Optical Safety LED Lighting

18
Optical safety of LED lighting 1 st Edition, July 2011 1. Background With the phasingout of incandescent lamps in the European Union as well as simultaneously in many other countries, the introduction of many new LED based light sources (lamps, modules) and luminaires, raises the question as to whether the spectral characteristics of the LED and Energy Saving fluorescent lamps (CFL integrated) are good enough to replace traditional incandescent lamps. These concerns are generally raised by groups of people with a high sensitivity for certain radiation on their skin or eyes, especially for radiation in the UV and blue part of the spectrum. This document will focus on white light sources and their use in households. 2. Summary statement It is often emphasized that LED based light sources are different from traditional lamps in that they contain higher proportions of blue wavelength light and are thus more likely to cause problems such as blue light hazard. Confronted with this question, the European Lighting Industry represented by ELC & CELMA, presents a detailed evaluation of the photo biological safety of common LED light sources for domestic use in comparison to traditional lamps. The focus is on white light sources used in households. To summarize the key findings, LED sources (lamps or systems) and luminaires are safe to the consumer when used as intended. In terms of their level of photo biological safety, LED lamps are no different from traditional technologies such as incandescent lamps and fluorescent tubes. The portion of blue in LED is not different from the portion of blue in lamps using other technologies at the same colour temperature. A comparison of LED retrofit products to the traditional products they are intended to replace reveals that the risk levels are very similar and well within the uncritical range. Nevertheless, looking straight into bright, pointlike sources (LEDs, but also other strong pointlike light sources, like clear filament or discharge lamps and including the sun) should be prevented. However, when people happen to look into a bright light source accidentally, a natural protective reflex occurs (people instinctively close their eyes or look away from the source). It needs to be mentioned that blue light exposure is important to human beings. Blue light with a peak at around 460480nm regulates the biological clock, alertness and metabolic processes. In natural conditions, outdoor daylight fulfils this function. Yet, people spend most of the day indoors (offices etc.) and are often lacking the necessary blue light exposure. Blue and cool white light sources can be used to create lighting conditions such that people will receive their daily portion of blue light to keep their physiology in tune with the natural daynight rhythm. Due to the highly flexible application possibilities, LED based light sources are particularly well suited for that purpose.

description

LED lights effect on life

Transcript of Optical Safety LED Lighting

  • OpticalsafetyofLEDlighting

    1stEdition,July2011

    1. BackgroundWiththephasingoutofincandescentlampsintheEuropeanUnionaswellassimultaneouslyinmanyothercountries,theintroductionofmanynewLEDbasedlightsources(lamps,modules)andluminaires,raisesthequestion as towhether the spectral characteristicsof the LED and Energy Saving fluorescent lamps (CFLintegrated)aregoodenoughtoreplacetraditionalincandescentlamps.Theseconcernsaregenerallyraisedbygroupsofpeoplewithahighsensitivityforcertainradiationontheirskinoreyes,especiallyforradiationintheUVandbluepartofthespectrum.Thisdocumentwillfocusonwhite lightsourcesandtheiruse inhouseholds.2. SummarystatementItisoftenemphasizedthatLEDbasedlightsourcesaredifferentfromtraditionallampsinthattheycontainhigherproportionsofbluewavelength lightandarethusmore likelytocauseproblemssuchasblue lighthazard. Confronted with this question, the European Lighting Industry represented by ELC & CELMA,presentsadetailedevaluationofthephotobiologicalsafetyofcommonLEDlightsourcesfordomesticuseincomparisontotraditionallamps.Thefocusisonwhitelightsourcesusedinhouseholds.Tosummarize thekey findings,LEDsources (lampsorsystems)and luminairesaresafe totheconsumerwhenusedas intended. Intermsoftheir levelofphotobiologicalsafety,LED lampsarenodifferentfromtraditionaltechnologiessuchasincandescentlampsandfluorescenttubes.TheportionofblueinLEDisnotdifferent from theportionofblue in lampsusingother technologies at the same colour temperature.AcomparisonofLEDretrofitproductstothetraditionalproductstheyareintendedtoreplacerevealsthattherisklevelsareverysimilarandwellwithintheuncriticalrange.Nevertheless, looking straight into bright, pointlike sources (LEDs, but also other strong pointlike lightsources,likeclearfilamentordischargelampsandincludingthesun)shouldbeprevented.However,whenpeople happen to look into a bright light source accidentally, a natural protective reflex occurs (peopleinstinctivelyclosetheireyesorlookawayfromthesource).Itneedstobementionedthatblue lightexposure is importanttohumanbeings.Blue lightwithapeakataround460480nmregulatesthebiologicalclock,alertnessandmetabolicprocesses.Innaturalconditions,outdoordaylightfulfilsthisfunction.Yet,peoplespendmostofthedayindoors(officesetc.)andareoftenlackingthenecessaryblue lightexposure.Blueandcoolwhite lightsourcescanbeusedtocreate lightingconditionssuchthatpeoplewillreceivetheirdailyportionofbluelighttokeeptheirphysiologyintunewiththenaturaldaynightrhythm.Duetothehighlyflexibleapplicationpossibilities,LEDbasedlightsourcesareparticularlywellsuitedforthatpurpose.

