Op&Amps&and&Signal&Condi5oning& - Harvey Mudd College · 2015. 2. 10. · • The ideal op amp is...

9
2/10/15 1 Op Amps and Signal Condi5oning E80 Spring 2015 Erik Spjut 5 wire diagram 2 Non-inverting input Inverting input Output Positive supply Negative supply Inverting and non-inverting inputs are often flipped in the schematic. Be sure you check. Sample Op Amp Internals "OpAmpTransistorLevel Colored Labeled" by Daniel Braun redrawn png file (from User:Omegatron), datasheet. Licensed under CC BY 2.5 via Wikimedia Commons hRp:// commons.wikimedia.org/wiki/File:OpAmpTransistorLevel_Colored_Labeled.svg#mediaviewer/File:OpAmpTransistorLevel_Colored_Labeled.svg For the curious. Not needed for E80 3

Transcript of Op&Amps&and&Signal&Condi5oning& - Harvey Mudd College · 2015. 2. 10. · • The ideal op amp is...

  • 2/10/15  

    1  

    Op  Amps  and  Signal  Condi5oning  

    E80 Spring 2015 Erik Spjut

    5  wire  diagram  

    2  

    Non-inverting input

    Inverting input Output

    Positive supply

    Negative supply

    Inverting and non-inverting inputs are often flipped in the schematic. Be sure you check.

    Sample  Op  Amp  Internals  

    "OpAmpTransistorLevel  Colored  Labeled"  by  Daniel  Braun  -‐  redrawn  png  file  (from  User:Omegatron),  datasheet.  Licensed  under  CC  BY  2.5  via  Wikimedia  Commons  -‐  hRp://commons.wikimedia.org/wiki/File:OpAmpTransistorLevel_Colored_Labeled.svg#mediaviewer/File:OpAmpTransistorLevel_Colored_Labeled.svg  

    For  the  curious.  Not  needed  for  E80  

    3  

  • 2/10/15  

    2  

    Simulink  Op  Amp  Model  •  Rate limited integrator followed by a

    range limit block. •  Ask Prof. Spjut if you ever need it.

    For  the  curious.  Not  needed  for  E80  

    4  

    Simplified  Real  Op  Amp  Model  

    5  

    For  the  curious.  Not  needed  

    for  E80  

    V

    out= G V

    +−V

    −( )

    •  The internally generated voltage is the gain times the difference of the input voltages.

    •  The input impedance is very large. •  The output impedance is very small. •  The ideal op amp is derived by

    assuming the gain approaches ∞, the output impedance approaches 0, and the input impedance approaches ∞.

