Oral presentation at Tsingtao 2015.7

35
Universal aging dynamics of synthetic hectorite suspensions 合合合合合合合合合合合合合合合合 合合合 合合合合合合 合合合合合合合 2015-07 合合合合合合 合合合合合合

Transcript of Oral presentation at Tsingtao 2015.7

Page 1: Oral presentation at Tsingtao 2015.7

Universal aging dynamics of synthetic hectorite suspensions合成水辉石悬浮液老化的动态普适性孙尉翔华南理工大学 材料科学研究所2015-07 第九届复杂流体流变学研讨会

Page 2: Oral presentation at Tsingtao 2015.7

Colloidal phase diagram

Volume fraction

Tem

pera

tur

eGlass line

Spinodal

GlassLiquid

Credit: Eric R. Weeks Laboratoryhttp://www.physics.emory.edu/~weeks/lab/aging.html

Gel

Low vol. fraction Attractive

High vol. fraction Repulsive

Page 3: Oral presentation at Tsingtao 2015.7

Gel

Glass

Colloidal Dynamics

Credit: Eric R. Weeks Laboratoryhttp://www.physics.emory.edu/~weeks/lab/aging.htmlPhysics 4, 42 (2011) J. Phys. Chem. 100, 13200 (1996)

Page 4: Oral presentation at Tsingtao 2015.7

Aging: Out-of-equilibrium dynamics

Page 5: Oral presentation at Tsingtao 2015.7

Universal aging dynamics

Page 6: Oral presentation at Tsingtao 2015.7

Aging is ubiquitous

Page 7: Oral presentation at Tsingtao 2015.7

Aging is ubiquitous

Page 8: Oral presentation at Tsingtao 2015.7

Rheology for aging dynamicsL. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier Science, New York, 1978).

L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier Science, New York, 1978).

Page 9: Oral presentation at Tsingtao 2015.7

Multi-wave time sweep

E. E. Holly et al. J. Non-Newtonian Fluid Mech., 1988, 27, 17-26.

Page 10: Oral presentation at Tsingtao 2015.7

Repeated Frequency Sweep

M. Mours and H. H. Winter, Rheol. Acta 33, 385 (1994).

Page 11: Oral presentation at Tsingtao 2015.7

Repeated time sweep

A. S. Negi and C. O. Osuji, Phys. Rev. E 82, 031404 (2010).

Page 12: Oral presentation at Tsingtao 2015.7

Materials a synthetic hectorite, [Mg5.34Li0.66Si8O20(OH)4]Na0.66

Layer size: 30 nm in diameter & 1 nm in thickness

tw

suspension in water Liquid – solid trans.

Na+Na+

Na+

Na+ Na+

Na+

Page 13: Oral presentation at Tsingtao 2015.7

i

0 = 0 = 2f0

tw

i = 3000 s-1

ti = 100 s

Methods

tw = 0

GApplying a sample

Pre-shear Measurement

tw

1. KineticsSingle freq. time swp.

2. DynamicsMulti-wave time swp.

Pre-age

Page 14: Oral presentation at Tsingtao 2015.7

Kinetics of aging: T-dependence

101 102 103

10-1

100

101

102

T (°C) 10 15 20 25 30 35 40 45

G', G''

(Pa)

tw (s)

Clay: 3.5 wt%Pre-age: 4 d

G'

G''

0 = 0.5%, = 6.28 rad/s

101 102 103 104

10-1

100

101

102

T (°C) 10 15 20 25 30 35 40 45

b TG', b TG''

(Pa)

tw/aT (s)

Clay: 3.5 wt%Pre-age: 4 dTref = 10°C

20 400.0

0.5

1.0

Shi

ft fa

ctor

s

T (°C)

aT

bT

Preshearing at high rate ~ equilibrate at high T

“Shear melting”

Page 15: Oral presentation at Tsingtao 2015.7

Kinetics of aging – temperature dependence

10 20 30 40 500.0

0.5

1.0

1.5a T

T (°C)

L2.9-2d L3.2-2d L3.5-2d L3.5-4d

Page 16: Oral presentation at Tsingtao 2015.7

Modeling: Interaction potential

Electrical potential

clay particle

A1: Attractive with barrier

Page 17: Oral presentation at Tsingtao 2015.7

Modeling: Interaction potential

10 20 30 40

0.8

1.0

1.2

1.4

c (m

S c

m-1)

T (°C)

L2.9-2d L3.2-2d L3.5-2d L3.5-4d

(a)

10 20 30 400.016

0.018

0.020

0.022

0.024

0.026

[Na+ ] (

M)

T (°C)

(b)

0 50 1000

2

4

(1

0-7 m

2 s-1V

-1)

T (°C)

Na+

OH-

Na+Na+

Na+

Na+ Na+

Na+1

2 2A

0 r B

1000 Nae N

k T

κ-1 = 3.4~8.2 nm

A2: ϕeff < 0.0857Cluster / Gel

Q2: Glass or gel?

