Optical and Photonic Components for DWDM Optical Networks

78
7/30/2019 Optical and Photonic Components for DWDM Optical Networks http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 1/78 Optical and Photonic Components for DWDM Optical Networks Pochi Yeh University of California, Santa Barbara, California 93106  Accumux Technologies, Camarillo, CA 93012 USA July 3-4, 2003 Seoul, KOREA

Transcript of Optical and Photonic Components for DWDM Optical Networks

Page 1: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 1/78

Optical and Photonic Components

for 

DWDM Optical Networks

Pochi YehUniversity of California, Santa Barbara, California 93106

 Accumux Technologies, Camaril lo, CA 93012

USA

July 3-4, 2003Seoul, KOREA

Page 2: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 2/78

Outline

• Introduction

– Traffic Growth and Bandwidth Demand– DWDM: an economical solution

• Optical and Photonic Components

–  Active Components– Passive Components

• Recent Progresses

– Wavelength Management– Dispersion Management – CD, PMD

• Summary

Page 3: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 3/78

TRAFFIG GROWTH AND BANDWIDTH NEEDS

• Data (mostly Internet) traffic doubles every 9 to 12months

• Lighting more dark fibers is not a viable solution

• DWDM Broadband communications in single

mode fibers provide an economical solution

• Enabling Optical Components for wavelength and

dispersion management are needed

• Networks need to be flexible and scalable, andmanaged by software

Page 4: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 4/78

Evolution of DWDM

1980’s 2 channels, 1310 nm, 1550 nm

1990’s 2-8 channels w ith 200-400 GHz channel spacing

1996 16+ channels with 100-200 GHz channel spacing

1999 64+ channels with 25-50 GHz channel spacing

2002 160+ channels with 25-50 GHz channel spacing

80 nm bandwidth @ λλλλ=1550 nm is approximately 10,000 GHz

Page 5: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 5/78

120 km 120 km 120 km

Optical Amplifiers

(b) 16-wavelength WDM: 40 Gb/s

16 fibers 1 fiber 

80 regenerators 3 optical ampl if ier + DCM

(Approaching: 160 wavelengths

1,600 Gb/s)

Transmission Challenge and WDM Solution(a) Single-wavelength: 40 Gb/s (16 x 2.5 Gb/s)

MUXDEMUX

DCM

TERM TERMRPTR RPTR RPTR RPTR RPTR

80 Km 80 Km 80 Km 80 Km 80 Km 80 Km 80 Km

1550

1550

1550

1550

1550

1550

15501550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

15501550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

15501550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

15501550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

15501550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

15501550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

1550

15501550

1550

1550

1550

1550

1550

1550

1550

1550

Page 6: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 6/78

DWDM Optical Transmission System

λ1λ1λ1λ1λ3λ3λ3λ3λ5λ5λ5λ5λ7λ7λ7λ7

λ1λ1λ1λ1λ3λ3λ3λ3λ5λ5λ5λ5λ7λ7λ7λ7

λ2λ2λ2λ2λ4λ4λ4λ4λ6λ6λ6λ6λ8λ8λ8λ8

λ2λ2λ2λ2λ4λ4λ4λ4λ6λ6λ6λ6λ8λ8λ8λ8λ7λ7λ7λ7

Optical Mux Optical DeMux

OA OA

OADM

DCM

Interleaver Interleaver  

• Interleavers are essential for capacity upgrade via DWDM (e.g., 10 Gb/s

transmitter/receiver wi th channel spacing of 25 GHz)

• DCMs are essential for high speed transmission (e.g., 10 Gb/s, 40 Gb/s)

Page 7: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 7/78

DWDM System Functions

1. Generating the signals—The source, a laser, must provide stable light

within a specific, narrow bandwidth that carries the signal.

2. Combining the signals—Modern DWDM systems employ Multiplexers and

Interleavers to combine the signals. There is some inherent loss associated

with multiplexing and demultiplexing.

3. Transmitt ing the signals—The effects of crosstalk and optical signal

degradation or loss must be minimized within fiber optic transmission. Over 

a transmission link, the signals may need to be optically amplif ied, and

dispersion compensated.

4. Separating the signals—At the receiving end, the multiplexed signals mustbe separated out.

5. Receiving the signals—The demultiplexed signal is received by a

photodetector.