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 2of18

    3. LEDandopticalsafetyOpticalsafety refers to theprevention1ofhazards throughoptical radiation (electromagnetic radiationofwavelengthsrangingfrom100nmto1mm).Effectsontheeyesaswellastheskinareconsidered,alsoforthosepeoplewithahighersensitivity.Inresponsetotheconcernsraisedbythelastgroup,Annex1providesmoredetailedconsiderationsforthisspecificgroup.Commonly discussed hazards affecting the eye are blue light hazard (BLH) and agerelated maculardegeneration(AMD)whichcanbeinducedoraggravatedbyhighintensitybluelight.Whenlookingdirectlyintoabrightlightsource,aphotochemicaldamagetotheretina(bluelighthazard)canoccur,dependingontheintensityinvolvedandthetimeofexposure.Peoplearefamiliarwiththisphenomenonfromlookingatthesun.Topreventretinaldamages,appropriatespectaclesmustbewornwhenobservingasolareclipse,forinstance.Onabrightandsunnyday,however,anaturalreflexoccurs(eyelidclosereflex,aversion)thatprotectstheeyefrombeingharmed.Furthermore,UV(ultraviolet)mayaffecttheeye,causingcataractorphotokeratitis (sunburn of the cornea); IR (infrared) radiation can induce IR cataract (also known asglassblowerscataract);andradiationofallwavelengthsatextreme intensitiescan leadtoretinalthermalinjuries.Optical radiationcanalsoaffect theskincausing forexamplesunburns,or, inseverecases,cancersuponlongterm UV exposure. There exist certain groups of patients, e.g. suffering from lupus orphotodermatoses,whoareparticularlysensitivetoUV(andsometimesalsobluelight)radiation.Notethattheabovementionedeffectsarepredominantly causedbynatural sun light; someof themcanneverbeevokedbyartificiallighting.Nevertheless,theopticalsafetyofartificiallightsourcesneedstobeguaranteedand lightsensitivepatients areprovidedwith appropriate lamps that are a good and safe alternative toincandescentlamps.4. PhotobiologicalriskassessmentandconclusionsThephotochemicalblue lighthazard canbeevaluatedon thebasisof the standardEN62471.The latterclassifieslightsourcesintoriskgroups0,1,2and3(from0=noriskthroughto3=highrisk).Thesunwouldbe classified as being in the highest risk group. CELMA and ELC member companies ensure that theirproductscomplywiththephotobiologicalsafetystandard.Riskscanbeallocatedtotheriskgroupsaccordingtodifferentmeasurementcriteria:Onemethodmeasures the distance atwhich an illuminance of 500 Lux is attained (a typical value forgeneral lightingpurposes).AccordingtoEN62471,the500Luxcriterionmustbeusedfor lamps intendedfor general lighting (including lamps for lighting offices, schools, homes, factories, roadways, orautomobiles).Asecondcriterionmeasuresphotobiologicalsafetyfromadistanceof200millimetres.The200millimetrecriterion is tobeused forallother lamps (including forexample lamps forsuchprofessionalusesas filmprojection, reprographic processes, sun tanning, industrial processes,medical treatment and searchlightapplications).It is fundamentallypurposeful tomake thisdistinctiononedoesnot look intoaceiling luminaire in theoffice fromadistanceof200millimetres,butpossibly incertain industrialapplicationsworkersmightberequired to look into lightsources fromashort200mmdistance,e.g.duringqualitycontrolprocesses. Insuchcasesspecialinstructionsareneededtopreventeyedamage.When light sourcesareplaced ina luminaire, theRG classification can changeby theopticsused in theluminaire:

    1. IncasealuminaireintegratealightsourceclassifiedRG0orRG1,nonewtestsarenecessary

    1ExposurelimitsdefinedinthestandardEN62471areinEuropeanregulation(directive2006/25/CE)

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 3of18

    2. Incasea luminaire isnot intendingtochangean integrated lightsourcewithclassificationRG2orRG#3,nonewtestsarenecessaryandproductinformationshallindicatethementionedRGclass.

