Optimization and Modeling of Phosphoric-Acid-Pretreated ...

34
Optimization and Modeling of Phosphoric-Acid-Pretreated Sugarcane Bagasse Ismael U. Nieves, Claudia C. Geddes, Ralph W. Hoffman, Mike Mullinnix, and Lonnie O. Ingram http://fcrc.ifas.ufl.edu/ [email protected] April 30 th , 2012

Transcript of Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Page 1: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Optimization and Modeling of Phosphoric-Acid-Pretreated

Sugarcane Bagasse

Ismael U. Nieves, Claudia C. Geddes, Ralph W. Hoffman, Mike Mullinnix, and Lonnie O. Ingram

http://fcrc.ifas.ufl.edu/

[email protected]

April 30th, 2012

Page 2: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Introduction

• Lignocellulosic biomass as energy source – Abundant resource

– High sugar content

• Resistant to degradation

• Pretreatment is essential for downstream processes

Page 3: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Introduction

Composition Analysis of Raw Sugarcane Bagasse

Sugar Percentage of

Dry Weight

Glucan 43.2 ± 0.8

Xylan 22.8 ± 0.8

Galactan 2.2 ± 1.4

Arabinnan 2.1 ± 0.6

Total Sugars 70.3 ± 1.9

Page 4: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Introduction

Curr. Opin. Biotechnol. 22, 312-319

SHF – Separate Hydrolysis and Fermentation

SSF – Simultaneous Saccharification and Fermentation

SHCF – Simultaneous Hydrolysis and Co-Fermentation

L+SScF – Liquefaction +

Simultaneous Saccharification and Co-Fermentation

SScF –Simultaneous Saccharification and Co-Fermentation

CBP – Consolidated Bioprocess

Page 5: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

Research Advances Required for Process Simplification:

1. Replace Sulfuric with less aggressive acid

2. Solve mixing and pumping issues with high fiber solids

3. Develop biocatalysts with improved resistance to hemi toxins

4. Develop process using only fertilizer chemicals a. (N, P, K, Mg, S, trace metals)

Page 6: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

Replace sulfuric acid with phosphoric acid

– Eliminate Zirconium

– Lower the level of inhibitors

– Gypsum piles replaced with crop fertilizer

150C Verenium Sulfuric Acid Hydrolysate

0 20 40 60 80 1000

2

4

6

8

10

Furfural

HMF

0.0

0.5

1.0

1.5

Acetate

Concentration of Hydrolysate (%)

Aceta

te (

g/L

) Fu

ran

s (g

/L)

160C Phosphoric Acid Hydrolysate

0 25 50 75 1000

2

4

6

8

10

HMF

0.0

0.5

1.0

1.5

Furfural

Acetate

Concentration of Hydrolysate (%)

Aceta

te (

g/L

) Fu

ran

s (g

/L)

Bioresour. Technol. 101, 1851–1857

Page 7: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

Research Advances Required for Process Simplification:

1. Replace Sulfuric with less aggressive acid

2. Solve mixing and pumping issues with high fiber solids

3. Develop biocatalysts with improved resistance to hemi toxins

4. Develop process using only fertilizer chemicals a. (N, P, K, Mg, S, trace metals)

Page 8: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

0.5%

19500

20000

20500

60C 0.5-10% BioW pHz 10% Solids

1%

10%

23 24

Time (h)

Vis

co

cit

y (

cen

tip

ois

e,c

P)

0.25 FPU/g fiber 0.50 FPU/g fiber 5.0 FPU/g fiber

5 FPU 99% reduction in viscosity

Bioresour. Technol. 101, 9128–9136

Liquefaction with cellulases

Page 9: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

Less steps

Bioresour. Technol. 102, 2702-2711.

Page 10: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

Research Advances Required for Process Simplification:

1. Replace Sulfuric with less aggressive acid

2. Solve mixing and pumping issues with high fiber solids

3. Develop biocatalysts with improved resistance to hemi toxins

4. Develop process using only fertilizer chemicals a. (N, P, K, Mg, S, trace metals)

Page 11: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

Strong biocatalyst developed through metabolic evolution

– Derived from KO11 strain – Increased tolerance to inhibitors – High ethanol yields (> 95%) – Co-fermentation of pentose and hexose sugars

Page 12: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

Research Advances Required for Process Simplification:

1. Replace Sulfuric with less aggressive acid

2. Solve mixing and pumping issues with high fiber solids

3. Develop biocatalysts with improved resistance to hemi toxins

4. Develop process using only fertilizer chemicals a. (N, P, K, Mg, S, trace metals)

Page 13: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

Fermentation scale-up to 80 L

Bioresour. Technol. 102, 6959-6965

Glu

Xyl

EtOH

Furfural

Yields;

