Optical Fiber Communication Solution Manual (1)

download Optical Fiber Communication Solution Manual (1)

of 116

Transcript of Optical Fiber Communication Solution Manual (1)

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    1/116

    1

    Problem Solutions for Chapter 2

    2-1.

    E = 100cos 2!108

    t + 30 ex + 20 cos 2!108t" 50 ey

    + 40cos 2!108 t + 210( )ez

    2-2. The general form is:

    y = (amplitude) cos(#t - kz) = A cos [2!($t - z/%)]. Therefore

    (a) amplitude = 8 m

    (b) wavelength: 1/%= 0.8 m-1 so that %= 1.25 m

    (c) #= 2!$= 2!(2) = 4!

    (d) At t = 0 and z = 4 m we have

    y = 8 cos [2!(-0.8 m-1)(4 m)]

    = 8 cos [2!(-3.2)] = 2.472

    2-3. For E in electron volts and %in m we have E =1.240

    %

    (a) At 0.82 m, E = 1.240/0.82 = 1.512 eV

    At 1.32 m, E = 1.240/1.32 = 0.939 eV

    At 1.55 m, E = 1.240/1.55 = 0.800 eV

    (b) At 0.82 m, k = 2!/%= 7.662 m-1

    At 1.32 m, k = 2!/%= 4.760 m-1

    At 1.55 m, k = 2!/%= 4.054 m-1

    2-4. x1= a1cos (#t - &1) and x2= a2cos (#t - &2)

    Adding x1and x2yields

    x1+ x2= a1[cos #t cos &1+ sin #t sin &1]

    + a2[cos #t cos &2+ sin #t sin &2]

    = [a1cos &1+ a2cos &2] cos #t + [a1sin &1+ a2sin &2] sin #t

    Since the a's and the &'s are constants, we can set

    a1cos &1+ a2cos &2= A cos ' (1)

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    2/116

    2

    a1sin &1+ a2sin &2= A sin ' (2)

    provided that constant values of A and 'exist which satisfy these equations. To

    verify this, first square both sides and add:

    A2(sin2 '+ cos2 ') = a12

    sin2

    &1 +cos2

    &1( )

    + a2

    2 sin2 &2

    +cos2 &2( )+ 2a1a2(sin &1sin &2+ cos &1cos &2)

    or

    A2= a1

    2 +a2

    2 + 2a1a2cos (&1- &2)

    Dividing (2) by (1) gives

    tan '=a

    1sin&

    1+a

    2sin&

    2

    a1

    cos&1

    +a2cos&

    2

    Thus we can write

    x = x1+ x2= A cos 'cos #t + A sin 'sin #t = A cos(#t - ')

    2-5. First expand Eq. (2-3) as

    Ey

    E0 y= cos (#t - kz) cos &- sin (#t - kz) sin & (2.5-1)

    Subtract from this the expression

    E x

    E0 xcos &= cos (#t - kz) cos &

    to yield

    Ey

    E0 y

    -ExE

    0x

    cos &= - sin (#t - kz) sin & (2.5-2)

    Using the relation cos2(+ sin2(= 1, we use Eq. (2-2) to write

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    3/116

    3

    sin2(#t - kz) = [1 - cos2(#t - kz)] = 1 " E

    x

    E0x

    )

    *+ ,

    -.

    2/

    01

    2

    34 (2.5-3)

    Squaring both sides of Eq. (2.5-2) and substituting it into Eq. (2.5-3) yields

    E y

    E0 y"

    Ex

    E 0xcos&

    /

    01

    2

    34

    2

    = 1 " Ex

    E0x

    )

    *+ ,

    -.

    2/

    01

    2

    34 sin

    2&

    Expanding the left-hand side and rearranging terms yields

    Ex

    E 0x

    )

    *+ ,

    -.

    2

    +

    Ey

    E0y

    )

    *+

    ,

    -.

    2

    - 2

    Ex

    E0x

    )

    *+ ,

    -.

    Ey

    E0y

    )

    *+

    ,

    -.

    cos &= sin2

    &

    2-6. Plot of Eq. (2-7).

    2-7. Linearly polarized wave.

    2-8.

    33 33

    90 Glass

    Air: n = 1.0

    (a) Apply Snell's law

    n1cos 51= n2cos 52

    where n1= 1, 51= 33, and 52 = 90- 33= 57

    6n2=cos 33

    cos 57= 1.540

    (b) The critical angle is found from

    nglasssin 'glass = nairsin 'air

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    4/116

    4

    with 'air= 90and nair= 1.0

    6'critical= arcsin1

    n glass= arcsin

    1

    1.540= 40.5

    2-9

    Air

    Water

    12 cm

    r

    5

    Find 5cfrom Snell's law n1sin 51= n2sin 5c= 1

    When n2= 1.33, then 5c= 48.75

    Find r from tan 5c=r

    12cm, which yields r = 13.7 cm.

    2-10.

    45

    Using Snell's law nglasssin 5c = nalcoholsin 90

    where 5c = 45we have

    nglass=1.45

    sin 45= 2.05

    2-11. (a) Use either NA = n1

    2 " n2

    2( )1/ 2

    = 0.242

    or

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    5/116

    5

    NA 7n1 28 = n12(n

    1"n

    2)

    n1

    = 0.243

    (b) 50,max

    = arcsin (NA/n) = arcsin0.242

    1.0

    )

    *

    ,

    -= 14

    2-13. NA = n1

    2 "n2

    2( )1/ 2

    = n1

    2 "n1

    2(1" 8)2[ ]1/ 2

    = n1 28 " 82( )

    1 / 2

    Since 8

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    6/116

    6

    jEr=1

    9#

    1

    r

    ;Hz;'

    + jr:H')

    *+ ,

    -Substituting into Eq. (2-33b) we have

    :9#

    1r

    ;Hz;'

    + jr:H')

    *+ ,

    -+ ;E z

    ;r= j# H'

    Solve for H'and let q2= #29- :2 to obtain Eq. (2-35d).

    (d) Solve Eq. (2-34b) for jE'

    jE'= -1

    9# j:Hr +

    ;Hz;r

    )*

    ,-

    Substituting into Eq. (2-33a) we have

    1

    r

    ;Ez

    ;'-

    :

    9# j:Hr +

    ;Hz;r

    )*

    ,-

    = -j# Hr

    Solve for Hrto obtain Eq. (2-35c).

    (e) Substitute Eqs. (2-35c) and (2-35d) into Eq. (2-34c)

    - j

    q 21

    r

    ;

    ;r:

    ;Hz;'

    +9#r;Ez

    ;r

    )

    *+ ,

    -"

    ;

    ;' :

    ;Hz;r

    "9#

    r

    ;Ez;'

    )

    *+ ,

    -/

    012

    34= j9#Ez

    Upon differentiating and multiplying by jq2/9#we obtain Eq. (2-36).

    (f) Substitute Eqs. (2-35a) and (2-35b) into Eq. (2-33c)

    -

    j

    q 2

    1

    r

    ;

    ;r :

    ;E z

    ;' " # r

    ;Hz

    ;r

    )

    *+ ,

    -"

    ;

    ;' :

    ;Ez

    ;r +

    #

    r

    ;Hz

    ;'

    )

    *+ ,

    -

    /

    01

    2

    34= -j#Hz

    Upon differentiating and multiplying by jq2/9#we obtain Eq. (2-37).

    2-15. For $= 0, from Eqs. (2-42) and (2-43) we have

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    7/116

    7

    Ez= AJ0(ur) ej( #t " :z)

    and Hz= BJ0(ur) ej( #t " :z)

    We want to find the coefficients A and B. From Eqs. (2-47) and (2-51),

    respectively, we have

    C =J$ (ua)

    K $ (wa)A and D =

    J$ (ua)

    K $ (wa)B

    Substitute these into Eq. (2-50) to find B in terms of A:

    Aj:$

    a

    )* ,

    -

    1

    u2 +

    1

    w2

    )* ,-= B#

    J'$

    (ua)

    uJ $ (ua)+

    K'$

    (wa)

    wK$(wa)

    /

    012

    34

    For $= 0, the right-hand side must be zero. Also for $= 0, either Eq. (2-55a) or (2-56a)

    holds. Suppose Eq. (2-56a) holds, so that the term in square brackets on the right-hand

    side in the above equation is not zero. Then we must have that B = 0, which from Eq. (2-

    43) means that Hz= 0. Thus Eq. (2-56) corresponds to TM0mmodes.

    For the other case, substitute Eqs. (2-47) and (2-51) into Eq. (2-52):

    0 =1

    u2

    Bj:$

    aJ $ (ua) +A#91uJ'$ (ua)

    /

    0

    2

    3

    +1

    w2 B

    j:$

    aJ$ (ua) +A#92w

    K' $ (wa)J$ (ua)

    K $(wa)

    /

    01 34

    With k12 = #291and k22 = #292 rewrite this as

    B$=ja

    :#

    1

    1

    u2

    + 1

    w2

    /

    0

    1

    1

    2

    3

    4

    4k

    1

    2J$ + k2

    2K $[ ]A

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    8/116

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    9/116

    9

    V =2! (25m)

    0.82 m (1.48)2 "(1.46)2[ ]

    1/ 2

    = 46.5

    Using Eq. (2-61) M 7V2/2 =1081 at 820 nm.

    Similarly, M = 417 at 1320 nm and M = 303 at 1550 nm. From Eq. (2-72)

    Pclad

    P

    )*

    ,-

    total

    74

    3M-1/2 =

    4= 100%

    3 1080= 4.1%

    at 820 nm. Similarly, (Pclad/P)total = 6.6% at 1320 nm and 7.8% at 1550 nm.

    2-20 (a) At 1320 nm we have from Eqs. (2-23) and (2-57) that V = 25 and M = 312.

    (b) From Eq. (2-72) the power flow in the cladding is 7.5%.

    2-21. (a) For single-mode operation, we need V

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    10/116

    10

    2-23. For small values of 8we can write V 72!a

    %n1 28

    For a = 5 m we have 870.002, so that at 0.82 m

    V 72! (5m)

    0.82m1.45 2(0.002) = 3.514

    Thus the fiber is no longer single-mode. From Figs. 2-18 and 2-19 we see that the LP01

    and the LP11modes exist in the fiber at 0.82 m.

    2-24.

    2-25. From Eq. (2-77) Lp=2!

    : =%

    ny" nx

    For Lp= 10 cm ny- nx=1.3 = 10"6 m

    10"1

    m= 1.3=10-5

    For Lp= 2 m ny- nx=1.3 = 10"6 m

    2 m= 6.5=10-7

    Thus

    6.5=10-7

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    11/116

    11

    At %= 820 nm, M = 543 and at %= 1300 nm, M = 216.

    For a step index fiber we can use Eq. (2-61)

    Mstep7V 2

    2

    =1

    2

    2!a

    %

    )

    *

    ,

    -

    2

    n1

    2 " n2

    2( )

    At %= 820 nm, Mstep= 1078 and at %= 1300 nm, Mstep= 429.

    Alternatively, we can let (= >in Eq. (2-81):

    Mstep=2!an1

    %

    )*

    ,-

    2

    8=1086at820nm

    432at1300 nm

    ?@A

    2-28. Using Eq. (2-23) we have

    (a) NA = n12

    "n22

    ( )1/ 2

    = (1.60)2

    " (1.49)2

    [ ]1/ 2

    = 0.58

    (b) NA = (1.458)2 " (1.405)2[ ]

    1/ 2

    = 0.39

    2-29. (a) From the Principle of the Conservation of Mass, the volume of a preform rod

    section of length Lpreformand cross-sectional area A must equal the volume of the fiber

    drawn from this section. The preform section of length Lpreformis drawn into a fiber of

    length Lfiberin a time t. If S is the preform feed speed, then Lpreform= St. Similarly, if s is the

    fiber drawing speed, then Lfiber= st. Thus, if D and d are the preform and fiber diameters,

    respectively, then

    Preform volume = Lpreform(D/2)2= St (D/2)2

    and Fiber volume = Lfiber(d/2)2= st (d/2)2

    Equating these yields

    StD

    2

    )* ,-

    2

    = std

    2

    )* ,-

    2

    or s = SD

    d

    )* ,-

    2

    (b) S = sd

    D

    )*

    ,-

    2

    = 1.2 m/s0.125mm

    9mm

    )*

    ,-

    2

    = 1.39 cm/min

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    12/116

    12

    2-30. Consider the following geometries of the preform and its corresponding fiber:

    PREFORMFIBER

    4 mm

    3 mm

    R

    25 m

    62.5 m

    We want to find the thickness of the deposited layer (3 mm- R). This can be done by

    comparing the ratios of the preform core-to-cladding cross-sectional areas and the fiber

    core-to-cladding cross-sectional areas:

    A preform core

    Apreform clad=

    Afibercore

    Afiberclad

    or

    !(32 " R2 )

    !(42 " 32 )=

    !(25)2

    ! (62.5)2 "(25)

    2[ ]

    from which we have

    R = 9" 7(25)

    2

    (62.5)2 "(25)

    2

    /

    012

    34

    1/ 2

    = 2.77 mm

    Thus, thickness = 3 mm - 2.77 mm = 0.23 mm.

