESULTS: The total assembly was irradiated to 1 X 106 Gy, and a slight increase in viscosity of the magnetic fluid was observed. Samples of magnetic fluid were irradiated up to 5 X 10* Gy, but they were no longer usable at this dose (partially solidified).

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

10' 102 103 10" 105

Dose (Gy)-H

106 107 108

327

Page 252: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

V VACUUM VALVE

BASE MATERIAL: Polyamide

TYPE: MAC (heavy type); Nylon

SUPPLIER: VAT

IDENTIFICATION: 47-1979

DESCRIPTION OF MATERIAL: Valve with Nylon joints

APPLICATION AT CERN: Used for fast-acting valves for the Super Proton Synchrotron vacuum system

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10Gy/s Doses: I X 106 Gy

METHODS OF TESTING: Operational test

RESULTS: Nylon joints broken after this dose of 106 Gy

Remarks: Nylon replaced by Perbunan C (chloroprene rubber) for application at CERN.

REFERENCES:

APPRECIATION : See Appendix 7

101 102 103 104 105

Dose (GyH

106 107 108

329

Page 253: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

V VACUUM VALVE

BASE MATERIAL: Various

TYPE: Lucifer

SUPPLIER: Sperry Vickers Lucifer S.A.

IDENTIFICATION: 46.1-1974

DESCRIPTION OF MATERIAL: Electromagnetically operated valve (vacuum equipment)

APPLICATION AT CERN: Used in sector valves in the Super Proton Synchrotron

IRRADIATION CONDITIONS: Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate approx. 10 Gy/s Doses: 10 6Gy

METHODS OF TESTING: Operational test

RESULTS: Operated satisfactory after these doses

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

p— no est —» 101 102 103 104 105

Dose (Gy)-i

106 107 108

331

Page 254: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

V VALVE

BASE MATERIAL: Ethylene-propylene rubber (EPR)

TYPE: -

SUPPLIER: -

IDENTIFICATION: 235-1973

DESCRIPTION OF MATERIAL: Regulating piston of a Constaflo JRK automatic water regulator, type 4 ^/min, made from ethylene-propylene rubber type T/5029-1 (EPDM) of Huber & Suhner

APPLICATION AT CERN: Employed in the cooling systems for the Super Proton Synchrotron RF cavities, situated 50 cm from the beam axis

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5X 105,1 X 10 6Gy

METHODS OF TESTING: Hardness Shore D test

RESULTS: Before irradiation, the hardness was 29 Shore D. After a dose of 5 X 105 Gy, the hardness increased by 37% (39.5 Shore D), and after 1 X 106 Gy by 47% (42.5 Shore D).

Remarks:

REFERENCES:

APPRECIATION : See Appendix 7

10' 102 103 104 105

Dose (Gy)-i

106 107 108

333

Page 255: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

w Entries and cross-references

Wire see Insulated wire

WOOD Oak wood Chipboard/mica/resin

Materials listed in General Tables in Appendix 5

Wool see Textile, p. 28

335

Page 256: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

w WOOD

BASE MATERIAL: Oak wood, natural

TYPE:

SUPPLIER:

IDENTIFICATION: 242.2-1978

DESCRIPTION OF MATERIAL: Small samples of oak wood

APPLICATION AT CERN: Used in the construction of the lock-chambers for the Super Proton Synchrotron neutrino satefy access pit

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5X 105,1 X 10 6Gy

METHODS OF TESTING: Qualitative. Flexural tests not possible because of the different orientation of the lamination.

RESULTS: No apparent damage

Remarks:

REFERENCES: 35

APPRECIATION: See Appendix 7

<— no jest —» 10' 102 103 104 105 106 107 101

Dose (Gy)-+

337

Page 257: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

w WOOD BASE MATERIAL: Wood/mica/resin

TYPE: -

SUPPLIER: -

IDENTIFICATION: 242.1-1978

f/f(0) [%]

DoselGy]

SYMBOL PROPERTY

deflection at break flexurai strength

INITIAL VALUES

1.0 mm 4.9 MPa

338

Page 258: ORGANISATION EUROPÉENNE POUR LA RECHERCHE …

w WOOD

BASE MATERIAL: Wood/mica/resin

TYPE: -

SUPPLIER: -

IDENTIFICATION: 242.1-1978

DESCRIPTION OF MATERIAL: Chipboard panels made from wood and expanded mica, cut into flexural test specimens of dimensions 80 X 20 X 4 mm2. Fireproof material.

APPLICATION AT CERN: Used in the construction of the lock-chambers in the Super Proton Synchrotron neutrino satefy access pit (emergency exit)

IRRADIATION CONDITIONS: Type: Reactor ASTRA, position E1 in air, dose rate 30 Gy/s Doses: 5 X 105, 1 X 106Gy

METHODS OF TESTING: Standard flexural test employing the procedure in ISO 178 for rigid plastics

RESULTS: At 5 X 10s and 1 X 106 Gy, the deflection at break decreased by 35% and 42%, respectively

Remarks:

REFERENCES: 35

APPRECIATION : See Appendix 7

| | 1 1 | B « - no {est -» 101 102 103 104 105 106 107 108

Dose (Gy)->

339