    3. IncasealuminaireischangingtheoriginalcharacteristicsoftheusedlightsourceRG2orRG3inanyform,anewmeasurementisneededtoclassifytheluminaire.

    4.1ConclusionsonbluelightemissionEvaluationatadistanceproducing500Lux:Takingthe500Luxcriterionasthemeasurementbasis,noneoftheLEDproductsbelongstoriskgroup2.ThiswasalsoconfirmedbyastudyoftheFrenchagencyforfood,environmentalandoccupationalhealth&safety(ANSES)in2010whichfoundthatevenhighoutputdiscreteLEDsareclassifiedintoriskgroups0or1ifthe500Luxcriterionisapplied.LEDcomparedtootherlightsourcesWith regard to photo biological safety, LED is not fundamentally different to lamps using traditionaltechnologies,suchasincandescentorfluorescentlamps.TheportionofbluelightinLEDisnothigherthantheportionofbluelightinlampsusingothertechnologiesatthesamecolourtemperature(seefigure2 inannex 3with the blue hazard irradiance values EB of awide range of productswith comparable ColourTemperature).IfLEDretrofitproductsareobservedincomparisontotheproductswhichtheyareintendedto replace (e.g. LEDMR16 vs.HalogenMR16,ora LED retrofitwith screwbase vs. frosted incandescentlamp),itappearsthattheriskgroupratingsaresimilar.

    Figure1:relativespectralpowerofvariouslightsources

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 4of18

    PrecautionarymeasureswithregardtochildrenThelensofachildseyefiltersbluelightlessefficientlythananadultslens.Childrenarethusmoresensitivetobluelighthazard.Therefore,atplacesfrequentedbychildrenparticularcaremustbetakentoensurethatlampsandluminairesarechosenandinstalledinsuchawayastoavoidpeoplelookingdirectlyintothelightsource.ItisnotnecessarythatLEDs(orbluelightingeneral)areavoidedinanenvironmentwithchildrenpresent,forthereasonsstatedabove.Ifusedacrossabroadsurfaceorarea,inawaywhichdoesnotproduceglare,even"pure"bluelightiscompletelyharmless;regardlessofwhetheritistheblueindaylightorproducedbyLEDsorotherlightsources.GuidanceforpeoplewithhighsensitivityforbluelightTheabovestatementsarevalidforhealthypeopleinthegeneralpublic.Peoplewithhighlysensitiveskinoreyes for blue lightmay bewise to investigate alternative light sources that operate on amore specificradiation band not covered by the applied action curves that cover a broad range of radiations. Thecomparativedatagiven intheannexesofthispaperservetogiveguidance inselectingthebestavailabletypeoflightsourceforagivensensitivity.ThebiologicalimportanceofbluelightItneeds tobementioned thatblue lightexposure is important tohumanbeings.Blue lightwith apeakaround 460480nm regulates the biological clock, alertness and metabolic processes. CELMAELC hasinstalledaspecialworkinggrouptotranslatethesefindingsintopracticalapplicationnormsandstandards.In natural conditions, outdoor daylight fulfils this function. Yet, people spend most of the day indoors(officesetc.)andareoftenlackingthenecessarybluelightexposure.Blueandcoolwhitelightsourcescanbeusedtocreate lightingconditionssuchthatpeoplewillreceivetheirdailyportionofblue lighttokeeptheir physiology in tune with the natural daynight rhythm. Due to the highly flexible applicationpossibilities,LEDbasedlightsourcesareparticularlywellsuitedforthatpurpose.

    4.2Conclusionsonultravioletradiation(UV)LED based light sources do not emit any UV radiation (unless specifically designed for that particularpurpose).Therefore,theyarenotharmfultopeoplewithaspecificsensitivityforcertainUVradiationandcanbring relief tocertaingroupsofpatients. In this respect,LEDbased light sourcesprovideadvantagesovertraditionalincandescent,halogenandCompactFluorescentlamps.FormoredetailsseeAnnex2.4.3Conclusionsoninfraredradiation(IR)In contrast tomost other light sources, e.g. halogen and incandescent lamps, LEDs hardly emit IR light(unlessspecificallydesignedtoemitacertaintypeof IR).Foravailabletypesof indoor lightsourcesthe IRradiationisnotpowerfulenoughtoposeanyriskstohuman.