0.27 g EtOH/g bagasse

342 L/tonne

90 gal/tonne

82 gal/US ton

Page 14: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

• Still need further process simplification

– Minimize need for nutrients

• Modify AM1 media

– Eliminate need added sugar

• Use sugars present in hydrolysate

– Need to grow seed in hydrolysate

• Use the hydrolysate generated during pretreatment

• Start with pretreatment optimization

Page 15: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Pretreatment

• Temperature

– 180 °C, 190 °C, 200 °C

• Acid concentration

– 1%, 0.5%, 0.25%, 0.1%, 0.05%, 0.01%

• Residence time

– 5, 10, and 30 min

• Measure sugars and inhibitors

Page 16: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Pretreatment

Thanks to Dr. Guido Zacchi, Lund University

Page 17: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Pretreatment Results

Dimers Glucose Xylose Galactose Arabinose HMF Furfural Acetic Formic Total Inhib Total Sug

5 180 0.5 50.13 5.40 84.22 4.55 12.27 0.12 1.04 7.01 0.87 9.04 156.57

5 190 0.5 41.31 13.71 181.53 8.27 16.42 0.07 4.15 18.59 2.16 24.97 261.24

5 200 0.5 22.50 19.65 188.37 8.39 14.43 0.52 7.32 26.09 2.96 36.90 253.34

10 180 0.01 10.30 1.37 4.91 1.43 10.50 0.37 5.88 1.65 7.90 28.50

10 180 0.05 19.78 1.23 9.40 1.31 9.35 0.42 4.30 0.86 5.58 41.06

10 180 0.1 38.69 1.71 25.35 1.58 9.23 0.77 4.88 2.43 8.07 76.57

10 180 0.25 56.59 5.26 104.56 4.45 8.05 2.13 10.91 0.94 13.98 178.92

10 180 0.5 44.70 8.21 125.06 6.07 13.54 3.26 14.59 1.78 19.62 211.06

10 180 1 20.30 17.19 187.82 6.87 15.27 0.39 6.91 29.66 2.39 39.35 247.45

10 190 0.01 39.91 2.92 17.01 2.68 12.75 0.66 10.84 1.97 13.46 75.27

10 190 0.05 30.00 1.60 21.18 1.75 7.00 1.56 5.62 0.93 8.11 61.53

10 190 0.1 40.05 3.07 51.22 2.77 8.21 2.34 7.07 1.09 10.49 105.32

10 190 0.25 30.28 6.47 110.49 3.53 10.79 6.81 16.44 1.31 24.56 161.56

10 190 0.5 19.69 17.64 188.30 8.37 15.38 8.79 30.37 2.97 42.13 249.38

10 190 1 6.87 27.40 185.53 5.58 12.18 1.09 14.86 39.19 2.74 57.87 237.56

10 200 0.01 57.49 3.38 47.45 2.97 7.77 6.00 17.09 3.63 26.73 119.06

10 200 0.05 53.97 5.24 92.41 4.03 10.22 7.50 18.83 2.55 28.88 165.86

10 200 0.1 37.27 10.11 131.84 6.37 11.71 9.47 24.03 2.43 35.93 197.30

10 200 0.25 22.50 23.58 185.33 9.10 9.03 14.22 36.85 2.80 53.87 249.54

10 200 0.5 12.00 26.81 178.64 7.90 15.40 0.42 17.69 40.85 4.07 63.02 240.75

10 200 1 6.55 45.01 166.42 4.85 12.65 1.41 19.71 47.94 3.47 72.54 235.48

30 180 0.1 46.46 6.58 112.20 5.70 13.51 0.46 11.03 34.96 0.71 47.16 184.46

30 190 0.1 17.26 12.81 119.83 5.81 10.47 1.45 25.42 21.61 1.90 50.38 166.18

30 200 0.1 14.38 12.94 63.45 3.49 7.78 2.31 25.27 30.51 2.74 60.82 102.04

30 200 0 21.52 9.65 66.57 3.25 6.08 0.03 22.71 38.88 7.47 69.10 107.07

Concentration (g/kg DW)Duration

(min)

Temp

(°C)

Acid

Conc (%)

Page 18: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Pretreatment Model

• Combine process parameters of T, t, and C

• Relationship between severity and hemicellulose solubilization

• Model based on derivation by Chum, et al. (1990). Appl. Biochem. Biotechnol. 24-25, 1-14

Page 19: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Pretreatment Model

𝑅𝑜 = 𝑡 ∗ 𝑒𝑇𝑟−10014.75 ln − ln 1 − 𝛼 = log 𝑅𝑜 − 𝑝𝐻

Ro = Severity coefficient; t = Time (min); Tr = Pretreatment temperature; α = Fraction of hemicellulose remaining

R² = 0.8751

Page 20: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Pretreatment

180

185

190

195

200

40

80

120

160

200

240

280

0.0

0.2

0.4

0.6

0.81.0

10 min Pret.

