Optically Inactive Star Azo Polymers: Photocontrollability, Chiral … · 2015. 8. 20. · 4...

13
1 Supporting Information for Preferential Chiral Solvation Induced Supramolecular Chirality in Optically Inactive Star Azo Polymers: Photocontrollability, Chiral Amplification and Topological Effect Lu Yin, Yin Zhao, Shunqin Jiang, Laibing Wang, Zhengbiao Zhang, Jian Zhu, Wei Zhang* and Xiulin Zhu Scheme S1. The synthetic routes of multi-functional initiators. Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Transcript of Optically Inactive Star Azo Polymers: Photocontrollability, Chiral … · 2015. 8. 20. · 4...

  • 1

    Supporting Information for

    Preferential Chiral Solvation Induced Supramolecular Chirality in

    Optically Inactive Star Azo Polymers: Photocontrollability, Chiral

    Amplification and Topological Effect

    Lu Yin, Yin Zhao, Shunqin Jiang, Laibing Wang, Zhengbiao Zhang, Jian Zhu, Wei

    Zhang* and Xiulin Zhu

    Scheme S1. The synthetic routes of multi-functional initiators.

    Electronic Supplementary Material (ESI) for Polymer Chemistry.This journal is © The Royal Society of Chemistry 2015

  • 2

    10 8 6 4 2 0

    3.04

    12.00 4.33 36.17

    24.158.00

    17.78

    (c) I-6Br

    (b) I-4Br

    Chemical shift (ppm)

    (a) I-3Br6.00

    Fig. S1 1H NMR spectra of multi-functional initiators.

    6 7 8 9 10RT (mins)

    (PAzoMA6)3-1 (PAzoMA6)3-2 (PAzoMA6)3-3 (PAzoMA6)4 (PAzoMA6)6 (PAzoMA11)3

    Fig. S2 GPC curves of PAzoMAs.

  • 3

    Fig. S3 1H NMR spectra of star Azo polymers (PAzoMA6)3 (a, b and c), (PAzoMA6)4

    (d), (PAzoMA6)6 (e) and (PAzoMA11)3 (f).

    The Mn(NMR) were calculated as follows. The integral ratio of Ic and I(a,d,f) is 4/7

  • 4

    theoretically. Ic is the integrations at 8.1-7.6 ppm in 1H NMR spectra relative to the

    benzene ring (4H) of AzoMA repeating units in star PAzoMA. I(a,d,f) is the

    integrations in 1H NMR spectra relative to -OCH3, -OCH2-, -OCH2- (7H) of AzoMA

    units in star PAzoMA. I(a,d,f,i) is the integrations at 4.4-3.3 ppm in 1H NMR spectra

    including I(a,d,f) and the multi-functional initiators (-CH2-). Equation (S1) as follows:

    Mn,NMR = (NI)/(I(4.4-3.3) − 7) × MAzoMA + MI equation (S1)

    For I−3Br, I−4Br and I−6Br, the NI is 6, 8 and 16 respectively. MAzoMA is the molecular

    weight of AzoMA monomer. MI is the molecular weight of multi−functional initiator.

  • 5

    Fig. S4 UV−vis spectra of PAzoMA aggregates with different DCE/1R (a) and

    DCE/1S (b) volume fractions. The concentration of polymer repeating unit is 8.42 ×

    10-5 mol/L. 1-6 stands for (PAzoMA6)3-1, (PAzoMA6)3-2, (PAzoMA6)3-3, (PAzoMA6)4,

    (PAzoMA6)6 and (PAzoMA11)3, respectively.

    300 350 400 450 500 550 600-60

    -45

    -30

    -15

    0

    15

    30

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    100_1R 60_1R 20_1R 1R-1S 20_1S 60_1S 100_1S

    (PAzoMA6)3-1 ee (%)

    0

    2

    4

    6

    8

    Abs

    orba

    nce

    (a)

    300 350 400 450 500 550 600-80

    -60

    -40

    -20

    0

    20

    40

    (PAzoMA6)3-2 ee (%)

    Abso

    rban

    ce

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (b)

    100_1R 60_1R 20_1R 1R-1S 20_1S 60_1S 100_1S

    0

    2

    4

    6

    8

    300 350 400 450 500 550 600-75

    -50

    -25

    0

    25

    50

    (PAzoMA6)3-3 ee (%)

    Abs

    orba

    nce

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (c)

    100_1R 60_1R 20_1R 1R-1S 20_1S 60_1S 100_1S

    0

    2

    4

    6

    8

  • 6

    300 350 400 450 500 550 600-90

    -60

    -30

    0

    30

    60

    (PAzoMA6)4 ee (%)

    Abs

    orba

    nce

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (d)

    100_1R 60_1R 20_1R 1R-1S 20_1S 60_1S 100_1S

    0

    2

    4

    6

    8

    300 350 400 450 500 550 600-120

    -90

    -60

    -30

    0

    30

    60

    (PAzoMA6)6 ee (%)

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (e)