    2-31. (a) The volume of a 1-km-long 50-m diameter fiber core is

    V = !r2L = !(2.5=10-3cm)2(105 cm) = 1.96 cm3

    The mass M equals the density Btimes the volume V:

    M = BV = (2.6 gm/cm3)(1.96 cm3) = 5.1 gm

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    13/116

    13

    (b) If R is the deposition rate, then the deposition time t is

    t =M

    R=

    5.1gm

    0.5gm / min= 10.2 min

    2-32. Solving Eq. (2-82) for Cyields

    C=K

    YD

    )*

    ,-

    2

    where Y = ! for surface flaws.

    Thus

    C=(20N / m m3 / 2 )2

    (70MN/ m2 )2 != 2.60=10-4mm = 0.26 m

    2-33. (a) To find the time to failure, we substitute Eq. (2-82) into Eq. (2-86) and

    integrate (assuming that Dis independent of time):

    C" b / 2 Ci

    C f

    E dC = AYbDb0

    t

    E dt

    which yields

    1

    1 "b

    2

    Cf1" b / 2 " C i

    1" b/ 2[ ]= AYbDbt

    or

    t =2

    (b" 2)A(YD)b C i

    (2 " b)/ 2 " Cf( 2" b)/ 2[ ]

    (b) Rewriting the above expression in terms of K instead of Cyields

    t =2

    (b" 2)A(YD)b

    Ki

    YD

    )*

    ,-

    2" b

    " Kf

    YD

    )*

    ,-

    2 "b/

    012

    34

    72Ki

    2" b

    (b" 2)A(YD)b if K i

    b" 2>Kf

    2" b

    2-34. Substituting Eq. (2-82) into Eq. (2-86) gives

    dC

    dt= AKb= AYbCb/2Db

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    14/116

    14

    Integrating this from Cito C p where

    Ci=

    K

    YD i

    )

    *

    + ,

    -

    .2

    and Cp=

    K

    YDp

    )

    *

    +,

    -

    .

    2

    are the initial crack depth and the crack depth after proof testing, respectively, yields

    C "b / 2 C i

    C p

    E dC = AYb

    Db

    0

    t p

    E dt

    or

    1

    1 "b

    2

    Cp1" b / 2

    " Ci1"b / 2[ ]= AYb D pb tp

    for a constant stress Dp. Substituting for C i and C p gives

    2

    b" 2

    )*

    ,-

    K

    Y

    )*

    ,-

    2"b

    Di

    b" 2 " Dp

    b" 2[ ]= AYb D pb tpor

    2

    b" 2

    )*

    ,-

    K

    Y

    )*

    ,-

    2"b1

    AYb D i

    b" 2" Dp

    b" 2[ ]= B D ib"2 " Dpb"2[ ]= D pb

    tp

    which is Eq. (2-87).

    When a static stress Dsis applied after proof testing, the time to failure is found from Eq.(2-86):

    C "b / 2 C p

    Cs

    E dC = AYb Dsb

    0

    t s

    E dt

    where C s is the crack depth at the fiber failure point. Integrating (as above) we get Eq. (2-

    89):

    B Dpb"2 " Dsb"2[ ]= Dsb ts

    Adding Eqs. (2-87) and (2-89) yields Eq. (2-90).

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    15/116

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    16/116

    16

    2-36. The failure probability is given by Eq. (2-85). For equal failure probabilities of the

    two fiber samples, F1= F2, or

    1 - exp " D1c

    D0

    )

    *+ ,

    -.

    m

    L1

    L0

    /

    01

    34= 1 - exp "

    D2cD0

    )

    *+ ,

    -.

    m

    L2

    L0

    /

    01

    34

    which implies that

    D1c

    D0

    )

    *+ ,

    -.

    m

    L1

    L0

    =D

    2c

    D0

    )

    *+ ,

    -.

    m

    L2

    L0

    or

    D1cD

    2c

    =L

    2

    L1

    )

    *+ ,

    -.

    1 / m

    If L1= 20 m, then D1c= 4.8 GN/m2

    If L2= 1 km, then D2c= 3.9 GN/m2

    Thus

    4.83.9

    )* ,-

    m

    = 100020

    = 50

    gives

    m =log50

    log(4.8/ 3.9)= 18.8

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    17/116

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    18/116

    2

    !!(m) ""uv ""IR0.5 20.3 --

    0.7 1.44 --

    0.9 0.33 --

    1.2 0.09 2.2)10-6

    1.5 0.04 0.00722.0 0.02 23.2

    3.0 0.009 7.5)104

    3-6. From Eq. (3-4a) we have

    !scat=8*3

    3(4 (n

    2+ 1)

    2kBTf,T

    =

    8*3

    3(0.63m)4 (1.46)2

    + 1[ ]2

    (1.38)10-16dyne-cm/K)(1400 K)

    )(6.8)10-12cm2/dyne)

    = 0.883 km-1

    To change to dB/km, multiply by 10 log e = 4.343: !scat= 3.8 dB/km

    From Eq. (3-4b):

    !scat= 8*3

    3(4

    n8p2kBTf,T = 1.16 km-1

    = 5.0 dB/km

    3-8. Plot of Eq. (3-7).

    3-9. Plot of Eq. (3-9).

    3-10. From Fig. 2-22, we make the estimates given in this table:

    ##m Pclad/P ""##m= ""11+ (""22 - ""11)Pclad/P 5 + 103Pclad/P01 0.02 3.0 + 0.02 5 + 20 = 25

    11 0.05 3.0 + 0.05 5 + 50 = 55

    21 0.10 3.0 + 0.10 5 + 100 = 105

    02 0.16 3.0 + 0.16 5 + 160 = 165

    31 0.19 3.0 + 0.19 5 + 190 = 195

    12 0.31 3.0 + 0.31 5 + 310 = 315

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    19/116

    3

    3-11. (a) We want to solve Eq. (3-12) for !gi. With != 2 in Eq. (2-78) and letting

    -=n

    2(0)+n 2

    2

    2n2

    (0)

    we have

    !(r) = !1+ (!2- !1)n 2 (0)+n 2(r)

    n2(0) +n 2

    2 = !1+ (!2- !1)r 2

    a2

    Thus

    !gi=!(r)p(r)rdr

    0

    .

    /

    p(r) rdr

    0

    .

    /= !1+

    (!2+ !

    1)

    a2

    exp+ Kr2( )r 3dr0

    .

    /

    exp +Kr2( )rdr0

    .

    /

    To evaluate the integrals, let x = Kr2, so that dx = 2Krdr. Then

    exp+Kr 2( )r3dr0

    .

    /

    exp+Kr 2( )rdr0

    .

    /=

    1

    2 K2 e+ xxdx

    0

    .

    /

    1

    2K e+x dx

    0

    .

    /=

    1

    K1!

    0! =

    1

    K

    Thus !gi = !1+(!2+ ! 1)

    Ka2

    (b) p(a) = 0.1 P0= P0e+ Ka2

    yields eKa 2

    = 10.

    From this we have Ka2= ln 10 = 2.3. Thus

    !gi = !1+ (!2+ ! 1)2.3

    = 0.57!1+ 0.43!2

    3-12. With (in units of micrometers, we have

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    20/116

    4

    n = 1 + 196.98

    (13.4)2 + (1.24 / ()2012

    345

    1/ 2

    To compare this with Fig. 3-12, calculate three representative points, for example,

    (= 0.2, 0.6, and 1.0 m. Thus we have the following:

    Wavelength !! Calculated n n from Fig. 3-12

    0.2 m 1.548 1.550

    0.6 m 1.457 1.458

    1.0 m 1.451 1.450

    3-13. (a) From Fig. 3-13,d6

    d(780 ps/(nm-km) at 850 nm. Therefore, for the LED we

    have from Eq. (3-20)

    8mat

    L=

    d6

    d(8(= [80 ps/(nm-km)](45 nm) = 3.6 ns/km

    For a laser diode,

    8mat

    L= [80 ps/(nm-km)](2 nm) = 0.16 ns/km

    (b) From Fig. 3-13,d6mat

    d(

    = 22 ps/(nm-km)

    Therefore, Dmat(() = [22 ps/(nm-km)](75 nm) = 1.65 ns/km

    3-14. (a) Using Eqs. (2-48), (2-49), and (2-57), Eq. (3-21) becomes

    b = 1 -ua

    V

    9:

    ;

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    21/116

    5

    , / k +n 2n

    1+n

    2

    =n

    1(1 + =) +n 2n

    1+n

    2

    = 1 -n

    1

    n1+n

    2

    =

    Letting n2= n1(1 - -) then yields

    , / k +n 2n

    1+n

    2

    = 1 - =2+ -

    71 since =2+ -

    =x

    s=

    n 2

    n1=

    n 1(1 + -)

    n1= (1 - -)

    The travel time of the highest order ray is thus

    Tmax =n

    1

    c s

    L

    x

    9:

    ;

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    22/116

    6

    Therefore

    Tmin

    - Tmax

    =Ln

    1

    c

    1

    1 + -+ 1

    9:

    ;

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    23/116

    7

    C2=3! + 2

    2(! + 2)=

    3 2 1 +6

    5-

    9:

    ;

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    24/116

    8

    3-20. We want to plot Eq. (3-30) as a function of 8 ( , where 8 int er modal and

    8 int ra modal are given by Eqs. (3-41) and (3-45). For A= 0 and != 2, we have C1=

    0 and C2= 1/2. Since 8int er modal

    does not vary with 8(

    , we have

    8int er modal

    L=

    N1-

    2c

    !

    ! +2

    9:

    ;

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    25/116

    9

    =LN

    1

    c

    kn1

    ,1+

    4-

    ! +2

    m

    M

    9:

    ;

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    26/116

    10

    Ignoringd-

    d(and

    dn1

    d(terms yields

    dM

    d(=

    2!

    ! +2a2k2n

    1

    2 - +1

    (

    9

    :

    ;

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    27/116

    11

    - 2 (2d 2n

    1

    d(29

    :C ;

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    28/116

    12

    3-29. For ! =0.95!opt , we have

    8 int er (! H !opt )

    8 int er (! = !opt )=

    (! + ! opt)

    -(! +2)=+

    0.05

    (0.015)(1.95)=+170%

    For ! =1.05!opt , we have

    8 int er (! H !opt )

    8 int er (! = !opt )=

    (! + ! opt )

    -(! +2)= +

    0.05

    (0.015)(2.05)= +163%

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    29/116

    1

    Problem Solutions for Chapter 4

    4-1. From Eq. (4-1), ni= 2!"#

    $%&2'kBT

    h2

    3/2(memh)

    3/4 exp

    !"#

    $%&

    -Eg

    2kBT

    = 22'(1.38(10)23 J / K)

    (6.63(10)34 J.s) 2*

    +,-

    ./

    3/ 2

    T3 / 2

    (.068)(.56)(9.11(10)31

    kg)2[ ]

    (exp )(1.55) 4.3(10)4 T)eV

    2(8.62(10)5 eV/K)T

    *

    +,-

    ./

    = 4.15(1014T3/2

    exp ) 1.55

    2(8.62(10)5

    )T

    *

    +,-

    ./exp

    4.3(10)4

    2(8.62(10)5

    )

    *

    +,-

    ./

    = 5.03(1015T3/2

    exp!"#

    $%&

    -8991

    T

    4-2. The electron concentration in a p-type semiconductor is nP = ni= pi

    Since both impurity and intrinsic atoms generate conduction holes, the total

    conduction-hole concentration pP is

    pP = NA+ ni= NA+ nP

    From Eq. (4-2) we have that nP = n

    2

    i /pP . Then

    pP = NA+ nP = NA+ n

    2i /p

    P or p

    2

    P - NApP - n2i = 0

    so that

    pP =

    NA

    2

    !""#

    $%%&

    1 +4n

    2i

    N2A

    + 1

    If ni

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    30/116

    2

    x2+ 4.759x - 0.436 = 0. Solving this quadratic equation yields (taking the plus

    sign only)

    x =1

    2[ ]- 4.759 + (4.759)2+ 4(.436) = 0.090

    The emission wavelength is 1=1.240

    1.540 = 805 nm.