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 5of18

    Annex1:EffectsofopticalradiationoneyesandskinPotentialeffectsontheeyeCommonly discussed hazards affecting the eye are blue light hazard (BLH) and agerelated maculardegeneration (AMD)which can be induced or aggravated by high intensity blue light. Furthermore,UV(ultraviolet)may affect the eye, causing cataract or photokeratitis (sunburn of the cornea); IR (infrared)radiationcaninduceIRcataract(alsoknownasglassblowerscataract);and,radiationofallwavelengthscanleadtoretinalthermalinjuriesatextremeintensities.Togivealittlemorebackgrounddetails: Bluelighthazard(BLH)isdefinedasthepotentialforretinalinjuryduetohighenergyshortwavelength

    light.Atveryhighintensities,bluelight(shortwavelength400500nm)canphotochemicallydestroythephotopigments (and some other molecules) which then act as free radicals and cause irreversible,oxidativedamagestoretinalcells(uptoblindness).Forsuchan injuriouseffecttooccur,threefactorsarecritical:first,thespectralirradiancedistribution(relevantistheproportionthatfallsintotheactionspectrum forblue lighthazard, inmathematical terms: the integrated spectral irradiancedistributionweightedwiththeactionspectrum);second,theradiance(athigherradiance,morephotonsare likelytohitphotopigments and causedamages); and, third, thedurationofexposure (at longerexposure,effects increasesteadily).Forexample,whengazingdirectlyatthesun,theretinacanbe injuredveryrapidlydue to theenormous radiance. Incontrast,even though for thesky the relativeproportionofblue light inrelationtothesky ismuchhigher,there isnoriskofretinaldamagesbythescatteredskylightastheradianceistoolow.

    Agerelatedmaculardegeneration (AMD) isaconditionofvisual impairmentofthecentralvisualfield(macula) predominantly in elderly people. Blue light can progress AMD. According to the currentscientific literature, lipofuscin,amoleculemoreandmoreaccumulating intheretinalcellswithage, isdestroyedbybluelightcausingoxidativedamages.NotethattheprevalenceofAMDisnothigherwithhigherexposuretobluelightinyoungeryears,e.g.,inprofessionalsworkingpredominantlyoutsidesuchassailorsorfarmers.Asforblue lighthazard,thespectral irradiancedistributionandradiancearetherelevant factors influencingAMD.Butdifferent than inblue lighthazard,AMDcannotbecausedbyaonetimeacuteabovethresholdexposure to lightbut is instead influencedby longtermexposure toblue(andalsogreen&yellow),possiblyevenatlowerdoses.Butnotethatbluelightisnotthemainriskfactor,instead,intherecentmedicalliterature,geneticfactors(ERCC6gene)andenvironmentalfactorsincludingage,smoking,hypertensionanddietarediscussedtocause/influenceAMD.

    Cataractisadisorderthatdevelopsoverlifetime.Whenpeopleareborn,thecrystallinelensesarefullytransparent for light. Due to natural aging and the absorption of UV radiation, the lenses turnopaque/yellowobstructing thepassageof light.Thesevere formof thisage relatedproblem iscalledcataract.Asasideeffect,whenturningyellowthelensservesasabluelightfilter,and,thus,asakindofnaturalprotectionfortheretinawhenpeoplegrowolder.Inseverecases,surgicalremoval(aphakia)orreplacement (pseudophakia)of the lensmaybecomenecessary.Suchpatientsaswellaschildrenareoftenmoresensitivetobluelightthanhealthyadultsare.

    PotentialeffectsontheskinOpticalradiation,particularlyUVcanbeharmfultotheskin.Byfarthemosthazardoussourcetoconsideristhe sun.Sunburns (UVerythema)and skincancersdue to longtermexposure to the sunarewellknownproblems caused by radiation. Moreover, patients with autoimmune diseases such as lupus orphotodermatosescanbehighlysensitivetoUVradiation,andsometimesalsoblue light.There isconcernamongsomepatientswhosufferfromsuchsensitivitiesthatphasingoutoftheknownincandescentlampswillleavethemwithoutlampsforindoorusethatarelowinradiationofUVandbluelight.