Page 8: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 8/78

Essential Components of DWDMOn the transmitting terminal

Lasers with precise, stable wavelengths (± 1 GHz)

Dense Optical Multiplexer-Interleaver (25 GHz)

On the link

Low loss optical fiber, Flat Gain Optical Amplif ier 

Dispersion Compensation Modules (DCM)

Optical Add/Drop Modules (OADM)

Optical Cross-Connect

On the receiving terminal

Dense Optical Demult iplexer-Interleaver 

Photodetectors

Page 9: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 9/78

Enabling Photonic Components

•  Active Components

– Transmitter/Receivers, DFB, VCSEL

–  Amplifiers, EDFA, SOA

– Modulators

– Optical Switching

• Passive Components

– Mux-Demux, Array Waveguides (AWG), TFF, Gratings

– Interleavers, Michelson, Birefringent, Mach-Zehnder 

– Dispersion Compensation Modules, DCF, Hi-Mode, FBG, GTI

– Wavelength Lockers

– PMD Compensation Modules– Optical Add-Drop Modules

– Gain Equalizers

Page 10: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 10/78

Wavelength Management• Mux/DeMux

– Thin Film Filters, 100 GHz, 50 GHz

– Gratings, 100 GHz, 50 GHz

– Fiber Bragg Gratings, 100 GHz, 50 GHz

–  Array Waveguide Gratings (AWG)

• Interleavers, 25 GHz, 12.5 GHz– Michelson Interleavers

– Mach-Zehnder Interleavers

– Birefringent Interleavers

• OADM– Thin Film Filters, 100 GHz, 50 GHz

– Fiber Bragg Gratings, 100 GHz, 50 GHz

– Fiber Grating Couplers

Page 11: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 11/78

Thin Film Interference Filtersλ1λ1λ1λ1,,,, λ2λ2λ2λ2,,,, λ3λ3λ3λ3,,,, λ4λ4λ4λ4

λ2λ2λ2λ2

λ4λ4λ4λ4

λ1λ1λ1λ1

λ3λ3λ3λ3

Loss increases with channel counts

Filter Bandwidth limited to 100 GHz

Multiple-Cavity Filters requires many many Layers

Page 12: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 12/78

 Array Waveguide GratingsPrinciple of Operation

λ1λ1λ1λ1 λ2λ2λ2λ2 λ3λ3λ3λ3 λ4λ4λ4λ4

λ1λ1λ1λ1λ2λ2λ2λ2λ3λ3λ3λ3λ4λ4λ4λ4

Grating equation:

λ=θ+∆ msind Ln

∆∆∆∆L = path differencebetween neighboring guides

d = distance between guides

m = integer 

λλλλ= wavelength

θθθθ = angle of diffraction

∆L >>λ to achieve highorder diffraction

Page 13: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 13/78

 Array Waveguide GratingsPrinciple of Operation

mN

λ=λ∆Spectral resolution:

m = Diffraction order 

N = Number of guides in the array

For ∆λ∆λ∆λ∆λ = 0.8 nm @ 1550 nm, mN must > 2000

λ=θ+∆ msind Ln

Page 14: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 14/78

 Array Waveguide Gratings

3 1-3 0

-2 5

-2 0

-1 5

-1 0

-5

0

 Adjacent Isolation Non-Adjacent Isolation

λ1  λ2 λ3 λ4 Adjacent ITU channels

Page 15: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 15/78

λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8

λ1,  λ3,  λ5,  λ7

λ2,  λ4,  λ6,  λ8

• Channel Spacing Management via Optical Interferometry (e.g.,

Michelson, Mach-Zehnder) e.g., from 25 GHz to 50 GHz, or vice versa

• Current Mux/Demux made of thin film fil ters are inadequate in high

density WDM.

• Interleavers are needed in densely populated WDM systems with 2.5

GHz, 10 GHz, and even 40 GHz transmitter/receivers

Optical Interleavers

Page 16: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 16/78

Optical Interleaversusing Birefringent Interference

 ν1 ν3 ν5 ν7

 ν2 ν4 ν6 ν8

Output

Port 1

Output

Port 2

Birefringent

Crystal

PBS

Input Beam of 

Polarized Light

L

]}L)nn(c

2cos[1{

2

1I oe − ν

π+=

eger intm,L)nn(

cm

oe

=−

= ν Network requirements:

Flat-Top passband

Steep Cut-Off 

Channel Isolation

Page 17: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 17/78

Michelson Interferometer 

• Michelson interferometer can beemployed as an opticalinterleaver

• Output intensity is an sinusoidal

function of frequency, withFSR= c/2∆L

• Output signal may change asthe laser frequency drift

Mirror 2

Mirror 1BSL2

L1

∆L=L2

– L1

]}Lc

2cos[1{

2

1I ∆ ν

π+=

 ν νν ν ν1   ν3   ν5   ν7

Page 18: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 18/78

Gires-Tournois Etalon

• Front mirror reflectivity R1

< 1

• Rear mirror reflectivity R2 = 1

• Etalon reflectivity R = 1 for all λ

• Phase shift is a periodic functionof frequency with

– FSR=c/2dn

• nd can be chosen so that FSRcoincides with ITU grids.