    (b) Eg= 1.424 + 1.266(0.15) + 0.266(0.15)2= 1.620 eV, so that

    1=1.240

    1.620 = 766 nm

    4-4. (a) The lattice spacings are as follows:

    a(BC) = a(GaAs) = 5.6536 Ao

    a(BD) = a(GaP) = 5.4512 Ao

    a(AC) = a(InAs) = 6.0590 Ao

    a(AD) = a(InP) = 5.8696 Ao

    a(x,y) = xy 5.6536 + x(1-y) 5.4512 + (1-x)y 6.0590 + (1-x)(1-y)5.8696

    = 0.1894y - 0.4184x + 0.0130xy + 5.8696

    (b) Substituting a(xy) = a(InP) = 5.8696 Ao

    into the expression for a(xy) in (a),

    we have

    y =0.4184x

    0.1894 - 0.0130x 0

    0.4184x

    0.1894 = 2.20x

    (c) With x = 0.26 and y = 0.56, we have

    Eg= 1.35 + 0.668(.26) - 1.17(.56) + 0.758(.26)2+ 0.18(.56)2

    - .069(.26)(.56) - .322(.26)2(.56) + 0.03(.26)(.56)2= 0.956 eV

    4-5. Differentiating the expression for E, we have

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    31/116

    3

    2E = hc

    1221 or 21 =

    12

    hc2E

    For the same energy difference 2E, the spectral width 21is proportional to the

    wavelength squared. Thus, for example,

    211550

    211310

    = 1550

    1310

    #!

    &$

    2

    =1.40

    4-6. (a) From Eq. (4-10), the internal quantum efficiency is

    3int

    = 1

    1 +25/ 90=0.783, and from Eq. (4-13) the internal power level is

    Pint

    =(0.783) hc(35mA)q(1310

    nm)=26

    mW

    (b) From Eq. (4-16),

    P = 1

    3.5 3.5 + 1( )226 mW = 0.37mW

    4-7. Plot of Eq. (4-18). Some representative values of P/P0are given in the table:

    f in MHz P/P01 0.999

    10 0.954

    20 0.847

    40 0.623

    60 0.469

    80 0.370

    100 0.303

    4-8. The 3-dB optical bandwidth is found from Eq. (4-21). It is the frequency f atwhich the expression is equal to -3; that is,

    10 log 1

    1 + 2'f4( )2[ ]

    1/ 2

    #

    !"

    &

    $%=)3

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    32/116

    4

    With a 5-ns lifetime, we find f = 1

    2' 5ns( )100.6 )1( )=9.5MHz

    4-9. (a) Using Eq. (4-28) with 5= 1

    gth=1

    0.05

    cmln!"#

    $%&1

    0.32

    2 + 10 cm-1= 55.6 cm-1

    (b) With R1= 0.9 and R2= 0.32,

    gth=1

    0.05 cm ln

    +,*

    ./-1

    0.9(0.32) + 10 cm-1= 34.9 cm-1

    (c) From Eq. (4-37) 3ext= 3i(gth- 6)/gth;

    thus for case (a): 3ext= 0.65(55.6 - 10)/55.6 = 0.53

    For case (b): 3ext= 0.65(34.9 - 10)/34.9 = 0.46

    4-10. Using Eq. (4-4) to find Egand Eq. (4-3) to find 1, we have for x = 0.03,

    1=1.24

    Eg =

    1.24

    1.424 + 1.266(0.3) + 0.266(0.3)2 = 1.462 m

    From Eq. (4-38)

    3ext= 0.8065 1(m)dP(mW)

    dI(mA)

    Taking dI/dP = 0.5 mW/mA, we have 3ext= 0.8065 (1.462)(0.5) = 0.590

    4-11. (a) From the given values, D = 0.74, so that 5T= 0.216

    Then neff

    2= 10.75 and W = 3.45, yielding 5L= 0.856

    (b) The total confinement factor then is 5= 0.185

    4-12. From Eq. (4-46) the mode spacing is

    21=12

    2Ln =

    (0.80 m)2

    2(400 m)(3.6) = 0.22 nm

    Therefore the number of modes in the range 0.75-to-0.85 m is

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    33/116

    5

    .85) .75

    .22(10)3 =

    .1

    .22 (103= 455 modes

    4-13. (a) From Eq. (4-44) we have g(1) = (50 cm-1) exp+,

    *

    ./

    --

    (1- 850 nm)2

    2(32 nm)2

    = (50 cm-1) exp+,*

    ./-

    -(1- 850)2

    2048

    (b) On the plot of g(1) versus 1, drawing a horizontal line at g(1) = 6t

    = 32.2 cm-1shows that lasing occurs in the region 820 nm < 1< 880 nm.

    (c) From Eq. (4-47) the mode spacing is

    21=12

    2Ln =

    (850)2

    2(3.6)(400 m) = 0.25 nm

    Therefore the number of modes in the range 820-to-880 nm is

    N =880 - 820

    0.25 = 240 modes

    4-14. (a) Let Nm= n/1= m2L be the wave number (reciprocal wavelength) of mode m.

    The difference 2N between adjacent modes is then

    2N = Nm- Nm-1=1

    2L (a-1)

    We now want to relate 2N to the change 21in the free-space wavelength. Firstdifferentiate N with respect to 1:

    dN

    d1 =

    d

    d1!"#

    $%&n

    1 =

    1

    1dn

    d1 -

    n

    12 = -

    1

    12!"#

    $%&

    n - 1dn

    d1

    Thus for an incremental change in wavenumber 2N, we have, in absolute values,

    2N =1

    12!"#

    $%&

    n - 1dn

    d1 21 (a-2)

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    34/116

    6

    Equating (a-1) and (a-2) then yields 21=12

    2L!"#

    $%&

    n - 1dn

    d1

    (b) The mode spacing is 21=

    (.85 m)2

    2(4.5)(400 m) = 0.20 nm

    4-15. (a) The reflectivity at the GaAs-air interface is

    R1= R2= !"#

    $%&n-1

    n+1

    2 =

    !"#

    $%&3.6-1

    3.6+1

    2 = 0.32

    Then Jth=1

    7 6+

    1

    2Lln

    1

    R1R2

    *

    +, ./= 2.65(103A/cm2

    Therefore

    Ith= Jth(l (w = (2.65(103A/cm2)(250(10-4cm)(100(10-4cm) = 663 mA

    (b) Ith= (2.65(103A/cm2)(250(10-4cm)(10(10-4cm) = 66.3 mA

    4-16. From the given equation

    2E11 =1.43

    eV + 6.6256( 10

    )34

    J 8 s( )

    2

    8 5nm( )2 1

    6.19( 10)32 kg+ 1

    5.10(10)31kg#!" &

    $

    =1.43 eV + 0.25eV =1.68eV

    Thus the emission wavelength is 1= hc/E = 1.240/1.68 = 739 nm.

    4-17. Plots of the external quantum efficiency and power output of a MQW laser.

    4-18. From Eq. (4-48a) the effective refractive index is

    ne=m1B29

    =2(1570 nm)

    2(460 nm) = 3.4

    Then, from Eq. (4-48b), for m = 0

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    35/116

    7

    1= 1B1

    2

    B

    2neL!"#$%&1

    2 = 1570 nm

    (1.57 m)(1570 nm)

    4(3.4)(300 m) = 1570 nm 1.20 nm

    Therefore for m = 1, 1= 1B3(1.20 nm) = 1570 nm 3.60 nm

    For m = 2, 1= 1B5(1.20 nm) = 1570 nm 6.0 nm

    4-19. (a) Integrate the carrier-pair-density versus time equation from time 0 to td(time

    for onset of stimulated emission). In this time the injected carrier pair density

    changes from 0 to nth.

    td

    = dt0

    t d

    : = 1

    J

    qd)

    n

    4

    0

    n th

    : dn =)4J

    qd)

    n

    4

    #

    !" &

    $n= 0

    n= nth

    =4

    ln

    J

    J ) Jth

    #

    !" &

    $%

    where J = Ip/A and Jth= Ith/A. Therefore td= 4ln!"#

    $%&Ip

    Ip- Ith

    (b) At time t = 0 we have n = nB, and at t = tdwe have n = nth. Therefore,

    td= ;P(t) = P0[1 + 0.2m] = 1 mW

    The minimum value is

    P(t) = P0[1 - 2.36m] =0 which implies m >1

    2.36 = 0.42

    Therefore for the average value we have < >P(t) = P0[1 + 0.2(0.42)] >1 mW,

    which implies

    P0= 11.084 = 0.92 mW so thatP(t) = 0.92[1 + 0.42x(t)] mW and

    i(t) = 10 P(t) = 9.2[1 + 0.42x(t)] mA

    4-23. Substitute x(t) into y(t):

    y(t) = a1b1cos ?1t + a1b2cos ?2t

    + a2(b12cos2?1t + 2b1b2cos ?1t cos ?2t + b2

    2cos2?2t)

    + a3(b13cos3?1t + 3b1

    2b2cos2?1t cos ?2t + 3b1b2

    2cos ?1t cos2?2t+ b2

    3cos3?2t)

    +a4(b14cos4?1t + 4b1

    3b2cos3?1t cos ?2t + 6b1

    2 b2

    2cos2?1t cos2?2t

    + 4b1b23cos ?1t cos3?2t + b2

    4cos4?2t)

    Use the following trigonometric relationships:

    i) cos2x =1

    2(1 + cos 2x)

    ii) cos3x =1

    4(cos 3x + 3cos x)

    iii) cos4x =1

    8(cos 4x + 4cos 2x + 3)

    iv) 2cos x cos y = cos (x+y) + cos (x-y)

    v) cos2x cos y =1

    4 [cos (2x+y) + 2cos y + cos (2x-y)]

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    37/116

    9

    vi) cos2x cos2y =1

    4 [1 + cos 2x+ cos 2y +1

    2 cos(2x+2y) +1

    2 cos(2x-2y)]

    vii) cos3x cos y =1

    8 [cos (3x+y) + cos (3x-y) + 3cos (x+y) + 3cos (x-y)]

    then

    y(t) = 12+,*

    ./-a2b21+ a2b22+ 34a4b

    41+ 3a4b

    21b

    22+ 34

    a4b42 constantterms

    +3

    4+*

    .-a3b

    3

    1+ 2a3b1b2

    2 cos ?1t +3

    4 a3+*

    .-b

    3

    2+ 2b2

    1b2 cos ?2tfundamental

    terms

    +b

    2

    1

    2+*

    .-a2 + a4b

    2

    1+ 3a4b2

    2 cos 2?1t +b

    2

    2

    2+*

    .-a2 + a4b

    2

    2+ 3a4b2

    1 cos 2?2t

    2nd-order harmonic terms

    +1

    4 a3b

    3

    1 cos 3?1t +1

    4 a3b

    3

    2 cos 3?2t 3rd-order harmonic terms

    +1

    8 a4b

    4

    1 cos 4?1t +1

    8 a4b

    4

    2 cos 4?2t 4th-order harmonic terms

    + +*

    .-a2b1b2+

    3

    2a4b3

    1b2+3

    2a4b1b3

    2 [ ]cos (?1+?2)t + cos (?1-?2)t

    2nd-order intermodulation terms

    +3

    4 a3b2

    1 b2[ ]cos(2?1+?2)t + cos(2?1-?2)t +3

    4 a3b1b2

    2[ ]cos(2?2+?1)t + cos(2?2-?1)t

    3rd-order intermodulation terms

    +1

    2 a4b3

    1 b2[ ]cos(3?1+?2)t + cos(3?1-?2)t

    +3

    4 a4b2

    1 b2

    2[ ]cos(2?1+2?2)t + cos(2?1-2?2)t

    +1

    2 a4b1b3

    2[ ]cos(3?2+?1)t + cos(3?2-?1)t 4th-order intermodulation

    terms

    This output is of the form

    y(t) = A0+ A1(?1) cos ?1t + A2(?1) cos 2?1t + A3(?1) cos 3?1t

    + A4(?1) cos 4?1t + A1(?2) cos ?2t + A2(?2) cos 2?2t

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    38/116

    10

    + A3(?2) cos 3?2t + A4(?2) cos 4?2t + @m

    @n

    Bmncos(m?1+n?2)t

    where An(?j) is the coefficient for the cos(n?j)t term.

    4-24. From Eq. (4-58) P = P0 e-t/4m

    where P0= 1 mW and4m= 2(5(104hrs) = 105

    hrs.

