Optimization of magnetron sputter-deposition …...Optimization of magnetron sputter-deposition...

28
Opmizaon of magnetron spuer-deposion process of thin film coangs on a moving cylindrical substrate PhD. Student Seminar 07/04/2016 Supervisors : A. Lacoste M. Mantel A. Bes C. Vachey Thomas LE COZ

Transcript of Optimization of magnetron sputter-deposition …...Optimization of magnetron sputter-deposition...

Optimization of magnetron sputter-deposition process of thin film coatings on a moving

cylindrical substratePhD. Student Seminar 07/04/2016

Supervisors : A. Lacoste M. Mantel A. Bes C. Vachey

Thomas LE COZ

Outline

Context→ Why do we want to coat wire ?→ Scientific issues

Employed technology→ Main specifications of reactive sputtering in an inverted cylindrical magnetron (ICM)

2PhD. Seminar - LE COZ T.07/04/2016

Commercial magnetron→ Characterization of the first used commercial magnetron

Ugitech made magnetron→ Characterization of the magnetron designed by the company

Conclusions and Forthcoming work

Context

Wide amount of stainless steel wire used in many fields :

→ Architecture→ Urbanization→ Art→ Cold heading→ Automotive…

3PhD. Seminar - LE COZ T.07/04/2016

Context

4

Scientific issues

Sizing the system for :→ Fast roll-to-roll process→ Uniform coatings→ High quality coatings

Considerations : → Geometry→ Electric→ Magnetic→ Thermal

PhD. Seminar - LE COZ T.07/04/2016

5

Employed technology

Physical Vapor Deposition (PVD)

E

Target

Substrate

CathodeWater cooling

Substrate holder (anode)

e-

Ar Ar+e-

e-+

Vsubstrate

Vcathode

Vplasma

Plasma bulk

Cathode sheath

Anodic sheath

SubstrateCathode

V

→ Ionization of argon atoms by surrounding electrons

→ Potential drop in the sheath accelerates the ions used to sputter the target

PhD. Seminar - LE COZ T.07/04/2016

6

Employed technology

Magnetron sputtering

→ Plasma close to the target

→ High density (1010 – 1011 cm-3)

→ Low pressure (0.1 Pa)

→ Race tracks leading to non-homogeneous coatings

Inverted cylindrical configuration

B

Repulsive wall

Cathode / Target

Anode / substrate

→ Conformal geometry→ No loss of matter on the walls

PhD. Seminar - LE COZ T.07/04/2016

7

Employed technology

Reactive sputtering

Lindberg et al., « Reactive deposition of nitrides and oxides using a twin- cathode inverted cylindrical magnetron », Surface and Coatings Technology  133-134 (2000) 484-488.

Metalic mode

Poisonned mode→ Argon plasma→ Nitrogen as reactive gas→ Titanium target

→ Formation of TiNx on target and substrate

→ Instability of the stoechiometric point

Stoechiometry (x=1)

PhD. Seminar - LE COZ T.07/04/2016

8

Employed technology

Reactive sputtering

PhD. Seminar - LE COZ T.

→ Sputtering yield depends on the material

07/04/2016

PhD. Seminar - LE COZ T. 9

Commercial magnetron

Geometry

Target

Water coolingMagnet (NdFeB) Substrate

Insulator

5 cm

10 cm

Cathode : -Diameter : 5 cm-Length : 2*10 cm

Substrate :-Diameter : 2 mm-Grounded

Gas inlet

Pumping

→ Two isolated targets for RF sputtering – we use DC sputtering

07/04/2016

Soft iron

07/04/2016 PhD. Seminar - LE COZ T. 10

Commercial magnetron

Magnetic configuration

Unit : T

→ 4 rings of 30 magnets

→ heterogeneity of the magnetic field

→ two racetracks per target

→ consumption of the targets : 30 %

→ Necessity of homogeneous magnetic field

07/04/2016 PhD. Seminar - LE COZ T. 11

Commercial magnetron

Magnetic configuration

→ Two ways to get a homogeneous magnetic field :- increase the diameter of the magnetic rings- use a coil