• Both solid and air etalon are

available

• ULE glass can be used asspacer

R 1<1 R 2 =1

d

π

0

Frequency

Page 19: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 19/78

Michelson Interferometer with GTI-mirrors

• Gires-Tournois etalons are

employed as phase dispersivemirrors

• With proper choices of the front

mirror reflectivities, flat-top

passbands can be obtained

• The cavity spacing must match

with the path difference ∆∆∆∆L

• Channel isolation of better than35dB can be achieved

BS

GTI 1

GTI 2

L2

L1

]}L

c

2cos[1{

2

1I 12 φ−φ+∆ ν

π+=

∆L=L2 – L1

 ν νν ν ν1   ν3   ν5   ν7

Page 20: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 20/78

193.10 THz193.20 THz193.30 THz

193.40 THz

193.15 THz

193.25 THz193.35 THz

193.45 THz

100 GHz

Mux

100 GHz

Mux

50 GHzInterleaver 

8 channels

@ 50 GHz spacing

Current Mux/Demuxs are limited to 100 GHz channel spacings

Interleavers are essential for capacity upgrades in DWDM

(e.g., 10 Gb/s with 25 GHz channel spacing)

Optical Interleavers

Page 21: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 21/78

193.10 THz

193.20 THz

193.30 THz

193.40 THz

193.15 THz

193.25 THz

193.35 THz

193.45 THz

100 GHz

Mux50 GHz

Interleaver 

25 GHzInterleaver 

100 GHz

Mux

193.125 THz

193.225 THz

193.325 THz

193.425 THz

193.175 THz

193.275 THz

193.375THz

193.475THz

100 GHz

Mux

100 GHz

Mux

50 GHzInterleaver 

16 channels

@ 25 GHz spacing

Optical Interleavers

Page 22: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 22/78

Flat-Top Optical Interleaver 

25 GHz

0 1 2 3 4 5 6 7 8- 5 0

- 4 5

- 4 0

- 3 5

- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

 Adjacent Channel Isolation better than 35 dB

Flat-Top passband To accommodate laser Frequency drift

Page 23: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 23/78

 Accumux Flat-Top Interleavers

Flat-Top Passbands to accommodate laser frequency dri ft

25 GHz Passbands with 35 dB channel isolations over the enti re C-band

Superior Channel Isolation to ensure low crosstalks among channels

Page 24: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 24/78

Optical Add Drop Module (OADM)

λ1λ1λ1λ1,,,, λ2λ2λ2λ2,,,, λ3λ3λ3λ3,,,, λ4λ4λ4λ4 λ1λ1λ1λ1,,,, λ2λ2λ2λ2,,,, λ3λ3λ3λ3,,,, λ4λ4λ4λ4

λ4λ4λ4λ4

Thin film filters

Frequency selective couplers

Gratings

Fixed OADM

Reconfigurable OADM

Hit-less Design

Page 25: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 25/78

Dispersion

• Dispersion is the degradation of optical signalsresulting in network transmission errors

• Uncompensated dispersion causes bit error rates

(BER) to increase to unacceptable levels

• Combating dispersion is important to current-generation (10 Gbps) networks and vital to next-

generation (40 Gbps) networks

• Two types of dispersion require compensationChromatic dispersion (CD) Polarization mode

dispersion (PMD)

Page 26: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 26/78

WDM Broadband Solutions

ITU 193.1 193.2 193.3 193.4 193.5 193.6

2.5 Gb/s transponders @ 25 GHz channel spacing

10 Gb/s transponders @ 50 GHz channel spacing

Frequency in units of THz

Page 27: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 27/78

 A Growing Optical Challenge

40 Gb/s(OC768)

10 Gb/s(OC192)

2.5 Gb/s(OC48)

1 10 100 1000Wavelengths in fiber 

Capacity

Increase

PMD, CD, CD Slope

CD, CD Slope

CD

Page 28: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 28/78

Technical Issues and Enabling Photonic

Components

• 2.5 Gb/s systems

– Need more channels w ith channel spacing as small as 12.5 GHz

– Laser frequency stabil ity must be ± GHz

– Mux – Demux becomes challenging

– Narrowband Filters, Interleavers are essential

– Narrowband filters exhibit strong dispersion

• 10 Gb/s systems

– Typical channel spacing is 50 GHz

– Laser frequency stabil ity must be ± 2 GHz

– Dispersion Compensation Modules are needed

– PMD Compensation Modules may be needed

Page 29: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 29/78

Dispersion in Single Mode Fibers

• Chromatic dispersion (CD)– Intrinsic material dispersion

– Waveguide dispersion

• Polarization mode dispersion (PMD)