(color grid)

30 min Pret.

5 min Pret.

Tota

l S

ugar

Concentr

ation (

g/k

gD

W)

Acid C

oncentra

tion (%

)

Temperature ( oC)

180

185

190

195

200

0

15

30

45

60

75

0.0

0.2

0.4

0.6

0.81.0

10 min Pret.

(color grid)

30 min Pret.

5 min Pret.

Tota

l In

hib

itors

Concentr

ation (

g/k

gD

W)

Acid C

oncentra

tion (%

)

Temperature ( oC)

180185

190

195

200

0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0

10 min Pret.

(color grid)

30 min Pret.

5 min Pret.F

urf

ura

l C

oncentr

ation (

g/k

gD

W)

Acid

Con

cent

ratio

n (%

)

Temperature ( oC)

A) Total Sugars, B) Total Inhibitors, and C) Furfural

A

B

C

Page 21: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Pretreatment

180185

190

195

200

2

4

6

8

10

12

14

16

18

0.0

0.2

0.4

0.6

0.8

1.0

190oC,

0.5% acid,

5 min

180oC, 0.5% acid, 10 min 10 min Pret

(color grid)

30 min Pret

5 min Pret

Tota

l S

ugars

/Tota

l In

hib

itors

Acid

Con

cent

ratio

n (%

)

Temperature ( oC)

180oC, 0.5% acid, 5 mind e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

Temperature (°C)

Acid Concentration

(%)

Residence Time (min)

Total Sugars (g/kg)

Ratio Sugars to Inhibitors

180 0.5 5 157 17.3

190 0.5 5 261 10.5 180 0.5 10 211 10.8

Page 22: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Fermentation

Page 23: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Fermentation

10% Solids 180C, 0.5% H3PO4, 10 min (0.5 mM SMB)

0 24 48 72 96 120 1440

5

10

15

20

25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Xylose

Cellobiose

Glucose

Arabinose

Furfural

Ethanol

Galactose

Time (h)

Concentr

ation (

g/L

)

Furfu

ral (g

/L)

10% Solids 190°C, 0.5% H3PO4, 10 min (0.5 mM SMB)

0 24 48 72 96 120 1440

5

10

15

20

25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cellobiose

Glucose

Legend

Arabinose

Furfural

Ethanol

Galactose

Time (h)C

oncentr

ation (

g/L

)

Furfu

ral (g

/L)

190 °C, 0.5% acid, 5 min 180 °C, 0.5% acid, 10 min

Slightly better ethanol yields for the 190 °C, 0.5% acid, 5 min bagasse.

Page 24: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Process Simplification

• Still need further process simplification

– Minimize need for nutrients

• Modify AM1 media

– Eliminate need added sugar

• Use sugars present in hydrolysate

– Need to grow seed in hydrolysate

• Use the hydrolysate generated during pretreatment

• Continue with seed train development

Page 25: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Seed Train Development

Hydrolysate conditioning using NH4OH

Only add trace metals, MgSO4, and sodium metabisulfate

Page 26: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Seed Train Development

Max Yields;

0.277 g EtOH/g bagasse

351 L/tonne

93 gal/tonne

84 gal/US ton

Sugarcane Bagasse

Max Yields;

0.309 g EtOH/g bagasse

392 L/tonne

103 gal/tonne

94 gal/US ton

Sorghum Fiber

Page 27: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Stan Mayfield Biorefinery

Page 28: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Location of Stan Mayfield Biorefinery Pilot Plant

Buckeye Technologies, Perry, Florida

Page 29: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Stan Mayfield Biorefinery

Page 30: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

18,500 ft2 (1720 m2) Total Space

3,500 ft2 (325 m2) Lab Area

6,000 ft2 (560 m2) Client Space

Stan Mayfield Biorefinery

Page 31: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Stan Mayfield Biorefinery

Page 32: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Stan Mayfield Biorefinery

Page 33: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Stan Mayfield Biorefinery

Page 34: Optimization and Modeling of Phosphoric-Acid-Pretreated ...

Acknowledgements

• Lorraine Yomano

• Sean York

• David Walker

• William Sagues

• Dr. Jim Peterson

• Dr. Zhihong Fu

• Dr. Zhaohui Tong

• Dr. K. T. Shanmugam

Thank you!