Unit : TMagnetic field intensity on the target surface

0.038 T

07/04/2016 PhD. Seminar - LE COZ T. 12

Commercial magnetron

Magnetic configuration

→ Two ways to get a homogeneous magnetic field :- increase the diameter of the magnetic rings- use a coil

Unit : T

Magnetic field intensity on the target surface

07/04/2016 PhD. Seminar - LE COZ T. 13

Commercial magnetron

Magnetic configuration

→ Electron leakage leading to the creeping and breaking of the wire

Atoms Ions Sec. Therm. Total0

6

12

18

24

30

36

VA = 0 V

Po

wer

(W

)

Species

Electrons

-30 -20 -10 0 10 20 300

100

200

300

400

Off-axis position (cm)

Subs

trat

e te

mpe

ratu

re (°

C)

Species contributions to the heat load of the substrate

→ Substrate to repulsive potential

07/04/2016 PhD. Seminar - LE COZ T. 14

Commercial magnetron

Magnetic configuration

→ Decrease of the substrate temperature

→ Modification of the spatial distribution of the plasma

Schematic of the deposition chamber and pyrometric setup

07/04/2016 PhD. Seminar - LE COZ T. 15

Commercial magnetron

Magnetic configuration

→ Plasma characterization through Langmuir probe measurements.

VA = 0 V VA = 30 V

Distribution of the Langmuir characteristics within the magnetron

Position along the cathode axis (

cm)

Probe potential (V)

Curr

ent (

mA) Positi

on (cm)

Probe potential (V)

Curr

ent (

mA)

→ Spatial redistribution of the plasma with the variations of the anode potential

Vf

Vp

Saturation ionique

I pb (

mA

)

Vpb (V)

07/04/2016 PhD. Seminar - LE COZ T. 16

Commercial magnetron

Magnetic configuration

→ More energetic electrons when polarizing and electron density slightly superior

→ Better ionization but spatial redistribution of the plasma

No data because of a lack of collected current

07/04/2016 PhD. Seminar - LE COZ T. 17

Commercial magnetron

Influence of the anode potential

C Ti

Acier

Acier

Ti

VA = 0 V

→ Hysteresis shifted to higher nitrogen flows

→ Grain size variation due to temperature

→ Diffusion of iron in the titanium coating

ASTAR pictures made by S. Grosso, SIMaP

VA = 0 V

EDX characterization made by S. Grosso, SIMaP

VA = 30 V

0 1 2 3 4 5 60

200

400

600

800

1000

1200

1400

1600Ti - N2↗ (30 V)Ti - N2↘ (30 V)Ti - N2↗ (0 V)Ti - N2↘ (0 V)

Nitrogen flow(sccm)

Relat

ve in

tens

ity (a

.u.)

07/04/2016 PhD. Seminar - LE COZ T. 18

→ Deposition rate ≈ 60 nm/min

→ Deposition profile is changed due to plasma redistribution

Cible

Substrat

Heart-shaped pulverization

Distance : DCible

Substrat

Distance : D’

Commercial magnetron

Influence of the anode potential

07/04/2016 PhD. Seminar - LE COZ T. 19

0 3 6 9 12 150

50

100

150

200

250

300

350

mTorr

500 W 5 10 20 50 100

Ta

rge

t vo

ltag

e (

V)

Current density (mA/cm2)

1000 W

Ji (VT)12

4

0 2 4 6 8 10 120

50

100

150

200

250

LP

M (

mm

)Pressure (mTorr)

→ JT α (VT)12

→ Minimal turn-on pressure : 5 mTorr→ Mean free path at 5 mTorr ≈ 25 mm = Distance cathode-target→ Maximal operating power : 1000 W (by construction)

Alexandru Todoran, « Magnetron sputtering in inverted cylindrical  configuration : 3D depositoin on moving substrate », thèse 2014 