– Elliptical core– Bending, twisting

– Stressed-induced birefringence

Waveguide

eff 

Material

eff  nn

dn

 

 

 

 

ω∂

∂+ 

 

 

 

ω∂

∂=ω

Page 30: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 30/78

Material dispersion in sil ica

0.5 1 1.5 2 2.51.42

1.44

1.46

1.48

0.5 1 1.5 2 2.50.67

0.68

0.69

)/( λλ+=

d dnn

cvg

Index of refraction Group velocity

)(λ= nn

Wavelength in units of µm Wavelength in units of µm

Page 31: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 31/78

Group velocity dispersion in silica SMF

1 1.2 1 .4 1 .6 1 .8 2-5 0

-2 5

0

25

50

  p  s   /  n  m

 -   k  m

Wavelength (µm)

Page 32: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 32/78

Dispersion in SMF-28

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8-40

-30

-20

-10

0

10

20

30

40Group Velocity Dispersion

Wavelength (micron)

Waveguide dispersion

Material dispersion

Material dispersion = 20 ps/nm-km @ 1550 nm

Waveguide dispersion = -3 ps/nm-km @ 1550 nm

   D   i  n

  u  n   i   t  s  o   f

  p  s   /  n  m -   k  m

Page 33: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 33/78

Dispersion of Single Mode Fibers

Legacy fibers SMF-28 has dispersion of 17 ps/nm-km @ 1550 nm

Page 34: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 34/78

Chromatic dispersion (CD) and Polarization Mode Dispersion (PMD) are

serious issues in optical networks, requiring compensation.

Dispersion causes degradation of optical signals transmitted over f iber,causing an increase in bit error rate (BER), at the intended receiver.

The effects of CD become worse as network speeds increase –

specif ically, they rise at a rate of the square of increased transmission

speed – and over longer fiber distances. CD is 16 times worse at 40Gbps than at 10 Gbps and a stunning 256 times worse at 40 Gbps than

at most current networks’ speed of 2.5 Gbps.

PMD, while only four times worse at 40 Gbps than at 10 Gbps, occurs

randomly and can severely limit the maximum f iber distance before asignal must be regenerated.

Dispersion problems in Fibers

C S

Page 35: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 35/78

Chromatic Dispersion in SMF

(Severity increases with Speed)

Input Pulses Output Pulses

Input Pulses Output Pulses

Dispersion induced 1.0 dB power penalty2.5 Gb/s 16,640 ps/nm 980 km SMF10 Gb/s 1040 ps/nm 60 km SMF40 Gb/s 65 ps/nm 4 km SMF

CD is negligible at 2.5 Gb/s (OC-48)

2.5 Gb/s

(OC-48)

10 Gb/s

(OC-192)

100 km SMF

100 km SMF

Page 36: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 36/78

Chromatic Dispersion and Compensation

DCM

Input Pulses

DCMs provide restoration of signal integrity in

optical domain, without electronic conversion

Page 37: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 37/78

New fibers: PMD < 0.5 ps/km1/2

Many installed spans: PMD > 1 - 5 ps/km1/2

Discrete in-line components: PMD ~ 0.5 - 1.0 ps

Critical to performance at 40 Gbps

Compensation required per channel

Even with modern fibers...

All in-line components add PMD

Environmental effects still present

Insurance against expensive, random outage Allows operation over more of installed fiber 

Wider adoption of 40 Gbps helps drive down cost

Polarization Mode Dispersion

Page 38: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 38/78

Polarization Mode Dispersion

T1.0)k (L*)k (D

M

1k 

2PMD <>=τ∆< ∑=

T=Bit Period, (10 ps for 10Gb/s signals)

L(k)= Fiber length of k-th segment, k = 1, 2, 3, M

DPMD

~ 1 ps/(km)1/2 (for typical installed fiber)

Max transmission length = 1600 km (2.5 Gb/s)

100 km (10 Gb/s)

7 km (40 Gb/s)

Pulse Broadening due to PMD

INPUT FIBEROUTPUT

PULSE BROADENED

∆τ∆τ∆τ∆τ

Page 39: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 39/78

Polarization Mode Dispersion

τ×β+ω∂

β∂=τ

∂+

ω∂

β∂=

τ∂

 z

 R

 z

Dynamical Equation:

τ = PMD vector in Poincare spaceβ = Birefringence vector in Poincare spaceR = 3x3 rotation matrix in Poincare space

)0(ˆ)(ˆ s R zs == Stokes vector in Poincare spaces

Page 40: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 40/78

Signal Degradation and Data Loss

• Pulse Broadening leads to a power penalty and an outage probability (or a bit-

error rate, BER) .