    100_1R 60_1R 20_1R 1R-1S 20_1S 60_1S 100_1S

    Abs

    orba

    nce

    0

    2

    4

    6

    8

    300 350 400 450 500 550 600-45

    -30

    -15

    0

    15

    30

    (PAzoMA11)3 ee (%)

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (f)

    100_1R 60_1R 20_1R 1R-1S 20_1S 60_1S 100_1S

    Abs

    orba

    nce

    0

    2

    4

    6

    8

    Fig. S5 Changes in CD and UV−vis spectra of PAzoMA aggregates with different

    enantiopurity of limonene. DCE/(1R + 1S) are 0.25/2.75, 0.4/0.6, 0.5/2.5, 0.3/2.7,

    0.5/2.5 and 0.5/2.5 (v/v) for (PAzoMA6)3-1, (PAzoMA6)3-2, (PAzoMA6)3-3,

    (PAzoMA6)4, (PAzoMA6)6 and (PAzoMA11)3 respectively. The concentration of

    polymer repeating unit is 8.42 × 10-5 mol/L. (a)-(f) stands for (PAzoMA6)3-1,

    (PAzoMA6)3-2, (PAzoMA6)3-3, (PAzoMA6)4, (PAzoMA6)6 and (PAzoMA11)3,

    respectively.

  • 7

  • 8

    Fig. S6 Photoisomerization switching of the UV−vis spectra ((a,b) DCE/1R and (d,e)

    DCE/1S) of PAzoMA aggregates by irradiation with 365 nm and 436 nm light. UV-

    vis spectra ((c) DCE/1R and (f) DCE/1S) of PAzoMA aggregates by alternating

    irradiation with 365 nm and 436 nm light. The irradiation times for 365 nm light and

    436 nm light are both 3 min. The absorbance change for trans− and cis−form is taken

    from 360 nm (black) and 453 nm (red), respectively. The concentration of polymer

    repeating unit is 8.42 × 10-5 mol/L. 1-6 stands for (PAzoMA6)3-1, (PAzoMA6)3-2,

    (PAzoMA6)3-3, (PAzoMA6)4, (PAzoMA6)6 and (PAzoMA11)3, respectively.

  • 9

    Fig. S7 The changes of UV−vis spectra with heating time in the process of thermal

    isomerization at 60 oC ((a) DCE/1R and (b) DCE/1S). The concentration of polymer

    repeating unit is 8.42 × 10-5 mol/L. 1-5 stands for (PAzoMA6)3-2, (PAzoMA6)3-3,

    (PAzoMA6)4, (PAzoMA6)6 and (PAzoMA11)3, respectively.

    300 350 400 450 500 550 600-80

    -40

    0

    40

    (PAzoMA6)3-1

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    Trans_1R Cis_1R Trans_1S Cis_1S

    (a)

    0

    2

    4

    6

    8

    Abs

    orba

    nce

    300 350 400 450 500 550 600-80

    -60

    -40

    -20

    0

    20

    40

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    0

    2

    4

    6

    8

    (PAzoMA6)3-2

    (b)

    Abs

    orba

    nce

    Trans_1R Cis_1R Trans_1S Cis_1S

    300 350 400 450 500 550 600-80

    -60

    -40

    -20

    0

    20

    40(c)

    Ellip

    ticity

    mde

    g)

    Wavelength (nm)

    0

    2

    4

    6

    8

    (PAzoMA6)3-3

    Abso

    rban

    ce

    Trans_1R Cis_1R Trans_1S Cis_1S

  • 10

    300 350 400 450 500 550 600-80

    -40

    0

    40

    (PAzoMA6)4

    (d)El

    liptic

    ity (m

    deg)

    Wavelength (nm)

    Trans_1R Cis_1R Trans_1S Cis_1S

    0

    2

    4

    6

    8

    Abso

    rban

    ce

    300 350 400 450 500 550 600-80

    -60

    -40

    -20

    0

    20

    40

    (PAzoMA6)6

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    Trans_1R Cis_1R Trans_1S Cis_1S

    0

    2

    4

    6

    8(e)

    Abso

    rban

    ce

    300 350 400 450 500 550 600-60

    -45

    -30

    -15

    0

    15

    30

    (PAzoMA11)3

    (f)

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    Trans_1R Cis_1R Trans_1S Cis_1S

    0

    2

    4

    6

    8

    Abs

    orba

    nce

    Fig. S8 Changes in CD and UV−vis spectra of trans− (original) and cis−form

    (irradiated by 365 nm light for 3 min) of PAzoMA aggregates in mixed solvents. The

    concentration of polymer repeating unit is 8.42 × 10-5 mol/L. (a)-(f) stands for

    (PAzoMA6)3-1, (PAzoMA6)3-2, (PAzoMA6)3-3, (PAzoMA6)4, (PAzoMA6)6 and

    (PAzoMA11)3, respectively.