    (a) 1 month = 720 hours. Therefore:

    P(1 month) = (1 mW) exp(-720/105) = 0.99 mW

    (b) 1 year = 8760 hours. Therefore

    P(1 year) = (1 mW) exp(-8760/105) = 0.92 mW

    (c) 5 years = 5(8760 hours = 43,800 hours. Therefore

    P(5 years) = (1 mW) exp(-43800/105) = 0.65 mW

    4-25. From Eq. (4-60) 4s= K eEA/kBT

    or ln4s= ln K + EA/kBT

    where kB= 1.38(10-23J/K = 8.625(10-5eV/K

    At T = 60C = 333K, we have

    ln 4(104= ln K + EA/[(8.625(10-5eV)(333)]

    or 10.60 = ln K + 34.82 EA (1)

    At T = 90C = 363K, we have

    ln 6500 = ln K + EA/[(8.625(10-5eV)(363)]

    or 8.78 = ln K + 31.94 EA (2)

    Solving (1) and (2) for EAand K yields

    EA= 0.63 eV and k = 1.11(10-5hrs

    Thus at T = 20C = 293K

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    39/116

    11

    4s = 1.11(10-5exp{0.63/[(8.625(10-5)(293)]} = 7.45(105hrs

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    40/116

    1

    Problem Solutions for Chapter 5

    5-3. (a) cosL30 = 0.5

    cos 30 = (0.5)1/L= 0.8660

    L = log 0.5/log 0.8660 = 4.82

    (b) cosT15 = 0.5

    cos 15 = (0.5)1/T= 0.9659

    T = log 0.5/log 0.9659 = 20.0

    5-4. The source radius is less than the fiber radius, so Eq. (5-5) holds:

    PLED-step= !2r2s B0(NA)

    2= !2(2"10-3cm)2(100 W/cm2)(.22)2= 191 W

    From Eq. (5-9)

    PLED-graded= 2!2(2"10-3cm)2(100 W/cm2)(1.48)2(.01)#$%

    &'(

    1 -1

    2)*+,2

    5

    2 = 159 W

    5-5. Using Eq. (5-10), we have that the reflectivity at the source-to-gel interface is

    R s- g = 3.600-1.3053.600+1.305*) ,+

    2

    = 0.219

    Similarly, the relfectivity at the gel-to-fiber interface is

    R g- f = 1.465 -1.305

    1.465 +1.305

    *)

    ,+

    2

    = 3.34"10-3

    The total reflectivity then is R =Rs- g

    Rg-f = 7.30"10

    -4

    The power loss in decibels is (see Example 5-3)

    L =-10 log (1-R) =-10 log (0.999)=3.17 "10-3

    dB

    5-6. Substituting B(.) = B0cosm. into Eq. (5-3) for B(.,/), we have

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    41/116

    2

    P =

    01

    12

    0

    rm

    012

    0

    2!

    #$%

    &'(

    2! 02

    0

    .0-maxcos3.sin .d. d.sr dr

    Using

    02

    0

    .0cos3.sin .d. = 02

    0

    .0

    ( )1 - sin2. sin .d(sin .) = 02

    0

    sin .0

    ( )x - x3 dx

    we have

    P = 2!

    0112

    0

    rm

    012

    0

    2!

    #$%

    &'(sin2.0-max

    2-

    sin4.0-max4

    d.sr dr

    = !

    0112

    0

    rm

    012

    0

    2!

    #$% &'(NA2- 12NA

    4 d.sr dr

    =!2

    [ ]2NA2- NA4 02

    0

    rm

    r dr 02

    0

    2! d.s

    5-7. (a) Let a = 25 m and NA = 0.16. For rs3a(NA) = 4 m, Eq. (5-17) holds. For

    rs44 m, 5= 1.

    (b) With a = 50 m and NA = 0.20, Eq. (5-17) holds for rs310 m. Otherwise, 5

    = 1.

    5-8. Using Eq. (5-10), the relfectivity at the gel-to-fiber interface is

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    42/116

    3

    Rg- f =

    1.485 -1.305

    1.485 +1.305

    *)

    ,+

    2

    = 4.16"10-3

    The power loss is (see Example 5-3)

    L =-10

    log

    (1-R) =-10

    log

    (0.9958) =0.018

    dB

    When there is no index-matching gel, the joint loss is

    R a- f = 1.485 -1.000

    1.485 +1.000

    *)

    ,+

    2

    =0.038

    The power loss is L =-10 log (1-R) =-10 log (0.962) = 0.17dB

    5-9. Shaded area = (circle segment area) - (area of triangle) =1

    2 sa -

    1

    2 cy

    s = a.= a [2 arccos (y/a)] = 2a arccos)6*

    +7,d

    2a

    c = 2#$%

    &'(

    a2-)6*+7,d

    22 1/2

    Therefore

    Acommon

    = 2(shaded area) = sa cy = 2a2arccos)6

    *

    +7

    ,d

    2a - d

    #$

    %

    &'

    (a2-

    )6

    *

    +7

    ,d2

    4

    1/2

    5-10.

    Coupling loss (dB) for

    Given axial misalignments (m)

    Core/cladding diameters

    (m)

    1 3 5 10

    50/125 0.112 0.385 0.590 1.266

    62.5/125 0.089 0.274 0.465 0.985

    100/140 0.056 0.169 0.286 0.590

    5-11. arccos x =!2

    - arcsin x

    For small values of x, arcsin x = x +x3

    2(3) +

    x5

    2(4)(5) + ...

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    43/116

    4

    Therefore, ford

    2a

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    44/116

    5

    = -10 log

    #$$%

    &''(NA

    2

    R(0)

    NA2E(0)

    5-15. For fibers with different 9values, where 9R

    < 9E

    LF= -10 log 5F = -10 log

    k2NA2(0))66*

    +77,9

    R

    29R

    + 4a2

    k2NA2(0))66*

    +77,9

    E

    29E

    + 4a2

    = -10 log#$$%

    &''(9

    R(9

    E+ 2)

    9E

    (9R

    + 2)

    5-16. The splice losses are found from the sum of Eqs. (5-35) through (5-37). First find

    NA(0) from Eq. (2-80b).

    For fiber 1: NA1(0) =n

    1 2: = 1.46 2 0.01( ) =0.206

    For fiber 2: NA2

    (0) = n1

    2: = 1.48 2 0.015( ) = 0.256

    (a)

    The only loss is that from index-profile differences. From Eq. (5-37)

    L1; 2 9( ) =-10 log

    1.80(2.00 + 2)

    2.00(1.80 + 2)= 0.24

    dB

    (b)

    The losses result from core-size differences and NA differences.

    L2;1

    (a) =-20

    log

    50

    62.5

    *)

    ,+=

    1.94

    dB

    L2;1

    (NA) =-20

    log

    .206

    .256

    %#

    (&= 1.89

    dB

    5-17. Plots of connector losses using Eq. (5-43).

    5-18. When there are no losses due to extrinsic factors, Eq. (5-43) reduces to

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    45/116

    6

    LSM;ff= -10 log

    #$%

    &'(4

    )6*

    +7,W1

    W2+

    W2W1

    2

    For W1= 0.9W2, we then have LSM;ff= -10 log #$%

    &'(44.0446 = - 0.0482 dB

    5-19. Plot of Eq. (5-44).

    5-20. Plot of the throughput loss.

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    46/116

    1

    Problem Solutions for Chapter 6

    6-1. From Eqs. (6-4) and (6-5) with Rf= 0, != 1 - exp(-"sw)

    To assist in making the plots, from Fig. P6-1, we have the following representativevalues of the absorption coefficient:

    !!(m) ""s(cm-1)

    .60 4.4#103

    .65 2.9#103

    .70 2.0#103

    .75 1.4#103

    .80 0.97#103

    .85 630

    .90 370

    .95 190

    1.00 70

    6-2. Ip= qA $%

    0

    w

    G(x) dx = qA &0"s$%

    0

    w

    e-"sx

    dx

    = qA &0'( )*1 - e-"sw = qA P0(1 - Rf)h+A'( )*1 - e-"sw

    6-3. From Eq. (6-6), R =!qh+

    =!q,hc

    = 0.8044 !, ( in m)

    Plot R as a function of wavelength.

    6-4. (a) Using the fact that Va-VB, rewrite the denominator as

    1 - ./

    0

    12

    3Va- IMRMVB

    n

    = 1 - ./

    0

    12

    3VB- VB+ Va- IMRMVB

    n

    = 1 -./0

    123

    1 -VB- Va+ IMRM

    VB

    n

    SinceVB- Va+ IMRM

    VB

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    47/116

    2

    1 -./0

    123

    1 -VB- Va+ IMRM

    VB

    n -1 -

    '4(

    )5*

    1 -n( )VB- Va+ IMRM

    VB

    =

    n( )VB- Va+ IMRM

    VB -nIMRM

    VB

    Therefore, M0=IMIp

    -VB

    n( )VB- Va+ IMRM -

    VBnIMRM

    (b) M0=IMIp

    =VB

    nIMRM implies I

    2M =

    IpVBnRM

    , so that M0=./0

    123VB

    nIpRM

    1/2

    6-5. < >i2

    s(t) =

    1

    T$%0

    T

    i

    2

    s(t)dt =

    627 $%

    0

    27/6

    R

    2

    0P2(t) dt (where T = 27/6),

    =627

    R2

    0 P2

    0 $%

    0

    27/6

    (1 + 2m cos 6t + m2cos26t) dt

    Using

    cos 6tdt =0

    7 6

    8 1

    6

    sin 6t t = 0t = 27 / 6

    =0

    and $%

    0

    27/6

    cos26t dt =1

    6

    $9%

    0

    27

    ./0

    1231

    2+

    1

    2cos 2x dx =

    76

    we have < >i2s(t) = R2

    0 P2

    0./0

    123

    1 +m2

    2

    6-6. Same problem as Example 6-6: compare Eqs. (6-13), (6-14), and (6-17).

    (a)First from Eq. (6-6), I p =!q,

    hcP0 =0.593A

    Then :Q2= 2qI pB =2 1.6# 10

    ;19C( )(0.593A)(150# 106 Hz) = 2.84# 10;17 A2

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    48/116

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    49/116

    4

    6-9. 0 =d

    dM./0

    123S

    N =

    d

    dM'44(

    )55*1

    2I2

    pM2

    2q(Ip+ ID)M2+x+ 2qIL+ 4kBT/RL

    0 = I2p M -

    (2+x)M1+x 2q(Ip+ ID)1

    2I2pM

    2

    2q(Ip+ ID)M2+x+ 2qIL+ 4kBT/RL

    Solving for M: M2+x

    opt =2qIL+ 4kBT/RL

    xq(Ip+ ID)

    6-10. (a) Differentiating pn, we have

    =pn

    =x =

    1

    Lp.

    /0

    1

    23

    pn0+ Be

    -"sw

    e

    (w-x)/Lp

    - "sBe

    -"sx

    = 2pn=x

    2= -

    1

    L2

    p

    ./0

    123

    pn0+ Be-"sw

    e(w-x)/Lp

    + "2

    s Be-"sx

    Substituting pnand= 2p

    n

    =x2into the left side of Eq. (6-23):

    -Dp

    L2

    p

    ./0

    123

    pn0+ Be-"sw

    e(w-x)/Lp

    + Dp"2

    s Be-"sx

    +1

    >p

    ./0

    123

    pn0+ Be-"sw

    e(w-x)/Lp

    -B

    >p

    e-"sx

    + &0"se-"sx

    =

    '4(

    )5*

    B

    ./0

    123

    Dp"2

    s -1

    >p

    + &0"s e-"sx

    where the first and third terms cancelled because L2

    p = Dp>p .

    Substituting in for B:

    Left side =

    '44(

    )55*&0

    Dp

    "sL2p

    1 - "2

    s L2

    p

    ./0

    123

    Dp"2

    s -1

    >p

    + &0"s e-"sx

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    50/116

    5

    =&0Dp

    '44(

    )55*"sL

    2

    p

    1 - "2s L

    2p

    .//0

    1223"

    2

    s Lp- 1

    >p

    + Dp"s e-"sx

    =

    &0Dp( )-Dp"s+ Dp"s e

    -"sx

    = 0 Thus Eq. (6-23) is satisfied.

    (b) Jdiff= qDp=pn=x

    0.

    31

    x =w

    = qDp'4(

    )5*1

    Lp./0

    123

    pn0+ Be-"sw

    - "sBe-"sw

    = qDpB

    .

    /0

    1

    231

    Lp- "s e

    -"sw + qpn0

    DpLp

    = q&0

    .//0

    1223"sL

    2p

    1 - "2

    s L2

    p

    ./0

    1231 - "sLp

    Lp e

    -"sw + qpn0

    DpLp

    = q&0"sLp

    1 + "sLp e

    -"sw + qpn0

    DpLp

    c) Adding Eqs. (6-21) and (6-25), we have

    Jtotal= Jdrift+ Jdiffusion = q&0'4(

    )5*

    .0

    13

    1 - e-"sw

    +./0

    123"sLp

    1 + "sLpe

    -"sw + qpn0

    DpLp

    = q&0.//0

    1223

    1 -e-"sw

    1 + "sLp e

    -"sw + qpn0

    DpLp

    6-11. (a) To find the amplitude, consider

    .0 13JtotJ*totsc

    1/2 = q&0( )S S* 1/2 where S = 1 - e

    -j6td

    j6td

    We want to find the value of 6tdat which ( )S S*1/2

    =1

    2 .

    Evaluating ( )S S*1/2

    , we have

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    51/116

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    52/116

    7

    td=w

    vd =

    20 # 10;6 m

    4.4# 104 m / s= 0.45 ns

    c)1

    "s = 10-3cm = 10 m =

    1

    2 w

    Thus since most carriers are absorbed in the depletion region, the carrier diffusion

    time is not important here. The detector response time is dominated by the RC

    time constant.