• 14% pulse broadening leads to an outageprobability of less than 5 minutes per year 

at a 3-dB power penalty. This translates to

14 ps for a 10 Gb/s system and 3.5 ps for a

40Gb/s system.

Page 41: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 41/78

Optical Transmission through 100 km of fiber 

(-3.50 dBm laser power)

Without DCM With Accumux DCM

Eye-diagrams obtained using a GTran 10 Gb/s @193.7 THz transmitter (with pre-chirp)

Page 42: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 42/78

Bit-Error-Rate

1.4 x 10 -9No signal100km-fibersystem, @ -

25.10dBm

Less than 10-151.4 x 10 -9100km-fiber

system, @ -23.50dBm

10-13No signal120km-fibersystem, @ -23.00dBm

With Accumux DCMWithout DCM

Note: 1 dBm = 1 mW; -20 dBm = 0.01 mW

BER obtained using a GTran 10 Gb/s @193.7 THz transmitter (with pre-chirp)

Page 43: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 43/78

-100 -50 0 50 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency in units of GHz

-100 -50 0 50 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-100 -50 0 50 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency spectrum in units of GHz

-100 -50 0 50 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pulse shapes and Eye Diagrams

Input pulses Output pulsesSpectra

Gaussian pulse shape (the minimum wave packet) is best.

Page 44: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 44/78

420 – 2,240 km

350 – 110 km

140 km

2.5 GHz

2 - 10 km28 – 140 km

Lucent ΤΤΤΤrueWave

fiber:

= 1∼5  ps/(nm*km)

1.5 - 4 km24 - 70 km

Corning LEAF fiber:

Dλ = 2∼6  ps/(nm*km)

(C-Band)

0.5 km8 km

Legacy fiber (SMF-28):

Dλ = 17  ps/(nm*km)

@ 1550 nm

40 GHz10 GHzBandwidth

Fiber 

Maximum Distance and Bandwidth

Based on 14% pulse broadening

Outage probability of less than 5 minutes per year at a 3-dB power penalty

Page 45: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 45/78

Dispersion Management

• Chromatic Dispersion in SMF

– Waveguide Dispersion

– Material Dispersion

– Dispersion Slope

• Polarization Mode Dispersion (PMD)– Core Ellipticity

– Bending and Twisting

– Stress-induced Birefringence

– Environmentally dependent - Random

Page 46: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 46/78

• GTIs

Low insertion loss, compact and robust

• Dispersion compensation f iber (DCF)

Bulky, large insertion loss, fixed compensation

• Dispersion compensation f iber Bragg grating (FBG)

Single channel per uni t, fixed compensation, cost high

• 2-Mode Fibers

Large insertion loss, fixed compensation, mode coupl ing

• Electronic Compensation – Pre-chirp, FEC, etc.

Dispersion Compensation Technologies

C ti T h l

Page 47: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 47/78

Limited compensation,concept phase

Potentially low cost andsmall size

Receiver Big Bear 

Santel

Electronic Processor Electronic

Above (except partialslope compensationAbove plus slopecompensationReceiver OLACorningOFS FitelEnhanced DCF

Large size, high loss,non-linear effects, noslope compensation

Continuous, passive,well understood, 100%market share

Receiver 

OLA

Corning

OFS Fitel

Conventional DCF

Multi-path interference,

large form factor, fixedcompensation value

Continuous, performs

slope compensation

Receiver 

OLA

LaserCommHigh-Mode FibersFixed 

Group delay rippleLow insertion loss, widetuning range, small size

Receiver 

OLA

Alcatel

JDSU

Teraxion

Fiber Bragg Gratings

High loss, difficult to

manufacture, low databandwidth

Higher channel counts,

good tuning range, tunethrough zero

Receiver 

OLA

Accumux

AvanexFujitsu

Etalon-based Tunable

WeaknessesStrengthsLocationCompanyTechnology

Compensation Technology

Chromatic Dispersion and Slope

Page 48: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 48/78

Fiber Bragg Gratings (FBG)

UV Exposure

λ1λ1λ1λ1,,,, λ2λ2λ2λ2,,,, λ3λ3λ3λ3,,,, λ4λ4λ4λ4 λ1λ1λ1λ1,,,, λ2λ2λ2λ2,,,, λ3λ3λ3λ3

λ4λ4λ4λ4 Grating Period Λ=Λ=Λ=Λ=λ4λ4λ4λ4 /2n

0 .4

x 1 04

0

1

λ4λ4λ4λ4

Index grating: n(x) = n0 + n1 cos(Kx)Bragg condition: λ4 = 2n ΛPeak reflectivity =tanh2(πn1L/λ)Stopband Width: ∆λ=λ n1/n0

