Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells...

49
March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft University of Technology The Netherlands

Transcript of Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells...

Page 1: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008

1

Organic solar cells

Opto-Electronic Materials, DCT

Tom J. Savenije

Opto-Electronic Materials SectionDCT,TNW

Delft University of TechnologyThe Netherlands

Page 2: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 2

Outline

Why using organic materials

Fundamental aspects of organic semiconductors- energy levels in molecular materials- excitations in inorganic and organic SCs- exciton diffusion

Examples of organic solar cells- Dye sensitised solar cells- Polymer bulk heterojunction cells

Page 3: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 3

Organic materials in Photovoltaic cells

Advantages- tailoring of opto-electronic properties

O

O

*S*

n

C8H17 C8H17 NS

N

*

n

MDMO-PPV

rr poly (3,hexyl)thiophene

NC *

MeO

OR

CN

n

MeO

OR

CN-PPV

F8BT

Page 4: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 4

Organic materials in Photovoltaic cells

Advantages- tailoring of opto-electronic properties

- Variation of optical band-gap: colour- optimisation of the energy levels

Page 5: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 5

Organic materials in Photovoltaic cells

Advantages- tailoring of opto-electronic properties- large areas - low temperatures (RT)- processing from solution- roll to roll manufacturing- low substrate costs

From experience with organic LEDS

Page 6: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 6

Organic materials in Photovoltaic cells

Advantages- tailoring of opto-electronic properties- large areas - low temperatures (RT)- processing from solution- roll to roll manufacturing- low substrate costs

Page 7: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 7

Organic materials in Photovoltaic cells

Advantages- tailoring of opto-electronic properties- large areas - low temperatures (RT)- processing from solution- roll to roll manufacturing- low substrate costs

(Possible) problems- low mobility of charge carriers (p3.13)

vi = µiξv : velocityµ :mobilityξ : electric field

µn (c-Si) > 1000 cm2/Vsµh (polymer) ≈ 0.1 cm2/Vs

Page 8: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 8

Organic materials in Photovoltaic cells

Advantages- tailoring of opto-electronic properties- large areas - low temperatures (RT)- processing from solution- roll to roll manufacturing- low substrate costs

(Possible) problems- low mobility of charge carriers- photovoltaic performance (plastic cells: 5%, DSSC’s: 10%)- stability (10,00 hours minimum operational lifetime)

Crystalline silicon solar cells have efficiencies up to 20%combined with a lifetime > 20 years

Page 9: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 9

Cross section of typical c-Si solar cells(3.2)

n-type layer

absorber layer

Back contact

Front grid

Junction

p-type layer

ar layer

Page 10: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 10

Cross section of typical Si solar cells

n-type layer

Back contact

Incident light

Junction

p-type layerelectron/hole pairform on photon absorption

absorber layer

Page 11: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 11

Cross section of typical Si solar cells

n-type layer

Back contact

Junction

p-type layer

Diffusion of charge carriers

absorber layer

Page 12: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 12

Cross section of typical Si solar cells

n-type layer

Back contact

Junction

p-type layerCollection byinternal electric field

Front grid

absorber layer

Page 13: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 13

Homo Junction structure Va = 0 V(p 4.5 Chp 4)Internal electric field

n-type layer

ECB

EVB

Fermi level

p-type

Depletion layer

Page 14: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 14

Homo Junction structure Va = 0 V

Internal electric field

p-type n-type layer

ECB

EVB

Fermi level

Page 15: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 15

Homo Junction structure Va = 0 V

Internal electric field

p-type n-type layer

ECB

EVB

Fermi level

Page 16: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 16

Photovoltaic device based on molecular semiconductors?

