Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

14
Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004

Transcript of Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Page 1: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Optical tweezers

Manipulating the microscopic world

Tom Lummen, June 2004

Page 2: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Introduction: History

• 1609: Johannes Kepler noticed Sun’s radiant pressure

• 1970: Arthur Ashkin of Bell Labs builds ‘levitation trap’

• 1978: Ashkin builds ‘two-beam trap’

• 1986: Ashkin builds ‘single-beam gradient force trap’ Optical tweezers

Page 3: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Working principle of optical tweezers

• One photon carries momentum p = h/ λ• photon refraction momentum change

• Transparent particle of large refractive index lens • Gaussian beam: intense center• momentum conservation

Lateral trapping: refraction of Gaussian beam gradient force (Fgr) and a scattering force (Fscat).

• The lateral gradient force pulls particle to beam center

Page 4: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Working principle of optical tweezers• Scattering force (‘radiant pressure’)

pushes the particle

• Strongly focused beam axial intensity gradient axial gradient force

• 3D optical trapping: axial gradient force (Fgrad) > scattering force • Strong enough focusing Fgrad > Fscat

fullfilled

• Optical forces in nN-pN range

Page 5: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Working principle of optical tweezers

• Trapped objects: - Bose-Einstein condensates

- chromosomes

- bacteria

• Specific designs optically

induced rotation

• Variations/additions other

functionalities

Page 6: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Unconventional optical tweezers

Variants different modes of light

• Optical vortices ‘donut’ intensity pattern they trap ‘dark-seeking’ particles: absorbing, reflecting or low-refractive-index Laguerre-Gaussian mode helical phase profile angular momentum optical rotation

Page 7: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Unconventional optical tweezers

• Laguerre-Gaussian mode (index l) and Gaussian

beam superposed spiral pattern

Variation of relative phase optical rotation

Variants different modes of light

Page 8: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Multiple dynamic optical tweezers

Multiple optical tweezers: several methods

• Time-shared optical tweezers: computer controlled mirrors trap periodically scanned arbitrary trapping patterns:

- restricted by minimum required scanning period

- only formation of 2D patterns possible

The Chinese character for ‘light’

Page 9: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Multiple dynamic optical tweezers

• Dynamic holographic optical tweezers: computer-addressed spatial light modulator (SLM) splits incident beam › specific pattern specific spatial light modulation (phase hologram)› phase holograms calculated beforehand› Also 3D trapping patterns can be generated

Multiple optical tweezers: several methods

Page 10: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Multiple dynamic optical tweezers

• The generalized phase contrast (GPC) method: SLM spatial phase profile conversion to spatial intensity profile

› No need to calculate phase holograms efficient dynamic control› Only 2D trapping patterns possible

Multiple optical tweezers: several methods

Page 11: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Multiple dynamic optical tweezers Multiple dynamic optical tweezers microfluidic pumps:

• Rotating lobe-pump: rotating lobes laminar flow - reversing the rotation directions flow reversed

Page 12: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

• Peristaltic pump: propagating sine wave laminar flow - changing propagation direction reversed flow

Multiple dynamic optical tweezers Multiple dynamic optical tweezers microfluidic pumps:

Page 13: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Conclusions/Future prospects• Optical tweezers unique non-invasive control of wide

variety of microscopic particles

• Variants field of applicability even further expanded

also optical rotation

• Multiple dynamic optical tweezers dynamic reconfiguration of arbitrary trapping patterns

• functional micromachines lab-on-a-chip

technologies

Page 14: Optical tweezers Manipulating the microscopic world Tom Lummen, June 2004.

Questions/comments