Page 49: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 49/78

Chirped Index Gratings

Decreasing periods

Pulse spread due to

Group Velocity Dispersion (GVD)

Pulse compressionafter FBG

In most fibers @1550 nm, short wavelength light tends to travel faster 

λ3λ3λ3λ3

λ2λ2λ2λ2

λ1λ1λ1λ1

λ3λ3λ3λ3 λ1λ1λ1λ1λ2λ2λ2λ2

Page 50: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 50/78

Chirped Gratings

0 3 0- 1

1

0 3 0- 1

1

0 3 0- 1

1

(a) Uniform Grating

(b) Chirped Grating

(c) Chirped Grating withApodization

n(x)=n0 + n1 (x) cos {K(x) x}

Page 51: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 51/78

Coupled-Wave Analysisfor Continuously Chirped Gratings

kzi

Beidz

dA ∆

κ −=

kziAeidz

dB ∆−κ =

κ(x) = coupling constant

∆k =2k0 – K(x) = wavenumber mismatch

Page 52: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 52/78

Step-Chirped Gratings

0 3 0- 1

1

0 3 0- 1

1

Easier to analyze using Matrix Method

Easier to fabricate for broadband coverage

Possible Stitching Errors

Page 53: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 53/78

Matrix Method for Step-Chirped Gratings

 

 

 

 

 

 

 

 

∆−

κ −

κ ∆+=

 

  

 

)KL2

1iexp( b

)KL21iexp(a

sLsinhs2

k isLcoshsLsinh

si

sLsinhs

isLsinhs2k isLcosh

 b

a

L

L

0

0

Uniform grating within a section: n(x)=n0 + n1 cos (Kx)

The field in each section is written as

E(x,t)=[A(x) exp (-ik0x) + B(x) exp(ik0x)]exp(iωωωωt)

Definea(x)= A(x) exp (-ik0x)

b(x)= B(x) exp ( ik0x)

then

Page 54: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 54/78

Step-Chirped Gratings

2 2 .0 0 0 5 2 .0 0 1 2 .0 0 1 5 2 . 0 0 2 2 .0 0 2 5 2 .0 0 3 2 . 0 0 3 5 2 .0 0 4

x 1 01 4

0

1

2 2 .0 0 0 5 2 .0 0 1 2 .0 0 1 5 2 .0 0 2 2 .0 0 2 5 2 .0 0 3 2 .0 0 3 5 2 .0 0 4

x 1 01 4

0

2

4

6

8x 1 0

-1 0

n(x)= n0+ n1cos (Kx)n0 = 1.500, n1=0.001Λ1 =0.5 µm, ΛΝ =0.4995 µmGrating Length = 40 mm

Divided into 200 sections400 periods in each section

Group delay varies 400 psOver 150 GHz rangeSpikes and Ripples due toImpedance Mismatch

Page 55: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 55/78

Step-Chirped Gratings with Apodization

2 2 .0005 2 .001 2 .0015 2 .002 2.0025 2.003 2.0035 2 .004

x 1 014

0

1

2 2 .0005 2 .001 2 .0015 2 .002 2 .0025 2.003 2.0035 2 .004

x 1 014

0

0 .5

1

1 .5

2

2 .5x 1 0

-9

Dispersion Spikes greatly

reduced via Apodization

Dispersion Ripples remain

a problem

Gaussian Apodization

Page 56: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 56/78

LP Modes Intensity Pattern

LP01 Mode LP02 Mode

Page 57: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 57/78

LP Modes Intensity Pattern

LP11 Mode LP21 Mode

Page 58: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 58/78

LP01 Mode Dispersiona=4.7 microncore index=1.4628clad index=1.46

1.53 1.55 1.57 1.59 1.610

5

10

15

20

25

30

Wavelength (microns)

 

  

 

λλ

λ−= 2

eff 

2

2

d nd 

c1D

D in units of ps/nm-km

The GVD consists of waveguide dispersion and material dispersion.

For silica fibers @ l = 1550 nm, material dispersion is about 20 ps/nm-km,

whi le the waveguide dispersion is about - 3 ps/nm-km.