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 6of18

    Annex2:GeneralspectralcomparisonoflightsourcesusedinhouseholdsInthissection,spectraldataofdifferenttypesoflightsources(LED,CFLi,halogen)aregraphicallypresentedandevaluatedqualitatively (aquantitativeevaluationwill follow inAnnex3). Focusof interest ison thespectralirradianceintheblueandultravioletpartofthedifferenttypesoflightsourcesincomparisontothetwogoldenstandardsoflightingformostconsumers:daylightandincandescentlamps.Irradiancespectralmeasurementsweredonetoobtainthespectraofanumberofcommonlightsources,allatasimilaroverallilluminancelevelof500luxandinaccordancewiththeinternationalstandardEN62471.Forreference:500 lux isalsothe light levelused inawiderangeof indoorworkplace lightingapplicationssuchasofficelighting;inhomelightingvariesbetween50lux(TVcorner)to500lux(dinnertable,kitchen).Outdoor lightingconditionsareamultipleof indoor lighting:5000 lux (overcastsky) to50.000 lux (sunnyday).Note1:Themeasuredsourcesarepresentedagainsta logarithmicscaleas the linearscalewouldnotbeshowingwellthedifferencesbetweenthevariouscurves.Note2:Theareaunderthespectralcurvesofthelightsourcesisameasureoftheenergyinaparticularpartofthespectrum(egblueemission).Wheninterestedinaparticularrisk,asbluelighthazardoremissionofactinicUV,theareaneedstobespectrallyweightedbytheactioncurveforbluelighthazardoractinicUV,respectively(formoredetailsontheBLHandactinicUVactioncurvesseeAnnex4).LEDspectralcharacteristicsInFigure1 top,different LED sourcesare compared toan incandescent lampanddaylight.White LEDstypicallyshowapeak intheblue (ataround450nmwhenaroyalblueLED isused)andmorebroadbandemissioninthegreen/yellowpartofthespectrum.Nexttothebluepeak,adipisvisibleataround490nmthatalsofallsundertheBLHactioncurve(indicatedherebythebluehorizontalbar).ThebluepeakoftheLEDlampsiscompensatedbythedip,thereforethetotalblueoutput(givenbytheareaunderthecurve!)ofLEDof2700Kiscomparabletoanincandescentlampof2700K.Energysavers(compactfluorescentintegrated)spectralcharacteristicsIn Figure 1 middle, spectra of two common types of energy savers (or CFLi, Compact FluorescentIntegrated)areshownandcomparedtoan incandescent lampanddaylight.Typicalenergysaversspectracontainmultiplesharppeaksanddips.Again,whenconsideringtheareaunderthecurvetodeterminetheblueirradiance,peaksanddipsleveleachotherout.Notethatthehighpeaksareverynarrowandthereforedonotcontributethatmuchtotheblueirradiance(asitmightintuitivelyseemfromthegraphs).Onthelefthandside,thespectralcurvesextendslightlyintotheactinicUVactionspectrum.Butnotethatconsideringthat thedataareplottedagainsta logarithmicaxis, theenergy in theactinicUVpart isvery low (!)andclearlybelowtheemissionsofnaturaldaylight.

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 7of18

    Figure2:Acollectionofspectrafromdifferentcommonlightsourcesisshown,togetherwitharepresentativedaylightspectrumscaledtothesameilluminancelevel.TheUVActinicandBLHactioncurves(asdefinedine.g.EN62471,seeannex4.3)areindicatedbythebrownandbluebars,respectively,thecolorintensityillustratestheeffectiveness

    1E06

    1E05

    0,0001

    0,001

    0,01

    0,1

    1

    200 400 600 800spe

    ctralir

    radian

    cedis

    tributiona

    t500

    lux

    (W/m

    nm)

    wavelength(nm)

    LEDlampsversusIncandescent&daylightLEDA606W2700KE27MV

    LEDMR167W40D2700KGU10MV

    LEDK6012W2700KE27MV

    IncandA6060W2700KfrostedE27MV

    LEDMR167W40D4200KGU10MV

    Daylight6500KActinicUV Blue lightHazard

    1E061E050,0001

    0,001

    0,01

    0,1

    1

    200 400 600 800

    spectral

    irrad

    ianced

    istributiona

    t500

    lux

    (W/m

    nm)

    wavelength(nm)

    CFLorEnergySaving(ES)lampsversusincandescent&daylight

    ESbulbT608272620KE27MV

    ESburner8W8272700KE27MV

    IncandA6060W2700KfrostedE27MV

    Daylight6500K

    ActinicUV Blue lightHazard

    1E061E050,0001

    0,001

    0,01

    0,1

    1

    200 400 600 800spe

    ctralir

    radian

    cedis

    tributiona

    t500

    lux

    (W/m

    nm)

    wavelength(nm)

    Halogenlampsversusincandescent&daylightHaloA6028WMVburner2700KE27MVHaloA6040WLVburner2830KE27MVHaloMR1645W24DIRC2850KGU5.3LVHaloCaps28W2800KUVblockG9MVR7shalogen500WwithoutcoverglassR7shalogen500WwithcoverglassIncandA6060W2700KfrostedE27MVDaylight6500KActinicUV Blue lightHazard

