Open problems in terrestrial planet formation

23
Open problems in terrestrial planet formation Sean Raymond Laboratoire d’Astrophysique de Bordeaux …with audience contributions welcome!

description

Open problems in terrestrial planet formation. Sean Raymond Laboratoire d’Astrophysique de Bordeaux. …with audience contributions welcome!. How did the Solar System form?. - PowerPoint PPT Presentation

Transcript of Open problems in terrestrial planet formation

Page 1: Open problems in terrestrial planet formation

Open problems in terrestrial planet formation

Sean RaymondLaboratoire d’Astrophysique de Bordeaux

…with audience contributions welcome!

Page 2: Open problems in terrestrial planet formation

How did the Solar System form?

• Simulations can roughly reproduce the masses and orbits of Earth and Venus (O’Brien et al 2006; Kenyon & Bromley 2006; Chambers 2001; Agnor et al 1999; Raymond et al 2006)

• Biggest problem: Mars’ small size (Wetherill 1991)

• Accretion process strongly dependent on giant planets (Levison & Agnor 2003; Raymond et al 2004)

• Goal: Reproduce inner solar system – Constrain Jup, Sat’s orbits at early times– Test relevant physics

Page 3: Open problems in terrestrial planet formation

Constraints• Masses, orbits of terrestrial planets

– Mars’ small mass is a mystery (Wetherill 1991, Chambers 2001)

– Very low eccentricities (O’Brien et al 2006)

• Structure of asteroid belt– Separation of S, C types– No evidence for remnant embryos (gaps)

• Accretion timescales from Hf/W, Sm/Nd– Earth/Moon: 50-150 Myr (Jacobsen 2005; Touboul et al 2007)

– Mars: 1-10 Myr (Nimmo & Kleine 2007)

• Water delivery to Earth– Asteroidal source explains D/H (Morbidelli et al 2000)

– Other models exist (Ikoma & Genda 2007; Muralidharan et al 2008) Str

onge

r C

onst

rain

ts

Page 4: Open problems in terrestrial planet formation

Dust (µm)

Planete-simals (~km)

Cores Embryos

Earth-sized

planets

104-5 yrs 105-7 yrs 107-8 yrs

dust sticking

Grav. collapse (cm - m)

Runaway growth

Oligarchic growth

Gas giants

Late-stage accretion

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Runaway gas accretion

Page 5: Open problems in terrestrial planet formation

Initial conditions for late-stage accretion

• Planetary embryos (aka protoplanets) form by runaway and oligarchic growth: ~Moon-Mars sized (~105-6 yrs) (Kokubo & Ida 1998, Leinhardt & Richardson 2005)

• Late-stage accretion starts when local mass in embryos and planetesimals is comparable (Kenyon & Bromley 2006)

Kokubo & Ida 2002

Ecc

entr

icit

y

Semimajor Axis (AU)

(Giant planets must form in few Myr, so they affect late stages)

Page 6: Open problems in terrestrial planet formation

Key factors for accretion

1. Giant Planets (Levison & Agnor 2003)

– Formation models predict low eccentricity– Nice model: Jup, Sat closer than 2:1 MMR

during accretion (Tsiganis et al 2005; Gomes et al 2005)

• Perhaps in chain of resonances (Morbidelli et al 2007)

2. Disk Properties (Wetherill 1996, Raymond et al 2005)

– Total mass ~ 5 Earth masses inside 4 AU (Weidenschilling 1977; Hayashi 1981)

– ∑ ~ r-1.5 (MMSN) or perhaps more complex (Jin et al 2008; Desch 2007)

Page 7: Open problems in terrestrial planet formation

QuickTime™ et undécompresseur Cinepak

sont requis pour visionner cette image.

Nice model 2 (J, S in 3:2 MMR)

Page 8: Open problems in terrestrial planet formation

• No Mars analogs

• Embryos in asteroid belt– Inconsistent with

observed structure if embryo Mars-mass or larger

Nice model 2 (J, S in 3:2 MMR)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 9: Open problems in terrestrial planet formation

• No Mars analogs

• Embryos in asteroid belt– Inconsistent with

observed structure if embryo Mars-mass or larger

Nice model 2 (J, S in 3:2 MMR)

Page 10: Open problems in terrestrial planet formation

QuickTime™ et undécompresseur Cinepak

sont requis pour visionner cette image.