Page 59: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 59/78

LP02 Mode Dispersion

1.53 1.55 1.57 1.59 1.61-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

LP02 mode dispersionn1=1.477;

n2=1.46;

a=4.7 microns;

 

  

 

λλ

λ−=

2

eff 2

2

nd 

c

1D

Wavelength (microns)

D in units of 

ps/nm-km

Page 60: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 60/78

2-mode FibersLegacy Fiber Legacy Fiber  

Mode Converter  Mode Converter LP01 LP02 LP02 LP01

Group Velocity Dispersion (GVD)DLP01 = +17 ps/nm-km (Legacy Fiber)

DLP02 = -500 ps/nm-km (2-mode Fiber)

Page 61: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 61/78

Gires-Tournois Etalons

R < 1 R2 = 1

Front mirror reflectivity < 1

Rear mirror reflectivity = 1All frequency components are totally reflectedPhase shift is a periodic function of frequency

The Gires-Tournois Cavity

Page 62: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 62/78

φ 

φ 

i

ii

e R

e Rer 

2

2

1 −

−Φ−

+−== Ln o

λ 

π φ 

2=

( ) .1|r |and  tan1

12 =

+=Φ φ 

 R

 R ArcTan

Total reflection R=1.0Partial reflection R <1.0

Unique Advantages:• Multi-channel operations

• Dispersion slope

compensation

• Tunable dispersion

y

Page 63: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 63/78

The phase shift of a Gires-Tournois etalon can be written

where

R is the reflectivity of the front mirror, f is the phase shift,

where d is the space between the mirror, n is the index of 

refraction of the medium.

)tan(tan2

1

φσ=Φ

 R

 R

+=

1

1σ 

nd 

c

ω=φ

Gires-Tournois Etalons

Single Gires-Tournois etalon

Page 64: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 64/78

193.5 193.6 193.7 193.8 193.9-4

-3

-2

-1

0

1

2

3

4

193.5 193.6 193.7 193.8 193.90

5

10

15

20

25

Single Gires-Tournois etalon

)tan1

1(tan2 1 φ

+=Φ −

 R

 R022 sin)1(1

τφ−σ+

σ=τ

Phase shift Group delay (ps)

Frequency in units of THz Frequency in units of THz

Gires Tournois Etalons

Page 65: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 65/78

A further differentiation lead to the following expression for GVD

In terms of ps/nm (DL), the GVD can be written

( )20222

2

sin)1(12

)2sin()1(τ

φ−σ+

φ−σσ−=

ω

τ

By taking the derivative with respect to ωωωω, we obtain the group delay

where ττττ0 is the roundtrip flight time inside the cavity.

022

sin)1(1

τ

φ−σ+

σ=τ

( )222

22

sin)1(1

)2sin()1(4

φ−σ+

φ−σσ 

  

 

λ

π=

λ

τ=

cd 

d  DL

Gires-Tournois Etalons

Page 66: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 66/78

193.5 193.6 193.7 193.8 193.9-150

-100

-50

0

50

100

150

Dispersion of a Single Etalon

     (    p    s     /    n    m     )

Frequency in units of THz

Group Delay of Single Stage GTI Dispersion

Compensator

Page 67: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 67/78

Wavelength (nm)

   G  r  o  u  p

   d  e   l  a  y   (  p  s   )

Passband 

Compensator 

Multiple-etalon for Broad Passband

Page 68: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 68/78

193.5 193.6 193.7 193.8 193.9-150

-100

-50

0

50

100

150

Multiple-etalon for Broad Passband

     (    p    s     /    n    m     )

Frequency in units of THz

Dispersion and Slope Compensation

Page 69: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 69/78

ITU 1 9 3 .1 1 9 3 .2 1 9 3 .3 1 9 3 .4 1 9 3 .5 1 9 3 .6 1 9 3 .7 THz

25 GHz25 GHz25 GHz25 GHz

Dispersion

0

SMF-28

Legacy

Fiber

DCFIdeal DCM

Accumux DCM

1400 ps/nm

-1400 ps/nm

Slope Mismatch

Optical Transmission throught 80 km of fiber 

Page 70: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 70/78

( -3.50 dBm laser power)

Without DCM With Accumux DCM

Eye-diagrams obtained using a GTran 193.7 THz transmitter.

Page 71: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 71/78

Bit-Error-Rate

1.4 x 10 -9 No signal100km-fiber system,@ -25.10dBm

Less than 10-151.4 x 10 -9100km-fiber system,@ -23.50dBm

10-13 No signal120km-fiber system,@ -23.00 dBm

With Accumux DCMWithout DCM

 Note: 1 dBm = 1 mW; -20 dBm = 0.01 mW

BER obtained using a GTran 193.7 THz transmitter 

Origin of PMD

Page 72: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 72/78

Origin of PMD

• Fiber has two polarization modes (x- and y-).

• Fiber with elliptical core or imperfection is equivalent to a

birefringent element.

• The birefringence may dependent on external perturbations.

• Main source of birefringence: elliptical core, bending, twist ing,

stress, etc.

•  A long segment of fiber is optically equivalent to a series of 

birefringent plates.• Jones Matrix method can be employed to analyze the

transmission.

• The system is time-dependent due to environmental perturbations

(temperature, pressure, stress, etc.)

