Optimal Pulse sequences for efficient population transfer in lower (n

23
Optimal Pulse sequences for efficient population transfer in lower (n<10) Rydberg states Mudessar Shah How Camp Marc Trachy Supervisor: Brett DePaola

description

Optimal Pulse sequences for efficient population transfer in lower (n

Transcript of Optimal Pulse sequences for efficient population transfer in lower (n

Optimal Pulse sequences for efficient population

transfer in lower (n<10) Rydberg states

Mudessar ShahHow Camp

Marc Trachy

Supervisor:Brett DePaola

Application

Need for a system to be in a specified quantum state

o Laser control of chemical reactions

o Atom optics

o Quantum information

0.0

0.5

1.0

Exc

i. p

opu

lati

on

time

incoh. exc.

coh. exc.adiab.

Two level system

k Absorp.

E=ћωP=ћKJ= ћ

E=0P=0J= 0

E=ћωP=ћKJ= ћ

Pe(t)=1/2[1-e-F(T)]F(T)= I(t)dt

Pe(t)=1/2[1-cosΩt]

when radiation varies in amplitude cosine argument is

replaced by so-called pulse area

Advantages

Excitation between state of same parity can be produced, for which single photon transition are forbidden for electric dipole radiation, or between magnetic sublevels. (for 3 and higher)

Excitation efficiency can be made insensitive to many of experimental details (pulse area, Shape etc).

100% population transfer between same parity state is possible

-50 0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

-50 0 50 100 150 200

0

2

4

6

8

10

12 |1> |2> |3>

Po

pu

latio

n

Time (ns)

1,2

(GH

z)

I1 = 250 mW/cm2

w1 = 33 ns

I2 = 250 mW/cm2

w2 = 33 ns

t = 20 ns = 44 MHz

1

2

Theoratical prediction For three level systems

|1>

2

|3>

Ladder

|2>

1

4d

5p

5s

Adiabatic population transfer using sequential pulses (Three photon transition)

Delay1Delay2

L3 L1L2

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2

5s

5p

4d

9f

iikkk

ijjkikk

ijij

ijijij

AAA

ii

)(2

1

,

Equation of motion

Delay1 Vs %f population

Delay1Delay2

L3 L1L2

Delay2 Vs %f population

Delay1Delay2

L3 L1L2

L1 vs %f

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2

L3 vs %9f

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2

L2 vs %f

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2

Detuning1 vs %f

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2

Detuning2 vs %f

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2

General Apparatus Design

Q-Value SpectraQ-Value Spectra

50 75 100 125 150

0

500

1000

1500

2000

2500

3000

3500

Co

un

ts

Q-Value (Channel)

5s-3p

4d-3d5s-3s

-5

-4

-3

-2

-1

0

4d 2D5/2

, 4d2D3/2

4f 2F7/2

, 4f2F5/2

4s 2S1/2

4p 2P1/2

, 4p 2P3/2

23Na

4s 2S1/2

3d 2D5/2

, 3d2D3/2

3p 2P

1/2, 3p

2P

3/2

3s 2S

1/2

12f

4d 2D3/2,5/2

5p 2P

3/2

5s 2S

1/2

87Rb

Pote

ntia

l Ene

rgy

(eV)

2D Spectrum2D Spectrum

Q-Value (Channel)

Tim

e (s

)

50 100 150

0.5

1.0

1.5

2.0

2.5

0.0

5s-3p 5p-3p 5s-3s

4d-3d4d-3s

5p-3p

Time Evolution of Population

TAC spectra for 9f

Thanks!

%5p vs %9f

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2

%5s vs %9f

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2

%4d vs %9f

|4>3

Ladder

|2>

|1>

1

|3>

2

1

2