Metal back contact

p-type organic layer

n-type organic layer

TCO

Page 17: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 17

Semiconductors (3.11)

Vacuum level

ECB

EVB

intrinsic

Electron affinity

Ionisation potential

Fermi levelForbidden gap

empty

1-3 eV

energy

Doping leads top-type orn-type SCs

Page 18: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 18

Molecular semiconductors

ECB

EVB

Inorganic semiconductor

Forbidden gap1-3 eV

HOMO

LUMO

molecular semiconductor

Highest occupied molecular orbital

Lowest unoccupied molecular orbital

Vacuum level

Page 19: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 19

Energy levels

Vacuum level

ECB

EVB

Inorganic semiconductor

Electron affinity

Ionisationpotential

HOMO

LUMO

molecular semiconductor

Oxidation potential

Reduction potential

NHE level

EHOMO ≈ -4.5 - e VOX

Page 20: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 20

n- or p-type molecular semiconductors

Molecular material with a high electron affinity:electron acceptor ⇒n-type semiconductor

Molecular material with a low ionisation potential:electron donor ⇒p-type semiconductor

HOMO

LUMO

ener

gy

Vacuum level

Ionisationpotential

Electron affinity

HOMO

LUMO

Page 21: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 21

Junction based on molecular semiconductors

n-type semiconductor:Electron acceptor

p-type semiconductor:electron donor

HOMO

LUMO

ener

gy

HOMO

LUMONo free charge carriers:no depletion layer no internal electric field

Page 22: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 22

Excitations in inorganic and molecular semiconductors

(isc vs msc)

A charge carrier becomes free from its Coulomb attraction to an opposite charge if the energy of attraction is less than kBT

E = q2

4πεε0rc

rc =q2

4πεε0kBT

q = electronic chargeε0 = permittivity of free spacerc = critical distance

If E =kBT

Page 23: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 23

Dependence of Rc

2

3

4

5

6

7

89

10

2

3

4

5

ε r

5 6 7 8 9100

2 3 4 5 6 7 8 91000

Temperature

1e-07

5e-08

4e-08 3e-08 2e-08 1e-08

5e-09 4e-09

3e-09 2e-09

1e-09

Page 24: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 24

Bohr radius

rB = r0ε

me

meff

rB = Bohr radius of carriersr0 = Bohr radius of hydrogen atom in the groundstate (0.53Å)ε = dielectric constantme = mass of free electron in vacuummeff = effective mass of electron in SC

Page 25: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 25

Bohr radius

rB = r0ε

me

meff

rB = Bohr radius of carriersr0 = Bohr radius of hydrogen atom in the groundstate (0.53Å)ε = dielectric constantme = mass of free electron in vacuummeff = effective mass of electron in SC

Excitation leads in case of

- isc to free charge carriers and

- msc to excitons (coulomb bound electron/hole pair)

Page 26: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 26

Photovoltaic device based on molecular semiconductors?

Metal back contact

p-type organic layer

n-type organic layer

TCO

Page 27: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 27

Excitation in organic junction

n-type semiconductor:Electron acceptor

p-type semiconductor:electron donor

HOMO

LUMO

Exciton: Coulombic bound electron hole/hole pair

Page 28: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 28

organic junction

n-type semiconductor:Electron acceptor

p-type semiconductor:electron donor

HOMO

LUMO

Page 29: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 29

Excitation near interface

n-type semiconductor:Electron acceptor

p-type semiconductor:electron donor

HOMO

LUMO∆G > Eexc

Page 30: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 30

Molecular based organic photovoltaic device

Phthalocyanine

p-type material

Perylenediimiden-type material

Tang, C.W., Two-layer organic photovoltaic cell. Appl. Phys. Lett, 1986. 48(2): p. 183-185.

η <=1%

Page 31: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 31

Voltage of molecular based organic photovoltaic devices

Tang, C.W., Two-layer organic photovoltaic cell. Appl. Phys. Lett, 1986. 48(2): p. 183-185.

n-type SCp-type SC

HOMO

LUMO

Opticalbandgap

Opticalbandgap

Effectivebandgap

Page 32: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 32

Current of molecular based organic photovoltaic device

n-type semiconductor:Electron acceptor

p-type semiconductor:electron donor

HOMO

LUMO

LEXC = DEXCτEXC

Transport of excitonsby diffusion (Chp 3):