Eccentric Jup, Sat (e0=0.1)

Page 11: Open problems in terrestrial planet formation

Eccentric Jup, Sat (e0~0.1)

• Strong secular resonance (6) at 2.2 AU

• Mars consistently forms in correct configuration

• Earth and Venus are dryQuickTime™ and a

TIFF (Uncompressed) decompressorare needed to see this picture.

Inconsistent with Kuiper Belt structure

–no migration of giant planets possible (Malhotra 1995, Levison & Morbidelli 2003)

Page 12: Open problems in terrestrial planet formation

Influence of giant planets

QuickTime™ and a decompressor

are needed to see this picture.

Raymond, O’Brien, Morbidelli, & Kaib 2009

Page 13: Open problems in terrestrial planet formation

Influence of giant planets

Raymond, O’Brien, Morbidelli, & Kaib 2009

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

Hard to form low-e, highly concentrated terrestrial planet systems

Page 14: Open problems in terrestrial planet formation

Mars

• Small Mars forms naturally if inner disk is truncated at 1-1.5 AU (Agnor et al 1999; Hansen 2009)

• Can reproduce all 4 terrestrial planets if embryos only existed from 0.7-1 AU (Hansen 2009)

Hansen 2009

Page 15: Open problems in terrestrial planet formation

Other effects

• Gas disk effects:– Type 1 migration (McNeil et

al 2005; Morishima et al 2010)

– Secular resonance sweeping (Nagasawa et al 2005; Thommes et al 2008)

• Collisional fragmentation (Alexander &

Agnor 1998; Kokubo, Genda)

QuickTime™ and a decompressor

are needed to see this picture.

Morishima et al 2010

Page 16: Open problems in terrestrial planet formation

Jin et al (2008) disk

• Assume MRI is effective in inner, outer disk but not in between

• At boundary between low, high viscosity, get minimum in density

• Occurs at ~1.5 AU– Explanation for Mars’

small mass?

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Jin et al (2008)

Page 17: Open problems in terrestrial planet formation

Summary• No tested configuration of Jup, Sat reproduces all

constraints (Raymond et al 2009)

– Closest is eccentric Jup, Sat but Earth is dry and JS not consistent with Kuiper Belt

• Including gas disk effects doesn’t solve the problem (Morishima et al 2010)

• Hard to reproduce Mars’ small size– Strong constraint on Jup, Sat’s orbits at early times– Was there just a narrow annulus of embryos? (Hansen 2009)

• What’s missing?– Secular resonance sweeping during disk dispersal (Nagasawa et al

2005, Thommes et al 2008)

– Something else?

Page 18: Open problems in terrestrial planet formation

Recent progress

• Morishima et al 2008, 2010• Raymond, O’Brien, Morbidelli, Kaib 2009• Hansen 2009• Thommes, Nagasawa & Lin 2008• O’Brien, Morbidelli & Levison 2006• Raymond, Quinn & Lunine 2006• Kenyon & Bromley 2006• Nagasawa, Thommes & Lin 2005• Kominami & Ida 2002, 2004• Chambers 2001• Agnor, Canup & Levison 1999

Page 19: Open problems in terrestrial planet formation

Initial conditions

• Start of chaotic growth phase (Wetherill 1985; Kenyon & Bromley 2006)

• Equal mass in 1000-2000 planetesimals and ~100 embryos (5 ME total)– Embryos is Mars’ vicinity

are 0.1-0.4 Mars masses

• Integrate for 200 Myr + with Mercury (Chambers 1999)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 20: Open problems in terrestrial planet formation

QuickTime™ and a decompressor

are needed to see this picture.

Page 21: Open problems in terrestrial planet formation

MarsLow-ecc.

Ast. belt

Form. time

Earth Water

Current JS

Eccentric JS

Nice model 1

Nice 1 eccentric

Nice model 2

Jin disk

Page 22: Open problems in terrestrial planet formation

Cases

• Current Jup, Sat• Jup, Sat with e0~0.1

– e ~ current values after accretion

• Nice Model 1: Jup 5.45 AU, Sat 8.12 AU, e0=0

• Nice Model 2: Jup, Sat in 3:2 MMR, low-e

• Disk: ∑~r-1 and r-1.5

– Little difference

• Disk from Jin et al (2008)– Dip in ∑ at ~1.5 AU

Page 23: Open problems in terrestrial planet formation

QuickTime™ and a decompressor

are needed to see this picture.