    1

    2

    3

    4

    5

    6

    7

    8

    5174623

    8

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 8of18

    HalogenspectralcharacteristicsIn Figure 1 bottom, various halogen lamp types are compared to an incandescent lamp and daylight.Halogenlampspectralcurvesshowasimilarshapeasincandescentlamps:thecurvescontinuouslyincreasetowardshigherwavelengthsandbenddownwardagainintheIR.Halogenlampscanthereforeofferagoodalternativetotheincandescentlamps.Thegreen linerepresentsahalogen lampwithan infraredcoating (IRCcurveclearlybendsdownwards intheIR).ThepurplelineshowsthattheUVfilteringquartzindeedeffectivelyfilterstheUV,bringingitclosetothe incandescentcurve.TheothertypesshowmoreUVoutputthan incandescent lamps,especiallythe500Wdoubleended lamp,butthat lampshouldbealwaysusedwithasuitablecoverglass (flood light)orsleeve(inuplighter);withthecoverglassthelampisclosetotheIncandescentcurve.Notethat,comparedwithdaylight,theUVoutputofall lamps israther low,asthescale is logarithmicnotlinear.SummaryEventhoughthespectraofLED,CFLi,halogenand incandescent lampshavedifferenttypicalshapes,theproportionofblue lightdoesnotvarymuchbetween lampsofdifferenttechnologieswithasimilarcolourtemperature)andisalwayssignificantlylowerthantheblue(orUV)emissionofdaylight.Foralllampsintendedforgenerallightingapplications,theUVemissioniswellbelowtheexposurelimitsasdefinedinEN62471.LEDsusedforgenerallightingarefreeofUV(asideveryspecialtypesthataredesignedtoemitUV).

    Legendforthevariouslamptypesshowninfigure1(seealsoAnnex5foramoredetaileddescription): Halo:halogen lamps,canbe lowvoltage(12V,3000K)ormainsvoltage(230V,2800K).Halogen lamps

    canbeacapsule (caps)orreflector (MR16)operated inaspecialhalogen lampholderor theycanbeintegrated into theoutlineof the known incandescent lamps as a replacement for those lamps (E27MV).

    FluoES:EnergySaver(popularname)orCompactFluorescentIntegrated(CFLI,technicalname),canbejustthefluorescenttube(burner)orhaveasecondshell(bulb)

    Incand:Incandescentlamp,consideredbythemarketasthegoldenstandard. LED:replacementalternativesaretaken:forincandescentbulbs,andHalogenreflectorlamps(MR16)or

    T8fluorescenttubes Daylight:theofficialCIEdaylightcurveof6500Kistaken

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 9of18

    Annex3:BluelightradiationdataoflightsourcesWhenevaluating the riskofblue lighthazardposedbyLED (andother) light sources, two fundamentallydifferentcasesneedtobeconsidered:CaseA:LookingatanilluminatedsceneInthevastamountofcases,humanslookatanilluminatedscene:Typicallydaylightilluminatesthesceneryand adirect view into the light source, the sun, is avoided.Or, in indoor lighting, artificial light sourcesilluminatetheroomwhileluminairespreventadirectviewofthelightsourceprimarilytoavoidglare.Inthecaseof lookingatan illuminatedscene,the(geometrical)propertiesofthe lightsourcesuchasthesizeoftheareafromwhichtheradiationisemitted(measureofthedensityofradiation~=radiance)arenotrelevant. Instead, the irradiance which refers to the radiation hitting a surface (scene) is the relevantproperty.CaseAcangenerallybeconsideredsafe.Togiveanexample, lookingat thescatteredbluesky (highblueirradiancebut lowradiance) iscompletelysafe,andsoareartificial lightsources,containingway lessblueirradiancethandaylight.CaseB:LookingatalightsourceWhenevaluatingphotobiologicalrisks(basedonEN62471)themoreseverecaseof lookingdirectly intoalightsourceisconsidered.Ineverydaysituations,thisrarelyhappens.ButnotethatthestandardEN62471wasoriginallydeveloped toprotectworkersparticularly in the lighting industry,as lighting installersor insimilar fields. Itmayhappen that suchprofessionals look into light sources several times aworking dayaccumulatingexposuretoseveralseconds. Inthissituation,theblueradiance isthecriticalfactorforBLH(the higher the radiance in the relevant action spectrum, the higher the likelihood that light hitsphotopigments(withsufficientenergy)andcausesdamages.Lookingstraightatalightsource(caseB)isalsoingeneralsafefordiffuseandwarmwhitelightsources,likefrostedorwhitediffusinglamps.Yet,cautionisadvisableforcoolwhiteorblue,bright(highintensity),pointlikelightsource,forinstanceanincandescentfilament,electricarcoranLEDdie,evenanLEDdiebehindthelensofadirectionallamp.Suchpointlikesourcesareprojectedontheretinaasaconcentratedlightspotandcandamagethatspotontheretinawhentheintensityishighenoughandthespectrumcontainsbluelightincongruencewiththebluelighthazardactionspectrumcurve.Bothcasesareherediscussedinmoredetail:DataoncaseA:Lookingatanilluminatedscene(irradiance)InAnnex2anoverviewisgivenofthespectraldataofvariouslightsourcesindirectcomparisonwitheachother.Fromthesespectra,thebluehazardirradiancevaluesEBwerecalculatedusingthestandardbluelighthazard(BLH)actioncurve.InFigure2(nextpage)anoverview isgivenoftheEBvaluesofthedifferent lamptypes. It isclearthatallsourcesofasimilarcolourtemperature(TcinKelvin)haveasimilarEBvalue.Thisisbecausetheblueportionhasafixedrelationtotheothercolourstomakethecolourwhite.