    6-13. (a) With k1-k2and keffdefined in Eq. (6-10), we have

    (1) 1 -k1(1 - k1)

    1 - k2 = 1 -

    k1- k2

    1

    1 - k2 -1 -

    k2- k2

    1

    1 - k2 = 1 keff

    (2)(1 - k1)2

    1 - k2 =

    1 - 2k1+ k2

    1

    1 - k2 -

    1 - 2k2+ k2

    1

    1 - k2

    =1 - k21 - k2

    -k2- k

    2

    1

    1 - k2 = 1 - keff

    Therefore Eq. (6-34) becomes Eq. (6-38):

    Fe= keffMe+ 2(1 - keff) -1

    Me(1 - keff) = keffMe+ ./0 1232 -

    1

    Me (1 - keff)

    (b) With k1-k2and k'eff

    defined in Eq. (6-40), we have

    (1)k2(1 - k1)

    k2

    1(1 - k2) -

    k2- k2

    1

    k2

    1(1 - k2) = k

    'eff

    (2)(1 - k1)2k2

    k2

    1(1 - k2) =

    k2- 2k1k2+ k2k2

    1

    k2

    1(1 - k2)

    -.0

    13k2- k

    2

    1 - .0

    13k

    2

    1- k2k2

    1

    k2

    1(1 - k2) = k

    'eff

    - 1

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    53/116

    8

    Therefore Eq. (6-35) becomes Eq. (6-39): Fh= k'eff

    Mh-./0

    123

    2 -1

    Mh(k

    'eff

    - 1)

    6-14. (a) If only electrons cause ionization, then @= 0, so that from Eqs. (6-36) and (6-

    37), k1= k2= 0 and keff= 0. Then from Eq. (6-38)

    Fe= 2 -1

    Me - 2 for large Me

    (b) If "= @, then from Eqs. (6-36) and (6-37), k1= k2= 1 so that

    keff= 1. Then, from Eq. (6-38), we have Fe= Me.

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    54/116

    1

    Problem Solutions for Chapter 7

    7-1. We want to compare F1= kM + (1 - k) 2 ! 1

    M

    "#

    $%and F2= M

    x.

    For silicon, k = 0.02 and we take x = 0.3:

    M F1(M) F2(M) % difference

    9 2.03 1.93 0.60

    25 2.42 2.63 8.7

    100 3.95 3.98 0.80

    For InGaAs, k = 0.35 and we take x = 0.7:

    M F1(M) F2(M) % difference

    4 2.54 2.64 3.009 4.38 4.66 6.4

    25 6.86 6.96 1.5

    100 10.02 9.52 5.0

    For germanium, k = 1.0, and if we take x = 1.0, then F1= F2.

    7-2. The Fourier transform is

    hB(t) = HB!&

    &

    ' (f)ej2(ft

    df = Rej2(ft

    1+j2(fRC

    df!&

    &

    '

    Using the integral solution from Appendix B3:

    ejpx

    () +jx)n dx

    !&

    &

    ' =2((p) n !1e! )p

    *(n)for p > 0, we have

    hB(t) =1

    2(C

    ej 2(ft

    1

    2(RC+ jf

    "#

    $%

    df!&

    &

    ' =1

    Ce-t/RC

    7-3. Part (a):

    hp!&

    &

    ' (t) dt =1

    +Tb ,-

    -+Tb/2

    +Tb/2

    dt =1

    +Tb#."

    %/$+Tb

    2+

    +Tb2

    = 1

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    55/116

    2

    Part (b):

    hp

    !&

    &

    ' (t) dt =1

    2(

    1

    +Tb exp !

    t2

    2(+Tb )2

    0

    123

    45!&

    &

    ' dt

    = 12(

    1

    +Tb

    ( +Tb 2 = 1 (see Appendix B3 for integral solution)

    Part (c):

    hp

    !&

    &

    ' (t) dt =1

    +Tb

    exp ! t

    +Tb

    0

    123

    45dt

    0

    &

    ' = - e!& ! e

    !0[ ]= 1

    7-4. The Fourier transform is

    F[p(t)*q(t)] = p(t)* q(t)e!j2(ft

    dt!&

    &

    ' = q(x) p(t!x)e!j2(ft

    dtdx!&

    &

    '!&

    &

    '

    = q(x)e!j2(fx

    p(t!x)e!j2(f( t ! x)

    dtdx!&

    &

    '!&

    &

    '

    = q(x)

    e!j2(fx

    dx

    p(y)

    e!j 2(fy

    dy!&

    &

    '!&

    &

    ' where y = t - x

    = F[q(t)] F[p(t)] = F[p(t)] F[q(t)] = P(f) Q(f)

    7-5. From Eq. (7-18) the probability for unbiased data (a = b = 0) is

    Pe=1

    2P0 (v th ) + P1(v th )[ ].

    Substituting Eq. (7-20) and (7-22) for P0and P1, respectively, we have

    Pe=1

    2

    1

    2(6 2 e

    !v 2 / 26 2dv

    V / 2

    &

    ' + e! (v !V ) 2 / 26 2

    dv!&

    V / 2

    '0

    12

    45

    In the first integral, let x = v/ 262 so that dv = 262 dx.

    In the second integral, let q = v-V, so that dv = dq. The second integral thenbecomes

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    56/116

    3

    e!q 2 / 26 2

    dq!&

    V / 2 !V

    ' = 262

    e! x2

    dx!&

    !V / 2 26 2

    ' where x = q/ 2 62

    Then

    Pe=1

    2

    262

    2(6 2 e

    ! x 2dx

    V / 2 262

    &

    ' + e! x 2

    dx!&

    ! V / 2 26 2

    '0

    12

    3

    45

    =1

    2 ( e

    !x 2

    dx!&

    &

    ' ! 2 e!x 2

    dx0

    V / 2 26 2

    '0

    12

    3

    45

    Using the following relationships from Appendix B,

    e

    ! p2 x 2

    dx!&

    &

    ' =(

    p and2

    ( e!x 2

    dx0

    t

    ' = erf(t), we have

    Pe=1

    21! erf

    V

    26 2

    "#

    $%

    0

    123

    45

    7-6. (a) V = 1 volt and 6= 0.2 volts, so thatV

    26= 2.5. From Fig. 7-6 for

    V

    26= 2.5,

    we find Pe77810-3errors/bit. Thus there are (28105bits/second)(7810-3

    errors/bit) = 1400 errors/second, so that

    1

    1400 errors/second = 7810-4seconds/error

    (b) If V is doubled, thenV

    26= 5 for which Pe73810-7errors/bit from Fig. 7-6.

    Thus

    1

    (28 105

    bits / sec ond)(3 8 10!7

    errors/bit)= 16.7 seconds/error

    7-7. (a) From Eqs. (7-20) and (7-22) we have

    P0(vth) =1

    2(62

    e! v 2 / 26 2

    dvV / 2

    &

    ' =1

    21! erf

    V

    26 2

    "#

    $%

    0

    12 45

    and

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    57/116

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    58/116

    5

    Bbae=H p (0)

    Hout (0)

    2

    Tb2

    Hout' (v2N = < >v2

    s +< >v2

    R +< >v2

    I +< >v2

    E

    = 2q < >i0 < >m2 BbaeR2A2+4kBT

    Rb BbaeR2A2+ SIBbaeR2A2+ SEBeA2

    =#." %/$2q < >i0 M2+x+

    4kB

    T

    Rb+ SI BbaeR2A2+ SEBeA2

    =R2A2I2

    Tb#."

    %/$

    2q < >i0 M2+x+4kBT

    Rb+ SI+

    SE

    R2 +

    (2(RCA)2

    T3

    b

    SEI3

    7-11. First let x = v! boff( )/ 2 6 off with dx = dv / 2 6off in the first part of Eq. (7-

    49):

    Pe=26off

    2(6off

    exp! x2( )vth ! b off

    26off

    &

    ' dx =1

    ( exp !x2( )

    Q / 2

    &

    ' dx

    Similarly, let y = !v +bon

    ( )/ 2

    6on( )so that

    dy = -dv/ 26on( )in the second part of Eq. (7-49):

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    59/116

    6

    Pe= -1

    ( exp !y

    2( )&

    ! vth +b on26 on

    ' dy =1

    ( exp!y

    2( )Q / 2

    &

    ' dy

    7-12. (a) Let x = V2 2 6

    = K2 2

    For K = 10, x = 3.536. Thus

    Pe=e-x

    2

    2 (x = 2.97810-7errors/bit

    (b) Given that Pe= 10-5=e-x

    2

    2 (x then e-x

    2 = 2 ( 10-5x.

    This holds for x 73, so that K = 2 2 x = 8.49.

    7-13. Differentiating Eq. (7-54) with respect to M and setting dbon/dM = 0, we have

    dbondM

    = 0

    = -Q(h: /9)

    =2 M

    2+ x 9

    h:

    "#

    $% bonI 2 +W

    0

    123

    45

    1/ 2

    + M2+x 9

    h:

    "#

    $% bonI2 (1 ! >

    0

    123

    45+W

    ?@A

    BCD

    1/ 2

    +Q(h: /9)

    M( h:/9)

    1

    2(2 + x)M

    1+ xb

    onI

    2

    M 2+ x 9

    h:

    "#

    $%

    bon

    I2 +W

    0

    123

    45

    1/ 2 +

    1

    2(2 +x)M

    1+xb

    onI

    2(1! >)

    M 2+x 9

    h:

    "#

    $%

    bon

    I2

    (1! > ) +W0

    123

    45

    1/ 2

    ?

    @E

    AE

    B

    CE

    DE

    1 / 2

    Letting G = M2+x#."

    %/$9

    h: bonI2for simplicity, yields

    A@?

    DCB

    ( )G + W1/2

    + [ ]G(1->) + W1/2

    =G

    2(2 + x)

    A

    @?

    D

    CB1

    (G + W)

    1/2+(1->)

    [ ]G(1->) + W

    1/2

    Multiply by (G + W)1/2

    [ ]G(1->) + W1/2

    and rearrange terms to get

    (G + W)1/2

    120

    453

    W -Gx

    2(1->) = [ ]G(1->) + W

    1/2#."

    %/$Gx

    2- W

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    60/116

    7

    Squaring both sides and collecting terms in powers of G, we obtain the quadratic

    equation

    G2120

    453x2>

    4(1->) + G

    120

    453x2>

    4W(2->) - >W2(1+x) = 0

    Solving this equation for G yields

    G =

    -x2

    4W(2->)

    AE@E?

    DECEBx4

    16W2(2->)2+ x2(1->)W2(1+x)

    1

    2

    x2

    2(1->)

    =

    W(2->)2(1->) AE

    @E?

    DECEB

    1 - 120

    453

    1 + 16 #."

    %/$1+x

    x2

    1->

    (2->)2

    1

    2

    where we have chosen the "+" sign. Equation (7-55) results by letting

    G = M2+x

    opt bonI2 #."

    %/$9

    h:

    7-14. Substituting Eq. (7-55) for M2+xbon into the square root expressions in Eq. (7-

    54) and solving Eq. (7-55) for M, Eq. (7-54) becomes

    bon=

    Q#."

    %/$h:

    9b

    1/(2+x)

    on

    120

    453h:

    9W(2->)2I2(1->)

    K1/(2+x)AE

    @E?

    DECEB

    120

    453W(2->)

    2(1->)K + W

    1

    2+

    120

    453W

    2(2->)K + W

    1

    2

    Factoring out terms:

    b(1+x)/(2+x)

    on = Q#."

    %/$h:

    9

    (1+x)/(2+x)

    Wx/2(2+x)

    I1/(2+x)

    2

    8AE@E?

    DECEB

    120

    453(2->)

    2(1->)K + 1

    12+

    120

    4531

    2(2->)K + 1

    12

    120

    453(2->)K

    2(1->)

    1/(2+x)

    or bon= Q(2+x)/(1+x)

    #."

    %/$h:

    9 W

    x/2(1+x)

    I1/(1+x)

    2 L

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    61/116

    8

    7-15. In Eq. (7-59) we want to evaluate

    lim

    > F 1

    (2! > )K

    2(1! > )L

    0

    123

    45

    1+x

    2+x

    =lim

    > F 1

    (2 ! > )K

    2(1! > )

    0

    123

    45

    1+x

    2+x lim

    > F 1

    1

    L

    "#

    $%

    1+x

    2+x

    Consider first

    lim

    > F 1

    (2 ! >)K

    2(1! >)

    0

    12 45=

    lim

    > F1

    (2 ! >)

    2(1! > )!1+ 1 +B

    (1! > )

    (2! > )2

    0

    123

    45

    1

    2?

    @E

    AE

    B

    CE

    DE

    where B = 16(1+x)/x2. Since >F1, we can expand the square root term in a

    binomial series, so that

    lim> F 1

    (2 ! >)K2(1! >)

    012

    345= lim

    > F1

    (2 ! >)2(1! > )

    !1+ 1 +12

    B (1! > )(2 ! > )2

    ! Order(1 ! > )2012

    345

    ?@A

    BCD

    =lim

    > F 1

    B

    4(2 ! > )=

    B

    4 = 4

    1+x

    x2

    Thuslim

    > F1

    (2 ! > )K

    2(1! >)

    0

    123

    45

    1+x

    2+x

    =#."