Commercial magnetron

Operating parameters

0 1 2 3 4 5 6225230235240245250255260265270

N2↗ (30 V)

Nitrogen flow (sccm)

Cath

ode

pote

ntial

(V)

07/04/2016 PhD. Seminar - LE COZ T. 20

Commercial magnetron

Operating parameters

1 2 3

1

3

2

→ More collisions due to the increase of species density leading to faster thermalization

→ 1 : under-stoechiometric → 2 : stoechiometric→ 3 : over-stoechiometric

0 1 2 3 4 5 60

200

400

600

800

1000

1200

1400

1600 Ti - N2↗ (30 V)Ti - N2↘ (30 V)N - N2↗ (30 V)

Rela

tive

inte

nsity

(a.u

.)

07/04/2016 PhD. Seminar - LE COZ T. 21

Commercial magnetron

Intermediate conclusion

→ Necessity of homogeneous magnetic field

→ Control of the substrate temperature by polarizing auxiliary electrodes …

→ … which influences the plasma distribution within the reaction chamber

→ Low deposition rate

→ Power input limited

→ Unstable conditions for stoechiometric coatings

07/04/2016 PhD. Seminar - LE COZ T. 22

Ugitech’s magnetron

Magnetic configuration

Unit : G

→ Non homogeneity of the magnetic field close to the target.

Off-axis position (cm)

Bz (G

)

150

07/04/2016 PhD. Seminar - LE COZ T. 23

Ugitech’s magnetron

Magnetic configuration

0 0,8 1,8 4 5,5 9 10 11 13,5 17 19,5 21 22 24,5 25,5 28,2 29 30

Gas GasMagnets

Racetracks

Racetracks

-20 -15 -10 -5 0 5 10 15 200

20406080

100120140160

0 V - 30 s

Off-axis (cm)

Subs

trat

e te

mpe

ratu

re (°

C)

→ 5 racetracks → 6 electrons leakage zones→ Target consumption: 36 %

07/04/2016 PhD. Seminar - LE COZ T. 24

Ugitech’s magnetron

Operating parameters

→Higher sputtering for higher current→Increase of the ionization rate

Hysteresis curves for different target currents

→ Hysteresis for low nitrogen flows

07/04/2016 PhD. Seminar - LE COZ T. 25

Ugitech’s magnetron

Operating parameters

→ Mean deposition rate : 100 nm/min against 60 nm/min in commercial cathode→ Heterogeneous thickness→ Polarization influences spatial plasma distribution

Deposition rate as a function of the position in the cathode

Commercial cathodeUgitech’s cathode

Off-axis position (cm)

07/04/2016 PhD. Seminar - LE COZ T. 26

Ugitech’s magnetron

Titanium nitride coatings

→ Oxygen contamination

→ Gold yellow is TiN

→ Blue is TiNxOy

N / Ti O/Ti0

0.2

0.4

0.6

0.8

1

1.2

Ugi1– coté Ugi1 - Bosse Ugi1– centre

Ratio of nitrogen and oxygen concentrations with respect to the colors on the wire

Coated wire made in reactive mode under 30 V of polarization, 5 min static deposition

07/04/2016 PhD. Seminar - LE COZ T. 27

Ugitech’s magnetron

Intermediate conclusions

→ Necessity of homogeneous magnetic field

→ Control of the substrate temperature by polarizing auxiliary electrodes …

→ … which influences the plasma distribution within the reaction chamber

→ Deposition rate greater than for the commercial cathode

→ Unknown limit of power input – grater than that for the commercial cathode

→ Unstable conditions for stoechiometric coatings

→ Oxygen contamination – Unknown origin

07/04/2016 PhD. Seminar - LE COZ T. 28

Forthcoming work

→ Sizing of a coil

→ Study the influence of the diameter of the targets

→ Modeling of the sputtering process

→ Modeling of the gas dynamics

→ Find the origin of the oxygen contamination

→ Ultimately design a new optimized magnetron