Page 33: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 33

Molecular based organic photovoltaic device

p-type organic layer

n-type organic layer

TCO

LEXC LEXC

Page 34: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 34

Molecular based organic photovoltaic device

p-type organic layer

n-type organic layer

TCO

LEXC

Solution:increase the interfacial area

LEXC

Page 35: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 35

Outline

Why using organic materials

Fundamental aspects of organic semiconductors- excitations inorganic and organic SCs- energy levels in molecular materials- exciton diffusion

Examples of organic solar cells- Dye sensitised solar cells- Polymer bulk heterojunction cells

Page 36: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 36

Dye sensitised solar cells (Graetzel cells)

5 - 20 nm thicknanocrystalline TiO2

ElectrolyteSubstrate

TCO Dye:ruthenium complex

load

Page 37: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 37

Primary Processes

3S1

S 0

CB

dye

21

TiO2

VB

1: photo-excitation2: (non)radiative decay3: electron transfer

Page 38: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 38

Secondary Processes

3 S1

S 0

CB

dye

21

TiO2

VB

1: photo-excitation2: (non)radiative decay3: electron transfer

4: electron transport5: hole transport

6: recombination

4

5

6

Page 39: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 39

Electron transport via particles

5 - 20 nm thicknanoporous TiO2

ElectrolyteSubstrate

Negative pole Dye:ruthenium complex

Page 40: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 40

Hole transport by redox couple

Electrolyte Dye:ruthenium complex

2Dye+ + 2I- 2Dye + I2

Pt metal contactPositive pole

At dye/electrolyte interface

I2 + 2e- 2I- At electrolyte/Pt interface

Page 41: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 41

DSSCs on the market

dye_solar_cells.htm

•Copyright © Solaronix SA All Rights Reserved

•First large area dye solar cell modules •made with industrial materials & methods •45 x 45 cm surface, 33 serially connected cells

Page 42: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 42

Present developments on DSSC

- improvement of absorption of dye molecules to absorb all sun light with λ < 1000 nm

- omit the liquid phase by using solid state hole conductor to avoid leakage

- usage of ordered nanowires to optimize electron transport properties

Page 43: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 43

Polymer solar cells

Electron acceptor (A)

MDMO-PPV

e-OMe

O

O

O

n

PCBM

Electron donor (D)

*S*

nP3HT

Page 44: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 44

Photovoltaic Cell

(Flexible) substrate

Blend: bulk heterojunction

Metal contact

- η: ca 5 %- Flexible - Cheap materials- Simple processing- Tunable color- Thin layers

Page 45: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 45

Nano morphology of bulk heterojunction (TEM)

PCBM

polymer

crystalline P3HT domain

Page 46: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 46

Polymer solar cells

PPVPCBM

1

2

4 6

5

3

7

1: Excitation2: Exciton migration3: (Non)radiative decay4: Charge separation5: Charge recombination6: Electron transport7: Hole transfer

VOC = 0.6 VIsc = 0.97 mA/cm2

FF = 0.68η = 5%

Page 47: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 47

Plastic solar cells on the market

•http://www.konarkatech.com

Page 48: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 48

Present developments on polymer solar cells

- Reduce bandgap of polymeric materials to absorb all sun light with λ < 1000 nm

- Optimize energy levels to avoid additional energy loss during charge separation

- enhance crystallinity of materials to improve charge carrier transport

Page 49: Opto-Electronic Materials Section DCT,TNW Delft …March 20, 2008 1 Organic solar cells Opto-Electronic Materials, DCT Tom J. Savenije Opto-Electronic Materials Section DCT,TNW Delft

March 20, 2008 49

Questions

• Which factors do affect the potential in a polymer solar cell?• Calculate the critical distance in a photoactive blend layer with ε=4.5 at

room temperature• Calculate the minimum thickness of an organic blend layer consisting of a

1 tot 1 mixture of a conjugated polymer and a wide bandgap SC in order to absorb 90 % of the incident light. Neglect the reflection; the polymer has an α = 18x106m-1

• Calculate the average period it takes for an exciton to cross 5 nm in a molecular material. The exciton lifetime is 2 ns and the exciton diffusion length is 25 nm.