    %/$

    41+x

    x2

    1+x

    2+x

    Next consider, using Eq. (7-58)

    lim

    > F 1

    1

    L

    "#

    $%

    1+ x

    2+x

    =lim

    > F1

    (2 ! > )K

    2(1! >)

    0

    123

    45

    1/(2+ x)

    (2! >)

    2(1! >)K +1

    0

    123

    45

    1

    2

    + 1

    2(2 ! > )K +10

    134

    1

    2?

    @E

    AE

    B

    CE

    D

    From the above result, the first square root term is

    120

    453(2->)

    2(1->)K + 1

    1

    2 =

    120

    453

    41+x

    x2+ 1

    1

    2 =

    #."

    %/$x2+ 4x + 4

    x2

    1

    2 =

    x + 2

    x

    From the expression for K in Eq. (7-55), we have thatlim

    > F 1K = 0, so that

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    62/116

    9

    lim

    > F 1

    1

    2(2 ! > )K +10

    134

    1

    2

    = 1 Thus

    lim> F 1

    (2 ! > )2(1! > )

    K +1012

    345

    1

    2+ 1

    2(2 ! >)K +10

    134

    1

    2

    ?

    @E

    AE

    B

    C

    DE

    = x + 2x

    + 1 = 2(1 + x)x

    Combining the above results yields

    lim

    > F 1

    (2! > )K

    2(1! > )L

    0

    123

    45

    1+x

    2+x

    =#."

    %/$

    41+x

    x2

    1+x

    2+x

    #."

    %/$

    41+x

    x2

    1

    2+x

    2(1 + x)

    x =

    2

    x

    so that

    lim

    > F1 M1+x

    opt =W1/2

    QI2 2

    x

    7-16. Using H'p(f) = 1 from Eq. (7-69) for the impulse input and Eq. (7-66) for the

    raised cosine output, Eq. (7-41) yields

    I2= Hout'

    (

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    63/116

    10

    Use Eq. (7-42) to find I3:

    I3= Hout'

    (

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    64/116

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    65/116

    12

    lim

    > F 1K =

    lim

    > F1 !1+ 1+16

    1+x

    x2"#

    $%

    1! >

    (2 ! >) 20

    123

    45

    1

    2?

    @E

    AE

    B

    CE

    DE

    = -1 + 1 = 0

    Also

    lim

    > F 1(1! >) = 0. Therefore from Eq. (7-58)

    lim

    > F 1L =

    lim

    > F1

    2(1! >)

    (2 ! > )K

    0

    123

    45

    1/(1+ x)

    AE@E?

    DECEB

    120

    453(2->)

    2(1->)K + 1

    1

    2+ 1

    2+x

    1+x

    Expanding the square root term in K yields

    lim

    > F 1

    2 ! >

    1! >K =

    lim

    > F1

    2! >

    1 ! >

    "

    #. $

    %/ !1+ 1+

    16

    2

    1 + x

    x 2"#

    $%

    1! >

    (2 ! > ) 2+order(1! >) 2

    0

    123

    45

    ?@

    A

    BC

    D

    =lim

    > F 1

    8(1 + x)

    x2

    1

    2 ! >

    0

    123

    45=

    8(1+x)

    x2

    Therefore

    lim

    > F 1

    L =

    1

    20

    4

    532x2

    8(1+x)

    1/(1+x)

    AE

    @E?

    DE

    CEB

    1

    20

    4

    534(1+x)

    x2 + 1

    1

    2+ 1

    2+x

    1+x

    =120

    4532x2

    8(1+x)

    1/(1+x)

    AE@E?

    DECEBx+2

    x+ 1

    2+x

    1+x

    = (1+x)#."

    %/$2

    x

    x

    1+x

    7-21. (a) First we need to find L and L'. With x = 0.5 and >= 0.9, Eq. (7-56) yields K =

    0.7824, so that from Eq. (7-58) we have L = 2.89. With H= 0.1, we have >' = >(1 -

    H) = 0.9

    >= 0.81. Thus L' = 3.166 from Eq. (7-80). Substituting these values into

    Eq. (7-83) yields

    y(H) = (1 + H)#."

    %/$1

    1 - H

    2+x

    1+x

    L'

    L = 1.1

    #."

    %/$1

    .9

    5/3

    3.166

    2.89 = 1.437

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    66/116

    13

    Then 10 log y(H) = 10 log 1.437 = 1.57 dB

    (b) Similarly, for x = 1.0, >= 0.9, and H= 0.1, we have L = 3.15 and L' = 3.35, so

    that

    y(H) = 1.1#."

    %/$1

    .9

    3/2

    3.35

    3.15 = 1.37

    Then 10 log y(H) = 10 log 1.37 = 1.37 dB

    7-22. (a) First we need to find L and L'. With x = 0.5 and >= 0.9, Eq. (7-56) yields K =

    0.7824, so that from Eq. (7-58) we have L = 2.89. With H= 0.1, we have >' = >(1 -

    H) = 0.9>= 0.81. Thus L' = 3.166 from Eq. (7-80). Substituting these values into

    Eq. (7-83) yields

    y(H) = (1 + H)#."

    %/$1

    1 - H

    2+x

    1+x

    L'

    L = 1.1

    #."

    %/$1

    .9

    5/3

    3.166

    2.89 = 1.437

    Then 10 log y(H) = 10 log 1.437 = 1.57 dB

    (b) Similarly, for x = 1.0, >= 0.9, and H= 0.1, we have L = 3.15 and L' = 3.35, so

    that

    y(H) = 1.1#."

    %/$1

    .9

    3/2

    3.35

    3.15 = 1.37

    Then 10 log y(H) = 10 log 1.37 = 1.37 dB

    7-23. Consider using a Si JFET with Igate= 0.01 nA. From Fig. 7-14 we have that +=

    0.3 for >= 0.9. At += 0.3, Fig. 7-13 gives I2= 0.543 and I3= 0.073. Thus from

    Eq. (7-86)

    WJFET=1

    B

    2(.01nA )

    1.6 8 10!19C+

    4(1.388 10 !23 J / K)(300K)

    (1.6 8 10!19C)2105 I

    0

    123

    450.543

    +1

    B

    4(1.38 8 10!23 J/ K)(300 K)(.7)

    (1.6 8 10!19 C)2 (.005 S)(10 5 I) 20

    123

    450.543

    +2((10pF)

    1.6 8 10!19 C01

    34

    2 4(1.38 8 10!23 J / K)(300K)(.7)

    (.005S)0.073 B

    or

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    67/116

    14

    WJFET73.518 1012

    B+ 0.026B

    and from Eq. (7-92) WBP=3.39 8 1013

    B+ 0.0049B

    7-24. We need to find bonfrom Eq. (7-57). From Fig. 7-9 we have Q = 6 for a 10-9

    BER. To evaluate Eq. (7-57) we also need the values of W and L. With >= 0.9,

    Fig. 7-14 gives += 0.3, so that Fig. 7-13 gives I2= 0.543 and I3= 0.073. Thus

    from Eq. (7-86)

    W =3.518 1012

    B+ 0.026B = 3.518105+ 2.68105= 6.18105

    Using Eq. (7-58) to find L yields L = 2.871 at >= 0.9 and x = 0.5. Substitutingthese values into eq. (7-57) we have

    bon= (6)5/3(1.6810-19/0.7) (6.18105).5/3(0.543)1/1.52.871 = 7.97810-17J

    Thus Pr= bonB = (7.97810-17J)(107b/s) = 7.97810-10W

    or

    Pr(dBm) = 10 log 7.97810-10= -61.0 dBm

    7-25. From Eq. (7-96) the difference in the two amplifier designs is given by

    JW =1

    Bq22kBT

    Rf I2= 3.528106for I2= 0.543 and >= 0.9.

    From Eq. (7-57), the change in sensitivity is found from

    10 log120

    453WHZ+ JW

    WHZ

    x

    2(1+x)

    = 10 log120

    4531.0 + 3.52

    1.0

    .5

    3

    = 10 log 1.29 = 1.09 dB

    7-26. (a) For simplicity, let

    D = M2+x#."

    %/$9

    h: I2 and F =

    Q

    M#."

    %/$9

    h:

    so that Eq. (7-54) becomes, for >= 1,

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    68/116

    15

    b = F[ ](Db + W)1/2+ W1/2

    Squaring both sides and rearranging terms gives

    b2

    F2 - Db - 2W = 2W1/2

    (Db + W)1/2

    Squaring again and factoring out a "b2" term yields

    b2- (2DF2)b + (F4D2- 4WF2) = 0

    Solving this quadratic equation in b yields

    b =1

    2[ ]2DF2 4F4D2- 4F4D2+ 16WF2 = DF2+ 2F W

    (where we chose the "+" sign) =h:9

    #."

    %/$

    MxQ2I2+2Q

    MW1/2

    (b) With the given parameter values, we have

    bon= 2.286810-19 39.1M0.5

    +1.78 104

    M

    "

    #. $

    %

    The receiver sensitivity in dBm is found from

    Pr= 10 log bon(508106 b / s )

    Representative values of Prfor several values of M are listed in the table below:

    M Pr(dBm) M Pr(dBm)

    30 - 50.49 80 -51.92

    40 -51.14 90 -51.94

    50 -51.52 100 -51.93

    60 -51.74 110 -51.90

    70 -51.86 120 -51.86

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    69/116

    16

    7-27. Using Eq. (E-10) and the relationship

    1

    1+ x

    a

    "#

    $%

    2 dx0

    &

    ' =(a2

    from App. B, we have from Eq. (7-97)

    BHZ=1

    (AR) 2

    (AR)2

    1+ (2(RC)2 f2

    0

    &

    ' df=(2

    1

    2(RC =

    1

    4RC

    where H(0) = AR. Similarly, from Eq. (7-98)

    BTZ

    =1

    1

    1

    1+ 2(RCA

    "#

    $%

    2

    f2

    0

    &

    ' df=

    (

    2

    A

    2(RC =

    A

    4RC

    7-28. To find the optimum value of M for a maximum S/N, differentiate Eq. (7-105)

    with respect to M and set the result equal to zero:

    d(S/N)

    dM =

    (Ipm)2M

    2q(Ip+ID)M2+x B +4kBTB

    ReqFT

    -q(Ip+ID) (2+x) M1+x B (Ipm)2M2

    120

    453

    2q(Ip+ID)M2+x B +4kBTB

    ReqFT

    2 = 0

    Solving for M,

    M2+x

    opt =4kBTBFT/Req

    q(Ip+ID)x

    7-29. (a) For computational simplicity, let K = 4kBTBFT/Req; substituting Moptfrom

    Problem 7-28 into Eq. (7-105) gives

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    70/116

    17

    S

    N =

    1

    2(Ipm)2M

    2

    opt

    2q(Ip+ID)M2+x

    optB + KB

    =

    1

    2(Ipm)2

    120

    453K

    q(Ip+ID)x

    2

    2+x

    2q(Ip+ID)K

    q(Ip+ID)xB + KB

    =xm2I

    2

    p

    2B(2+x) [ ]q(Ip+ID)x2/(2+x)#

    ."

    %/$Req

    4kBTFT

    x/(2+x)

    (b) If Ip>> ID, then

    S

    N =

    xm2I2p

    2B(2+x) ( )qx2/(2+x)

    I2/(2+x)

    p

    #."

    %/$Req

    4kBTFT

    x/(2+x)

    =m2

    2Bx(2+x)1220

    4553

    ( )xIp

    2(1+x)

    q2(4kBTFT/Req)x

    1/(2+x)

    7-30. Substituting Ip= R0Printo the S/N expression in Prob. 7-29a,

    S

    N =

    xm2

    2B(2+x)

    ( )R0Pr

    2

    [ ]q(R0Pr+ID)x2/(2+x)#

    ."

    %/$Req

    4kBTFT

    x/(2+x)

    =(0.8)2 (0.5A / W )2 P

    r2

    2(5 8106 / s) 3[1.6 810!19 C(0.5Pr+10

    !8 )A]2 / 3104 I / J

    1.656 8 10!20"

    #. $

    %

    1 / 3

    =1.5308 1012 P

    r2

    0.5Pr+ 10

    !8( )2 / 3 where Pris in watts.

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    71/116

    18

    We want to plot 10 log (S/N) versus 10 logPr

    1 mW . Representative values are

    shown in the following table:

    Pr (W) Pr (dBm) S/N 10 log (S/N) (dB)

    2810-9 - 57 1.237 0.92

    4810-9 - 54 4.669 6.69

    1810-8 - 50 25.15 14.01

    4810-8 - 44 253.5 24.04

    1810-7 - 40 998.0 29.99

    1810-6 - 30 2.48104 43.80

    1810-5 - 20 5.28105 57.18

    1810-4 - 10 1.138107 70.52

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    72/116

    1

    Problem Solutions for Chapter 8

    8-1. SYSTEM 1: From Eq. (8-2) the total optical power loss allowed between the light

    source and the photodetector is

    PT= PS- PR = 0 dBm - (-50 dBm) = 50 dB

    = 2(lc) + !fL + system margin = 2(1 dB) + (3.5 dB/km)L + 6 dB

    which gives L = 12 km for the maximum transmission distance.