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 10of18

    Figure3:ComparisonofEBvaluesofthedifferentlamptypesanddaylight.Inorder tobetter comparewith theeffectofdaylight, itmustbenoted thatdaylightnormallyprovidesilluminancelevelsthataremuchhigherthan500lux.Figure3showsthecomparisonoftheEBofanumberof light sourcesat500 lux, comparedwithdaylightat5000 lux,which isan average value formoderatelatitudes.Sometypicallamps@500luxcomparedwithoutdoorlighting@5000lux

    Figure4:comparisonof irradiancevaluesofsome lamptypesat500 lux(typicalfor indoor)withdaylightat5000 lux(typicalforoutdoorlighting)Theactualoutdoorilluminancevaluecanvaryoverawiderange,upto50.000luxforasunnysummerdayonmoderatelatitudesandeven100.000luxattropicallatitudes.Thisshowsthatthequantityofbluelightofanyindoorgenerallightingcomparedtooutdoorconditionsislowtoverylow.

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 11of18

    DataoncaseB:Lookingatalightsource(radiance)InordertocomparethelightsourcesforcaseB,werefertothestandard(EN62471)asdescribedabove.Inthesestandardsadifferenceismadebetweenlargesourcesandsmallsources.Theimageofasmallsource(4,000,000

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 12of18

    Theresultsareplottedinthenexttwofigures:BlueLightRadianceLBofdiffusesources

    Figure5:BlueLightradianceLBforseveralcommonlowluminancelightsources:incandescentlamps,fluorescentlamps,andtheirLEDreplacements.Asareference,alsoaclearincandescentlampisplottedBlueLightRadianceLBofsometypicalpointlikesources

    Figure6:BlueLightRadianceLBforseveralhighluminancelightsources:halogenlamps,highintensitydischargelamps,andtheirLEDreplacements.(note:scalediffersfromFigure4)

    010002000300040005000600070008000900010000

    L B(W

    /msr

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 13of18

    ConclusionsonBlueLightRadiancefigures:- Theblue light radiance LBofdiffuse light sources is relatively low.Assigning the light source to risk

    groups (EN 62471)based on the LB values, reveals thatmostof them fall intoRG 0, at higher colortemperature(4000K)somemayjustfallinRG1withmaximumexposuretimesofmorethananhour.Pleasenotethatthisexposuretimereferstoaclosedirectgazeintothesource.Innormalconditionsofuse,wheredistancesaremuchbigger than themeasuring conditionof200mm to the source, this iscompletelysafe.Inaddition,inareflexivereactionhumansturnawayfrombrightlightsources,sothatsuchexposuretimesarenotreachable.

    - AllpointlikelightsourcesevaluatedherefallinRG1andareconsideredtobesafebythestandardanddonot requireadditionalwarningmarkings,butprolongeddirect viewingdirectly into these sourcesmustbeavoidedespeciallyatshortdistances.Maximumexposuretimesforthelampsshownhereare200secor longer,butasalreadymentionedearlier,peoplewillclose theireyesor lookaway insuchcases(instinctiveaversionreaction).ThisholdsforthehighluminanceLEDsources justasmuchasforthehighluminancelightsourcesthatarelongeronthemarket.