    300 350 400 450 500 550 600-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    trans_1R_Origin

    cis_1 trans_1 cis_2 trans_2 cis_3 trans_3 cis_4 trans_4 cis_5 trans_5 cis_6 trans_6

    trans_1S_Origin

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    cis_1 trans_1 cis_2 trans_2 cis_3 trans_3 cis_4 trans_4 cis_5 trans_5 cis_6 trans_6

    (1a)

    0 2 4 6-150-120-90-60-30

    0306090

    120

    Ellip

    ticity

    (mde

    g)

    Cycle numbers

    (PAzoMA6)3-2_1S

    (PAzoMA6)3-2_1R

    (1b)

    -5-4-3-2-101234

    g CD

    at th

    e fir

    st c

    otto

    n ba

    nd/1

    0-3

    300 350 400 450 500 550 600-150

    -100

    -50

    0

    50

    100 cis_1 trans_1 cis_2 trans_2

    cis_1 trans_1 cis_2 trans_2 cis_3 trans_3 cis_4 trans_4 cis_5 trans_5 cis_6 trans_6

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (2a)

    trans_1R_Origin

    trans_1S_Origin

    0 2 4 6-120

    -80

    -40

    0

    40

    80(2b)

    Ellip

    ticity

    (mde

    g)

    Cycle numbers

    (PAzoMA6)3-3_1R

    (PAzoMA6)3-3_1S

    -6

    -4

    -2

    0

    2

    4

    gCD

    at t

    he fi

    rst c

    otto

    n ba

    nd/1

    0-3

    300 350 400 450 500 550 600-300

    -200

    -100

    0

    100

    200

    300 cis_1 trans_1 cis_2 trans_2 cis_3 trans_3

    trans_1S_Origin

    trans_1R_Origin

    cis_1 trans_1 cis_2 trans_2 cis_3 trans_3 cis_4 trans_4

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (3a)

    0 1 2 3 4-225

    -150

    -75

    0

    75

    150(3b)

    (PAzoMA6)4_1R

    Ellip

    ticity

    (mde

    g)

    Cycle numbers

    (PAzoMA6)4_1S

    -9

    -6

    -3

    0

    3

    6

    gCD

    at t

    he fi

    rst c

    otto

    n ba

    nd/1

    0-3

    300 350 400 450 500 550 600-150

    -100

    -50

    0

    50

    100

    150 cis_1 trans_1 cis_2 trans_2 cis_3 trans_3

    cis_1 trans_1 cis_2 trans_2 cis_3 trans_3 cis_4 trans_4 cis_5 trans_5 cis_6 trans_6

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (4a)

    trans_1R_Origin

    trans_1S_Origin

    0 1 2 3 4 5 6-100

    -50

    0

    50

    100

    150(4b)

    Ellip

    ticity

    (mde

    g)

    Cycle numbers

    (PAzoMA6)6_1S

    (PAzoMA6)6_1R-4

    -2

    0

    2

    4

    6

    gCD

    at t

    he fi

    rst c

    otto

    n ba

    nd/1

    0-3

    300 350 400 450 500 550 600-100

    -50

    0

    50

    100

    trans_1R_Origin

    trans_1S_Origin

    cis_1 trans_1 cis_2 trans_2 cis_3 trans_3 cis_4 trans_4 cis_5 trans_5 cis_6 trans_6

    cis_1 trans_1 cis_2 trans_2 cis_3 trans_3 cis_4 trans_4 cis_5 trans_5 cis_6 trans_6

    Ellip

    ticity

    (mde

    g)

    Wavelength (nm)

    (5a)

    0 2 4 6-120

    -80

    -40

    0

    40

    80

    Ellip

    ticity

    (mde

    g)

    Cycle numbers

    (PAzoMA11)3_1S

    (PAzoMA11)3_1R-15

    -10

    -5

    0

    5

    10(5b)

    gCD

    at t

    he fi

    rst c

    otto

    n ba

    nd/1

    0-4

  • 11

    Fig. S9 Changes in CD spectra (a) and the maximum CD and gCD values (b) of

    PAzoMA aggregates in DCE/(1R or 1S) during 365 nm light irradiation (3 min) and

    heating-cooling treatment (60 oC for 40 min then cooling to room temperature). The

    concentration of polymer repeating units is 8.42 × 10-5 mol/L. 1-5 stands for the

    (PAzoMA6)3-2, (PAzoMA6)3-3, (PAzoMA6)4, (PAzoMA6)6 and (PAzoMA11)3,

    respectively.

  • 12

    Fig. S10 TEM images of PAzoMA aggregates during chiroptical switching process.

    (a−d for 1R/DCE and e−h for 1S/DCE). The original trans−form (a and e), after the

  • 13

    first 3 min 365 nm light irradiation (b and f), after the heating−cooling treatment (c

    and g), after the second 3 min 365 nm light irradiation (d and h). 1−5 stands for the

    (PAzoMA6)3-2, (PAzoMA6)3-3, (PAzoMA6)4, (PAzoMA6)6 and (PAzoMA11)3,

    respectively.