    SYSTEM 2: Similarly, from Eq. (8-2)

    PT= -13 dBm - (-38 dBm) = 25 dB = 2(1 dB) + (1.5 dB/km)L + 6 dB

    which gives L = 11.3 km for the maximum transmission distance.

    8-2. (a) Use Eq. (8-2) to analyze the link power budget. (a) For thepin photodiode,

    with 11 joints

    PT= PS- PR= 11(lc) + !fL + system margin

    = 0 dBm - (-45 dBm) = 11(2 dB) + (4 dB/km)L + 6 dB

    which gives L = 4.25 km. The transmission distance cannot be met with these

    components.

    (b) For the APD

    0 dBm - (-56 dBm) = 11(2 dB) + (4 dB/km)L + 6 dB

    which gives L = 7.0 km. The transmission distance can be met with these

    components.

    8-3. From g(t) = ( )1 - e-2"Bt u(t) we have

    #$

    %&

    1 - e-2"Bt10

    = 0.1 and #$

    %&

    1 - e-2"Bt90

    = 0.9

    so that

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    73/116

    2

    e-2"Bt10

    = 0.9 and e-2"Bt90

    = 0.1

    Then

    e2"Btr

    = e2"B(t90-t10)

    =.9

    .1

    = 9

    It follows that

    2"Btr= ln 9 or tr=ln 9

    2"B =

    0.35

    B

    8-4. (a) From Eq. (8-11) we have

    1

    2"' exp#(

    ($

    %))&

    -

    t2

    1/2

    2'2 =1

    21

    2"' which yields t1/2= (2 ln 2)1/2'

    (b) From Eq. (8-10), the 3-dB frequency is the point at which

    G(*) =1

    2 G(0), or exp

    +,-

    ./0

    -(2"f3dB)2'2

    2 =

    1

    2

    Using 'as defined in Eq. (8-13), we have

    f3dB=(2 ln 2)1/2

    2"' =

    2 ln 2

    "tFWHM =

    0.44

    tFWHM

    8-5. From Eq. (8-9), the temporal response of the optical output from the fiber is

    g(t) =1

    2"'

    exp

    #

    ($

    %

    )&

    -t2

    2'2

    If1eis the time required for g(t) to drop to g(0)/e, then

    g(1e) =1

    2"' exp

    #($

    %)&

    -1e2

    2'2 =

    g(0)

    e =

    1

    2"'e

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    74/116

    3

    from which we have that 1e= 2 '. Since teis the full width of the pulse at the

    1/e points, then te = 21e= 2 2 '.

    From Eq. (8-10), the 3-dB frequency is the point at which

    G(f3dB) = 12 G(0). Therefore with '= te/(2 2 )

    G(f3dB) =1

    2" exp

    +,-

    ./0

    -1

    2(2"f3dB')2 =

    1

    2

    1

    2"

    Solving for f3dB:

    f3dB=2 ln 2

    2"'

    =2 ln 2

    2"

    2 2

    te

    =0.53

    te

    8-6. (a) We want to evaluate Eq. (8-17) for tsys.

    Using Dmat= 0.07 ns/(nm-km), we have

    tsys= 234

    567

    (2)2+ (0.07)2(1)2(7)2++,-

    ./0440(7)0.7

    800

    2

    ++,-

    ./0350

    90

    2 1/2

    = 4.90 ns

    The data pulse width is Tb=

    1

    B =

    1

    90 Mb/s = 11.1 ns

    Thus 0.7Tb= 7.8 ns > tsys, so that the rise time meets the NRZ data requirements.

    (b) For q = 1.0,

    tsys= 234

    567

    (2)2+ (0.49)2++,-

    ./0440(7)

    800

    2

    ++,-

    ./0350

    90

    2 1/2

    = 5.85 ns

    8-7. We want to plot the following 4 curves of L vs B =1

    Tb :

    (a) Attenuation limit

    PS- PR= 2(lc) + !fL + 6 dB, where PR= 9 log B - 68.5

    so that L = (PS 9 log B + 62.5 - 2lc)/!f

    (b) Material dispersion

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    75/116

    4

    tmat= Dmat'8L = 0.7Tb or

    L =0.7Tb

    Dmat'8=

    0.7

    BDmat'8=

    104

    B (with B in Mb/s)

    (c) Modal dispersion (one curve for q = 0.5 and one for q = 1)

    tmod =0.440L

    q

    800 =

    0.7

    B or L =

    +,-

    ./0

    #($

    %)&800

    0.440.7

    B

    1/q

    With B in Mb/s, L = 1273/B for q =1, and L = (1273/B)2for q = .5.

    8-8. We want to plot the following 3 curves of L vs B =1

    Tb :

    (a) Attenuation limit

    PS- PR= 2(lc) + !fL + 6 dB, where PR= 11.5 log B - 60.5, PS= -13 dBm, !f=

    1.5 dB/km, and lc= 1 dB,

    so that L = (39.5 - 11.5 log B)/1.5 with B in Mb/s.

    (b) Modal dispersion (one curve for q = 0.5 and one for q = 1)

    tmod =0.440Lq

    800 =

    0.7

    B or L =

    +,-

    ./0

    #($

    %)&800

    0.440.7

    B

    1/q

    With B in Mb/s, L = 1273/B for q =1, and L = (1273/B)2for q = .5.

    8-9. The margin can be found from

    PS- PR= lc+ 49(lsp) + 50!f+ noise penalty + system margin

    -13 - (-39) = 0.5 + 49(.1) + 50(.35) + 1.5 + system margin

    from which we have

    system margin = 1.6 dB

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    76/116

    5

    8-10. Signal bits

    8-11. The simplest method is to use an exclusive-OR gate (EXOR), which can be

    implemented using a single integrated circuit. The operation is as follows: when

    the clock period is compared with the bit cell and the inputs are not identical, the

    EXOR has a high output. When the two inputs are identical, the EXOR output is

    low. Thus, for a binary zero, the EXOR produces a high during the last half of the

    bit cell; for a binary one, the output is high during the first half of the bit cell.

    A B C

    L L L

    L H H

    H L H

    H H L

    1 0 1 1 1 1 0 0 100 1Signal bits

    Baseband (NRZ-L) data

    Clock signal

    Optical Manchester

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    77/116

    6

    8-12.

    8-13.

    Original 010 001 111 111 101 000 000 001 111 110

    code

    3B4B 0101 0011 1011 0100 1010 0010 1101 0011 1011 1100

    encoded

    8-14. (a) For x = 0.7 and with Q = 6 at a 10-9BER,

    Pmpn= -7.94 log (1 - 18k2"4h4) where for simplicity h = BZD'8

    NRZ data

    Freq. A

    Freq. B

    PSK data

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    78/116

    7

    (b) With x = 0.7 and k = 0.3, for an 0.5-dB power penalty at

    140 Mb/s = 1.4910-4b/ps [to give D in ps/(nm.km)]:

    0.5 = -7.94 log {1 - 18(0.3)2["(1.4910-4)(100)(3.5)]4D4}

    or

    0.5 = -7.94 log {1 - 9.097910-4D4} from which D = 2 ps/(nm.km)

    B (Mb/s) D [ps/(nm.km)]

    140 2

    280 1

    560 0.5

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    79/116

    1

    Problem Solutions for Chapter 9

    9-1.

    9-2.

    Received optical power (dBm)

    0 4 8 12 16

    58

    54

    50

    CNR

    (dB)

    RIN limit

    Thermal noise

    limit

    Quantum

    Noise

    limit

    f1 f2 f3 f4 f5

    !

    Transmissionsystem

    Triple-beatproducts

    2-tone3rd order

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    80/116

    2

    9-3. The total optical modulation index is

    m =

    "#$

    %&'

    (i

    m2

    i

    1/2

    = 30(.03)2+ 30(.04)

    2[ ]1 / 2

    = 27.4 %

    9-4 The modulation index is m =

    "##$

    %&&'

    (i=1

    120

    (.023)21/2

    = 0.25

    The received power is

    P = P0 2(lc) - )fL = 3 dBm - 1 dB - 12 dB = -10 dBm = 100W

    The carrier power is

    C =1

    2(mR0P) 2=

    1

    2(15*10

    +6A) 2

    The source noise is, with RIN = -135 dB/Hz = 3.162*10-14/Hz,

    < >i2

    source

    = RIN (R0P)2 B = 5.69*10-13A2

    The quantum noise is

    < >i2Q = 2q(R0P + ID)B = 9.5*10-14A2

    The thermal noise is

    < >i2

    T =

    4kBT

    Req Fe= 8.25*10-13

    A2

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    81/116

    3

    Thus the carrier-to-noise ratio is

    C

    N =

    1

    2(15 *10+6 A)2

    5.69*10+13

    A2+ 9.5 *10

    +14A

    2+8.25 *10

    +13A

    2 = 75.6

    or, in dB, C/N = 10 log 75.6 = 18.8 dB.

    9-5. When an APD is used, the carrier power and the quantum noise change.

    The carrier power is

    C = 12(mR0MP) 2= 1

    2(15 *10+5 A) 2

    The quantum noise is

    < >i2Q = 2q(R0P + ID)M2F(M)B = 2q(R0P + ID)M2.7B = 4.76*10-10A2

    Thus the carrier-to-noise ratio is

    C

    N =

    12

    (15 *10 +5 A)2

    5.69*10+13 A 2 + 4.76* 10+11 A2 +8.25 *10+13A2= 236.3

    or, in dB,C

    N = 23.7 dB

    9-6. (a) The modulation index is m =

    "

    ##$

    %

    &&'

    (

    i=1

    32

    (.044)21/2

    = 0.25

    The received power is P = -10 dBm = 100W

    The carrier power is

    C =1

    2(mR0P) 2=

    1

    2(15*10+6 A) 2

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    82/116

    4

    The source noise is, with RIN = -135 dB/Hz = 3.162*10-14/Hz,

    < >i2source = RIN (R0P)2 B = 5.69*10-13A2

    The quantum noise is

    < >i2Q = 2q(R0P + ID)B = 9.5*10-14A2

    The thermal noise is

    < >i2T =4kBT

    Req Fe= 8.25*10-13A2

    Thus the carrier-to-noise ratio is

    C

    N =

    1

    2(15 *10+6 A)2

    5.69*10+13

    A2+ 9.5 *10

    +14A

    2+8.25 *10

    +13A

    2 = 75.6

    or, in dB, C/N = 10 log 75.6 = 18.8 dB.

    (b) When mi= 7% per channel, the modulation index is

    m =

    "##$

    %&&'

    (i=1

    32

    (.07)21/2

    = 0.396

    The received power is P = -13 dBm = 50W

    The carrier power is

    C = 12(mR0P) 2=

    1

    2(1.19*10

    +5A) 2= 7.06*10-11A2

    The source noise is, with RIN = -135 dB/Hz = 3.162*10-14/Hz,

    < >i2source = RIN (R0P)2 B = 1.42*10-13A2

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    83/116

    5

    The quantum noise is

    < >i2Q = 2q(R0P + ID)B = 4.8*10-14A2

    The thermal noise is the same as in Part (a).

    Thus the carrier-to-noise ratio is

    C

    N =

    7.06*10+11A 2

    1.42* 10+13 A 2 +4.8 *10+14A 2 +8.25 *10+13 A2= 69.6

    or, in dB, C/N = 10 log 69.6 = 18.4 dB.

    9-8. Using the expression from Prob. 9-7 with !,-= 0.05, f-= 0.05, and !,= f = 10

    MHz, yields

    RIN(f) =4R1R2

    .

    !,f2+ !,2

    "$

    %'

    1 + e-4.!,-

    - 2 e-2.!,-

    cos(2.f-)

    =4R1R2

    . 1

    20 MHz(.1442)

    Taking the log and letting the result be less than -140 dB/Hz gives

    -80.3 dB/Hz + 10 log R1R2< -140 dB/Hz

    If R1= R2then 10 log R1R2= 20 log R1 < -60 dB

    or 10 log R1= 10 log R2< -30 dB

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    84/116

    1

    Problem Solutions for Chapter 10

    10-1. In terms of wavelength, at a central wavelength of 1546 nm a 500-GHz channel

    spacing is

    !" ="2

    c

    !f = 1546

    nm( )2

    3 # 108m / s

    500 # 109s

    $1 =4nm

    The number of wavelength channels fitting into the 1536-to-1556 spectral band

    then is

    N = (1556 1536 nm)/4 nm = 5

    10-2. (a) We first find P1by using Eq. (10-6):

    10 log 200

    W

    P1

    %

    &' (

    )*=2.7dB yields P1 = 10

    (log

    200$0.27 )=107.4W

    Similarly, P2

    =10(log 200$0.47) =67.8W

    (b) From Eq. (10-5): Excess loss = 10

    log

    200

    107.4 + 67.8

    %&

    ()=

    0.58

    dB

    (c) P1P

    1+ P

    2

    =107.4175.2

    =61% and P2P

    1+P

    2

    = 67.8175.2

    =39%

    10-3. The following coupling percents are are realized when the pull length is stopped at

    the designated points:

    Coupling percents from input fiber to output 2

    Points A B C D E F

    1310 nm 25 50 75 90 100 0

    1540 nm 50 88 100 90 50 100

    10-4. From A out =s11Ain +s12Bin and Bout = s21Ain + s22 Bin = 0 , we have

    Bin =$s21

    s22A in and

    Aout

    = s11$

    s12

    s21

    s22

    +

    ,-.