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 14of18

    Annex4:Terminologyexplainedquantity symbol unit explanation

    irradiance Erad W/m radiantpowerperareaarrivingonacertainplane

    illuminance E lux irradiance,spectrallyweightedwiththephotopiceyesensitivitycurve

    bluehazardirradiance

    EB W/m irradiance,spectrallyweightedwiththebluehazardcurve

    radiance Lrad W/msr radiantintensityperareaemittedfromasource

    luminance L cd/m radiance,spectrallyweightedwiththephotopiceyesensitivitycurve

    bluehazardradiance LB W/msr radiance,spectrallyweightedwiththebluehazardcurve

    Table3:overviewofunitsofmeasurerelevantinthisarticle

    Radiant flux, irradiance,radiant intensityandradiancerefertoradiationacrossallwavelengths.Luminousflux,illuminance,luminousintensityandluminancegivetheanaloguedimensions,butlimitedtothevisiblespectrum (spectrally weighted with the visual sensitivity curve of the human eye to light of differentwavelengths).

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 15of18

    Table4:overviewrisksgroups(takenfromEN62471:2006)

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 16of18

    PrinciplesbehindmeasurementsEN62471:relevancylarge/smallsources:

    EN62471:differentmethodsformeasuringsmall/largesources

    large source (radiance of source relevant)

    small source (irradiance at pupil relevant)

    very short exposure (< .25 s)small (point) source min = 0,0017 rd (~0.1)due to intrinsic unsharpness

    intermediate exposure (10 s 100 s)small source eff = 0,011 rd (~0.63)due to rapid eye movement

    long exposure (> 10000 s)small source eff = 0,1 rd (~ 5.7)due to task oriented eye movement

    the smallest image that can be formed on the retina of a still eye is limited to a minimum value, min = 1,7 mrad (at exposure < 0,25 seconds = blink ref lex time)

    1 1,7mrad 2 11 mrad @ 200mm

    pure source radiance worst case

    11 mrad

    r=200mm

    r@500lx=distance producing 500lx

    measurementFOV

    at times greater than about 0,25 seconds, rapid eye movements begin to smear the image of point-like source over a larger angle, called eff = 11 mrad

    a light source subtending an angle less than 11mrad is defined as a small source

    3 11 mrad @ 500lx 4 100 mrad

    at > 100 seconds, the image is further spread due to task depended eye movements,resulting in an maximal angular subtense max = 100 mrad (taken at exposure times > 10000 s)

    Eye movements & angular subtense

    Measurement Field of View @ 200mm & @ distance producing 500 lx

  • CELMAELCLEDWG(SM)011_ELCCELMApositionpaperopticalsafetyLEDlighting_Final_July2011 17of18

    ActinicUVandBlueLightHazardactionspectrumTheactioncurvesforUVandBluehazardaregivingaweightingfactortothespectralradiationintherelevantpartofthespectrum:

    Bymultiplyingtheactioncurvevalueswiththe(normalized)spectraldataofUVand/orlightsources,comparativefactorsareobtainedtocomparethesesourcesonthementionedhazards.

  • Annex5:OverviewoflampsdiscussedinthispaperThelampdatapresentedinthispaperarerepresentativefortheportfoliooftheELCcompanies

    Usedproductnameindocument Technology Shape WattageColourtemperatureTc[K]

    HaloA6028WMVburner2700KE27MV Halogen230V A60bulb 28 2700HaloA6040WLVburner2830KE27MV Halogen12V A60bulb 40 2830HaloMR1645W24DIRC2850KGU5.3LV Halogen12VIRcoated MR16reflector 45 2850HaloCaps28W2800KUVblockG9MV Halogen230VUVreduced capsule 28 2800HaloA6025W2600KE27MV Halogen230V A60bulb 25 2600ESbulbT608272620KE27MV CompactFluo T60bulb 11 2620ESburner8W8272700KE27MV CompactFluo bendedtubes 8 2700IncandA6060W2700KfrostedE27MV Incandescent A60bulb 60 2700LEDA606W2700KE27MV LED A60bulb 6 2700LEDMR167W40D2700KGU10MV LED MR16reflector 7 2700LEDMR167W40D4200KGU10MV LED MR16reflector 7 4200LEDK6012W2700KE27MV LEDremotephosphor K60bulb 12 2700TLD18W/840 Fluorescent26mm Tube 18 4000T554W/6500K Fluorescent16mm Tube 54 6500T524W/4000K Fluorescent16mm Tube 54 4000T524W/17000K Fluorescent16mm Tube 24 15000TLED11W/4000K LEDtube26mm Tube 11 4000LEDlamp6500K350lm LED A60bulb 6 6500R7shalogen500W Halogen230V doubleended 500 2700

    Disclaimer:WhileELC/CELMAhavemadeeveryattempttoensuretheaccuracyoftheinformationcontainedherein,ELC/CELMAdonotacceptresponsibilityorliabilityforanyusageofthisdata.