Page 18: Oral presentation at Tsingtao 2015.7

Modeling: Interaction potentialNa+

Na+Na+

Na+ Na+

Na+

H. Ohshima, J. Colloid Interface Sci. 247, 18 (2002).

Surface Charge Density / Surface Potential

Relationship

Page 19: Oral presentation at Tsingtao 2015.7

Modeling: Reaction-limited colloidal aggregation

10 20 30 400.0

0.5

1.0

1.5

2.0

a T

T (°C)

L2.9-2d L3.2-2d L3.5-2d L3.5-4d

Page 20: Oral presentation at Tsingtao 2015.7

Modeling: Reaction-limited colloidal aggregation

T (°C)0 10 20 30 40

a T10-60

10-40

10-20

100

L3.5-2dL3.2-2dL2.8-2dL3.5-4d

Page 21: Oral presentation at Tsingtao 2015.7

Modeling: Kinetics

10 20 30 400.0

0.5

1.0

1.5

2.0

a T

T (°C)

L2.9-2d L3.2-2d L3.5-2d L3.5-4d

10 20 30 403.2

3.4

3.6

3.8

4.0

L3.5-2d

L3.5-4d

L3.2-2d

Um

ax (1

0-19 J)

T (°C)

(c)

L2.9-2d

10 20 30 40

85

90

95

L3.5-4d

L3.5-2d

L3.2-2d

Um

ax/k

BT

T (°C)

(d)L2.9-2d

Increased potential barrier

Increased collision probability

Q3: Origin of the non-monotonic dependence?A3:

Page 22: Oral presentation at Tsingtao 2015.7

Modeling

H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004).

B. Ruzicka and E. Zaccarelli, Soft Matter 7, 1268 (2011).

No direct relationship between Cs and I under counterion-condensation!

Page 23: Oral presentation at Tsingtao 2015.7

Dynamics of aging

Dyn. freq. swp. At different tw of aging

Time – aging time superposition

Page 24: Oral presentation at Tsingtao 2015.7

Dynamics of aging

Time – temp. superposition at different tw’s.

Time – aging time – temp. superposition

Page 25: Oral presentation at Tsingtao 2015.7

Relaxation time dependenceτ(T, tw; cL)

Page 26: Oral presentation at Tsingtao 2015.7

Relaxation time dependenceτ(25°C, tw; cL)

Page 27: Oral presentation at Tsingtao 2015.7

Relaxation time spectra

2 2

2 2

2 2

ln1

ln1

G H d

G H d

J. Ramirez and A. E. Likhtman, Rheology of Entangled Polymers: Toolbox for the Analysis of Theory and Experiments, 2007.

Page 28: Oral presentation at Tsingtao 2015.7

Relaxation time spectra

c0

,,

0,

n n

n GH

Spectrum for glasses: BSW spectrum mapped to mode-coupling theory (MCT):H. Winter, M. Siebenbürger, D. Hajnal, O. Henrich, M. Fuchs, and M. Ballauff, Rheol. Acta 48, 747 (2009).

c ,,

0,

n

n GH

0 max0

max

,,

0,

n

HH

Spectrum for gels: critical gel theoryM. Mours and H. H. Winter, Macromolecules 29, 7221 (1996).

H. H. Winter, Macromolecules 46, 2425 (2013).

ε: distance to transition (near-equilibrium)Gels: ε = |p – pc|Glass: ε = |ϕ – ϕg|

0 max0

max

,,

0,

n

HH

Powerlaw distribution:

Page 29: Oral presentation at Tsingtao 2015.7

Relaxation time spectra

0max max

expn

H H

cut-off function

Transition from gel-like to glass-like behavior

Page 30: Oral presentation at Tsingtao 2015.7

Modeling

H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004).

B. Ruzicka and E. Zaccarelli, Soft Matter 7, 1268 (2011).

Gel – glass:ϕ – dependence or age – dependence?

Page 31: Oral presentation at Tsingtao 2015.7

Hectorite + PEG

0.0 5.0x10-9 1.0x10-8 1.5x10-8-20

0

20

Pot

entia

l (k BT)

h (m)

UvdW

Udl

Usteric

U

Quenched by increasing U (old results)

U=UvdW+Udl+Usteric

W. Sun, T. Wang, C. Wang, X. Liu, and Z. Tong, Soft Matter 9, 6263 (2013).

Page 32: Oral presentation at Tsingtao 2015.7

10-1 101 103 105100

101

102

cp = 0.63 wt%, t

w,ref = 90 s

tw/ s

30 40 60 90 200 400 700G

', G'' (

Pa)

at (rad/s)

10-5 10-3 10-1 101

100

101

102

tw = 90 s, c

p,ref = 0.1 wt%

cp / wt%

0 0.1 0.25 0.4 0.63 0.8 1.0

ap (rad/s)

Time – aging time superposition Time – PEG conc. superposition

10-4 10-2 100 10210-1

100

101

102

G', G''

(Pa)

rel (rad/s)

cp,ref

= 0.1 wt%tw,ref

= 90 s

Relaxation time :

cp

tw “older”aging

“younger”rejuvenation

Page 33: Oral presentation at Tsingtao 2015.7

ConclusionsNa+

Na+Na+

Na+ Na+

Na+

Increased potential barrier

Increased collision probability

Page 34: Oral presentation at Tsingtao 2015.7

青年科学基金21204023

Prof. Z. Tong

C. LiangW.

Sun

Page 35: Oral presentation at Tsingtao 2015.7

Thank you!