    /0A

    in

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    85/116

    2

    Then

    T = Aout

    Ain

    2

    = s11$s12s21

    s22

    2

    and R = B

    in

    Ain

    2

    = s

    21

    s22

    %

    &' (

    )* s

    11$

    s12

    s21

    s22

    %

    &' (

    )*

    2

    10-5. From Eq. (10-18)

    P2

    P0=sin

    20.4z( )exp$0.06z( ) =0.5

    One can either plot both curves and find the intersection point, or solve the

    equation numerically to yield z = 2.15 mm.

    10-6. Since 1z2n , then for n

    A> n

    Bwe have 3

    A< 3

    B. Thus, since we need to have

    3ALA= 3BLB, we need to have LA> LB.

    10-7. From Eq. (10-6), the insertion loss LIjfor output port j is

    LIj

    = 10 log P

    i $in

    Pj $out

    %

    &'

    (

    )*

    Let

    a j = Pi $in

    Pj$ out=10

    L Ij /10

    , where the values of LIjare given in Table P10-7.

    Exit port no. 1 2 3 4 5 6 7

    Value of aj 8.57 6.71 5.66 8.00 9.18 7.31 8.02

    Then from Eq. (10-25) the excess loss is

    10

    log

    Pin

    Pj4

    %

    &'(

    )*=10 log

    Pin

    Pin

    1

    a1

    + 1

    a2

    +... + 1

    an

    %

    &' (

    )*

    %

    &

    '

    ''

    (

    )

    *

    **

    = 10

    log

    1

    0.95

    %& () = 0.22

    dB

    10-8. (a) The coupling loss is found from the area mismatch between the fiber-core

    endface areas and the coupling-rod cross-sectional area. If a is the fiber-core radius

    and R is the coupling-rod radius, then the coupling loss is

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    86/116

    3

    Lcoupling= 10 logPoutPin

    = 10 log75a2

    5R2 = 10 log

    7(25)2

    (150)2 = -7.11 dB

    (b) Similarly, for the linear-plate coupler

    Lcoupling= 10 log75a2

    l6w = 10 log

    75(25)2

    800(50) = -4.64 dB

    10-9. (a) The diameter of the circular coupling rod must be 1000 m, as shown in the

    figure below. The coupling loss is

    Lcoupling= 10 log

    75a2

    5R2 = 10 log7(100)2

    (500)2 = -5.53 dB

    (b) The size of the plate coupler must be 200 m by 2600 m.

    The coupling loss is 10 log

    75(100)2

    200(2600) = -3.74 dB

    10-10. The excess loss for a 2-by-2 coupler is given by Eq. (10-5), where P1= P2for a 3-

    dB coupler. Thus,

    200 m

    400

    m

    Coupling rod

    diameter

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    87/116

    4

    Excess loss = 10 log P

    0

    P1

    +P2

    %

    &' (

    )*= 10 log

    P0

    2P1

    %

    &' (

    )* = 0.1dB

    This yields

    P1

    = P0

    2%&

    ()

    10 0.01 =0.977P02

    %&

    ()

    Thus the fractional power traversing the 3-dB coupler is FT= 0.977.

    Then, from Eq. (10-27),

    Total loss = $10 log log F

    T

    log 2$1

    %

    &' (

    )log N = $10 log

    log 0.977

    log 2$ 1

    %

    &' (

    )log 2

    n 730

    Solving for n yields

    n7 $3

    log 2log 0.977

    log 2$ 1

    %

    &' (

    )

    =9.64

    Thus, n = 9 and N =2n =2

    9 = 512

    10-11. For details, see Verbeek et al., Ref. 34, p. 1012

    For the general case, from Eq. (10-29) we find

    M

    11= cos

    23d( ) 8 cos

    k!L / 2( )+ j

    sin

    k!L / 2( )

    M

    12=M

    21=j sin 23d( )8 cos k!L / 2( )

    M 22 =cos 23d( )8 cos k!L / 2( )$j sin k!L / 2( )

    The output powers are then given by

    Pout ,1

    = cos2 23d( )8 cos2 k!L / 2( )+ sin2 k!L / 2( )[ ]Pin,1

    +sin 2 23d( )8 cos2 k!L / 2( )[ ]Pin,2

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    88/116

    5

    Pout ,2

    = sin2 23d( ) 8cos2 k!L / 2( )[ ]Pin,1

    + cos 2 23d( )8 cos2 k!L / 2( ) + sin2 k!L / 2( )[ ]Pin,2

    10-12. (a) The condition !9= 125 GHz is equivalent to having !"= 1 nm. Thus the

    other three wavelengths are 1549, 1550, and 1551 nm.

    (b) From Eqs. (10-42) and (10-43), we have

    !L1 = c

    2neff

    (2!9)=0.4 mm and

    !L3 = c

    2neff

    !9=0.8mm

    10-13. An 8-to-1 multiplexer consists of three stages of 2# 2MZI multiplexers. The first

    stage has four 2# 2MZIs, the second stage has two, and the final stage has one

    2# 2MZI. Analogous to Fig. 10-14, the inputs to the first stage are (from top to

    bottom) 9, 9+ 4!9, 9+ 2!9, 9+ 6!9, 9+ !9, 9+ 5!9, 9+ 3!9, 9+ 7!9.

    In the first stage

    !L1 = c

    2neff(4!9)= 0.75mm

    In the second stage

    !L2 = c2neff(2!9)

    =1.5

    mm

    In the third stage

    !L 3 = c

    2neff

    (!9)=3.0

    mm

    10-14. (a) For a fixed input angle :, we differentiate both sides of the grating equation toget

    cos ;d;=k

    n'< d" or

    d;d"

    =k

    n'

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    89/116

    6

    Solving this fork

    n'< and substituting into the

    d;d"

    equation yields

    d;

    d" =

    2 sin ;

    "cos ; =

    2 tan ;

    "

    (b) For S = 0.01,

    tan ;=,-+

    /0.S"

    2!"(1+m)

    1/2

    =0.01(1350)

    2(26)(1+3)

    +

    ,-.

    /0

    1/ 2

    = 0.2548

    or ;= 14.3

    10-15. For 93% reflectivity

    R =tanh2(3L) = 0.93 yields 3L = 2.0, so that L = 2.7 mm for 3= 0.75 mm-1.

    10-16. See Bennion et al., Ref. 42, Fig. 2a.

    10-17. Derivation of Eq. (10-49).

    10-18. (a) From Eq. (10-45), the grating period is

    < = "uv

    2 sin;

    2

    = 244nm

    2 sin(13.5)=

    244

    2(0.2334)nm =523nm

    (b) From Eq. (10-47), "Bragg

    = 2 =1$1/ 2 =0.827 , we have from Eq. (10-51),

    3 =5?n>

    "Bragg

    =5 2.5 # 10 $4( )(0.827)

    1.547 # 10$4 cm=4.2cm

    $1

    (d) From Eq. (10-49), !" = 1.547m( )

    2

    5(1.48)500 m

    (2.1)2

    +52[ ]1 / 2

    = 3.9 nm

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    90/116

    7

    (e) From Eq. (10-48), R max = tanh2(3L) =tanh

    2(2.1) =(0.97)

    2=94%

    10-19. Derivation of Eq. (10-55).

    10-20. (a) From Eq. (10-54),

    !L =m" 0n c

    =1181.554m

    1.451= 126.4m

    (b) From Eq. (10-57),

    !9 = x

    L f

    nscd

    m"2

    nc

    ng

    = 25m

    9.36# 103 m

    1.453(3 # 10 8 m/s)(25 # 10 $6 m)

    118(1.554 # 10 $6 m)2

    1.451

    1.475=100.5GHz

    !" ="2

    c!9 =

    (1.554 # 10$6 m)2

    3 # 108 m / s100.5GHz =0.81nm

    (c) From Eq. (10-60),

    !9FSR = c

    n g!L=

    3 # 108 m / s

    1.475(126.4m)= 1609GHz

    Then

    !" =

    "2

    c!9FSR =

    (1.554 # 10$6 m)2

    3 # 108m / s

    1609GHz =12.95nm

    (d) Using the conditions

    sin;i= ;

    i= 2(25m)

    9380m=5.33 # 10 $3 radians

    and

    sin;o = ;o =21.3 # 10$3

    radians

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    91/116

    8

    then from Eq. (10-59),

    !9FSR = c

    ng [!L + d; i +;o( )]

    = 3 # 108 m / s

    1.475 (126.4 # 10$6 m) + (25 # 10$6 m) 5.33 +21.3( ) # 10$3[ ]=1601GHz

    10-21. The source spectral width is

    !"signal

    ="2 9

    c=

    1550

    nm( )2 (1.25 # 10 9

    s$1)

    (3 # 10 8

    m/s) 109

    nm / m( )=1 # 10$2

    nm

    Then from Eq. (10-61)

    !"tune ="!neff

    neff= 1550nm( ) 0.5%( ) =7.75nm

    Thus, from Eq. (10-63)

    N = !" tune10 " signal

    = 7.75nm

    10 0.01nm( )= 77

    10-22. (a) From Eq. (10-64), the grating period is

    < ="Bragg

    2neff=

    1550 nm

    2 3.2( )= 242.2nm

    (b) Again, from the grating equation,

    !< = !"

    2neff

    =2.0nm

    2 3.2( )= 0.3nm

    10-23. (a) From Eq. (10-43)

    !L = c

    2neff!9=

    "2

    !"

    1

    2 neff=4.0mm

    (b) !Leff =!n effL implies that !neff = 4mm

    100mm=0.04 =4%

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    92/116

    9

    10-24. For example, see C. R. Pollock, Fundamentals of Optoelectronics, Irwin, 1995,

    Fig. 15.11, p. 439.

    10-25. (a) The driving frequencies are found from

    fa =9ov a !n

    c=

    va !n

    "

    Thus we have

    Wavelength (nm) 1300 1546 1550 1554

    Acoustic

    frequency (MHz)

    56.69 47.67 47.55 47.43

    (b) The sensitivity is (4 nm)/(0.12 MHz) = 0.033 nm/kHz

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    93/116

    1

    Problem Solutions for Chapter 11

    11-1. (a) From Eq. (11-2), the pumping rate is

    Rp=

    I

    qwdL=

    100mA

    (1.6! 10"19 C)(5m)(0.5 m)(200 m)

    = 1.25 ! 1027 (electrons / cm 3) / s

    (b) From Eq. (11-8), the maximum zero-signal gain is

    g0= 0.3(1! 10 "20 m2 )(1ns) 1.25 ! 1033 (electrons/ m3) / s "

    1.0 ! 1024 / m3

    1ns

    #

    $%&

    '(

    = 750 m"1 =7.5cm"1

    (c) From Eq. (11-7), the saturation photon density is

    Nph;sat

    = 1

    0.3 (1! 10"20 m2 ) 2! 108 m / s( )(1ns)= 1.67 ! 1015 photons/ cm3

    (d) From Eq. (11-4), the photon density is

    N ph = Pin

    )v

    ghc wd( )

    = 1.32 ! 1010 photons / cm3

    11-2. Carrying out the integrals in Eq. (11-14) yields

    g0L =lnP(L)

    P(0)+

    P(L) " P(0)

    Pamp,sat

    Then with P(0) = Pin, P(L) = Pout, G = Pout/Pin, and G0 =exp g 0L( )from Eq. (11-

    10), we have

    ln G 0 =g 0L =ln G + GP

    in

    Pamp,sat

    " P

    in

    Pamp,sat

    =ln G + 1 " G( ) P

    in

    Pamp,sat

    Rearranging terms in the leftmost and rightmost parts then yields Eq. (11-15).

    11-3. Plots of amplifier gains.

  • 7/25/2019 Optical Fiber Communication Solution Manual (1)

    94/116

    2

    11-4. Let G = G0/2 and Pin =Pout/ G = 2Pout,sat / G 0 . Then Eq. (11-15) yields

    G0

    2

    =1+G

    0P

    amp.sat

    2Pout.satln 2

    Solving for Pout,satand with G0>> 1, we have

    Pout .sat

    =G

    0ln 2

    G0"2( )

    Pamp.sat *(ln 2)Pamp.sat =