• Random mode coupling in long fiber lengths causes time-varying

delay difference, ∆τ∆τ∆τ∆τ .

Page 73: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 73/78

Principal States of Polarization(due to Craig D. Poole)

• Output polarization of 

fiber is obtained byJones matrix method

• Principal output SOPsare independent of ωωωω to the first order only

• PMD compensator based on thisapproach is l imited to

a bandwidth of about20 GHz in 80 km of fiber 

inout V*a* b

 baV  

  

 

−=

∂Vout

∂ω= iτVout

Vout (ω) = Vout (ω0 ) exp{i τd ω

ω0

ω

∫  }

Page 74: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 74/78

Principal States of Polarization(due to Craig D. Poole)

• Principal SOP can be

obtained by solving aneigenvector problem

• Time delay betweenthese two principal

states is the PMD

A=a*a' + bb'*B=a*b' - a'*b

C=a'b* - ab'* = -B*D=aa'* +b'b* = A*

A B

C D

 

   V in = iτVin

V in =

−B

A − iτ

 

   

22' b'aBCAD +±=−±=τ

22

12 ' b'a2)( +=τ−τ=φ∆∂ω

∂=τ∆

Page 75: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 75/78

First Order PMD CompensatorsTunable

Waveplate

Poole’s PrincipalStates (elliptical)

Variable

Delay

λ/λ/λ/λ/4-plate

λ/λ/λ/λ/4-plate

Principal States Approach:

First-order solution, with limited bandwidth (10 GHz)

PMD Compensation one channel at a time (not practical)

No broadband solution at the moment

Page 76: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 76/78

Frequency Dependence of PMD and PSOP40 GHz, 80 km of SMF-28 fiber with ∆n = 10-7, with 10o turn per km

• Variation of PMD

(around 25 picosec) ina frequency range of 

40 GHz

• Variation of polarization ellipticity

and inclination angle

of Principal SOP over 

a frequency range of 40 GHz

1 . 9 9 9 8 2 2 . 0 0 0 2

x 1 01 4

2

2 .5

3x 1 0

- 1 1P M D ( ta o ) vs f re q u e n c y a t e n d o f f ib e r

f r e q u e n c y ( H z )

   T   i  m  e   d  e   l  a  y

1 . 9 9 9 8 2 2 . 0 0 0 2

x 1 01 4

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

4 0

O u tp u t p ri n c ip a l S O P v s f r e q u e n c y a t e n d o f f ib e r

f r e q u e n c y ( H z )

   i  n  c   l   i  n  a   t   i  o  n  a  n  g   l  e  o   f  e   l   l   i  p  s  e

1 . 9 9 9 8 2 2 . 0 0 0 2

x 1 01 4

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

4 0

fr e q u e n c y ( H z )

  e   l   l   i  p   t   i  c   i   t  y  a  n  g   l  e  :  a   t  a  n   (   b   /  a   )

Page 77: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 77/78

Frequency Dependence of PMD and PSOP100 GHz, 80 km of SMF-28 fiber with ∆n = 10-7, with 10o turn per km

• Variation of PMD

(around 25 picosec) ina frequency range of 100 GHz

• Variation of  polarization ellipticityand inclination angleof Principal SOP over a frequency range of 100 GHz

1 . 9 9 9 5 2 2 . 0 0 0 5

x 1 01 4

2

2 .5

3x 1 0

- 1 1P M D ( ta o ) vs f re q u e n c y a t e n d o f fi b e r

fr e q u e n c y ( H z )

   T   i  m  e   d  e   l  a  y

1 . 9 9 9 5 2 2 . 0 0 0 5

x 1 01 4

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

4 0

O u tp u t p ri n c ip a l S O P v s fr e q u e n c y a t e n d o f f ib e r

fr e q u e n c y ( H z )

   i  n  c   l   i  n  a   t   i  o  n  a  n  g   l  e  o   f  e   l   l   i  p  s  e

1 . 9 9 9 5 2 2 . 0 0 0 5

x 1 01 4

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

4 0

fr e q u e n c y ( H z )

  e   l   l   i  p   t   i  c   i   t  y  a  n  g   l  e  :  a   t  a  n   (   b   /  a   )

Summary

Page 78: Optical and Photonic Components for DWDM Optical Networks

7/30/2019 Optical and Photonic Components for DWDM Optical Networks

http://slidepdf.com/reader/full/optical-and-photonic-components-for-dwdm-optical-networks 78/78

• Traffic demand for telecom continues togrow

• Optical technologies are essential for high-capacity broadband networks– Wavelength management in DWDM

– Dispersion management in both Metro andLong-haul networks

• Radio and copper won’t disappear. Butonly optics can provide the capacity

needed for the truly broadband future.

• Telecom network will become more Optical