    TL081  Datasheet  

    See Figure 3

    TA = 25°C

    C2 = 3 pF

    VCC± = ±15 V

    105

    104

    103

    102

    10

    1 M100 k10 k1 k

    106

    10 M

    f − Frequency With Feed-Forward Compensation − Hz

    1100

    DIFFERENTIAL VOLTAGE AMPLIFICATIONvs

    FREQUENCY WITH FEED-FORWARD COMPENSATION

    −D

    iffe

    ren

    tialV

    olt

    ag

    eA

    mp

    lifi

    cati

    on

    −V

    /mV

    AV

    D

    −750

    −To

    tal

    Po

    wer

    Dis

    sip

    ati

    on

    −m

    W

    TA − Free-Air Temperature − °C

    125

    250

    −50 −25 0 25 50 75 100

    25

    50

    75

    100

    125

    150

    175

    200

    225VCC± = ±15 VNo SignalNo Load

    TL084, TL085

    TL082, TL083

    TL081

    TOTAL POWER DISSIPATIONvs

    FREE-AIR TEMPERATURE

    PD

    −751

    Volta

    ge A

    mpl

    ifica

    tion −

    V/m

    V

    TA − Free-Air Temperature − °C125

    1000

    −50 −25 0 25 50 75 100

    2

    4

    10

    20

    40

    100

    200

    400

    VCC± = ±15 VVO = ±10 VRL = 2 kΩ

    LARGE-SIGNALDIFFERENTIAL VOLTAGE AMPLIFICATION

    vsFREE-AIR TEMPERATURE

    AVD −

    Larg

    e-Si

    gnal

    Diff

    eren

    tial

    AVD

    45°

    180°

    135°

    90°

    11

    f − Frequency − Hz10 M

    106

    10 100 1 k 10 k 100 k 1 M

    101

    102

    103

    104

    105

    DifferentialVoltageAmplification

    VCC± = ±5 V to ±15 VRL = 2 kΩTA = 25°C

    Phase Shift

    LARGE-SIGNALDIFFERENTIAL VOLTAGE AMPLIFICATION

    AND PHASE SHIFTvs

    FREQUENCY

    Volta

    ge A

    mpl

    ifica

    tion

    AVD −

    Larg

    e-Si

    gnal

    Diff

    eren

    tial

    AVD

    Phas

    e Sh

    ift

    TL081, TL081A, TL081B, TL082, TL082A, TL082BTL084, TL084A, TL084B

    www.ti.com SLOS081H –FEBRUARY 1977–REVISED JANUARY 2014

    Figure 11. Figure 12.

    Figure 13. Figure 14.

    Copyright © 1977–2014, Texas Instruments Incorporated Submit Documentation Feedback 9

    Product Folder Links: TL081 TL081A TL081B TL082 TL082A TL082B TL084 TL084A TL084B

    TL081, TL081A, TL081B, TL082, TL082A, TL082BTL084, TL084A, TL084BSLOS081H –FEBRUARY 1977–REVISED JANUARY 2014 www.ti.com

    Electrical CharacteristicsVCC± = ±15 V (unless otherwise noted)

    TL081C TL081AC TL081BC TL081ITL082C TL082AC TL082BC TL082ITESTPARAMETER TA(1) UNITTL084C TL084AC TL084BC TL084ICONDITIONS

    MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX

    25°C 3 15 3 6 2 3 3 6Input offset VO = 0,VIO mVvoltage RS = 50 Ω Full range 20 7.5 5 9

    Temperaturecoefficient of VO = 0,αVIO Full range 18 18 18 18 μV/°Cinput offset RS = 50 Ωvoltage

    25°C 5 200 5 100 5 100 5 100 pAInput offsetIIO VO = 0current(2) Full range 2 2 2 10 nA

    25°C 30 400 30 200 30 200 30 200 pAInput biasIIB VO = 0current(2) Full range 10 7 7 20 nA

    Common- –12 –12 –12 –12VICR mode input 25°C ±11 ±11 ±11 ±11 Vto 15 to 15 to 15 to 15voltage range

    RL = 10 kΩ 25°C ±12 ±13.5 ±12 ±13.5 ±12 ±13.5 ±12 ±13.5MaximumVOM peak output RL ≥ 10 kΩ ±12 ±12 ±12 ±12 V

    Full rangevoltage swing RL ≥ 2 kΩ ±10 ±12 ±10 ±12 ±10 ±12 ±10 ±12

    Large-signal 25°C 25 200 50 200 50 200 50 200differential VO = ±10 V,AVD V/mVvoltage RL ≥ 2 kΩ Full range 15 15 25 25amplification

    Unity-gainB1 25°C 3 3 3 3 MHzbandwidth

    Inputri 25°C Ω1012 1012 1012 1012resistance

    Common- VIC = VICRmin,CMRR mode VO = 0, 25°C 70 86 75 86 75 86 75 86 dB

    rejection ratio RS = 50 Ω

    Supply- VCC = ±15 Vvoltage to ±9 V,kSVR 25°C 70 86 80 86 80 86 80 86 dBrejection ratio VO = 0,(ΔVCC±/ΔVIO) RS = 50 Ω

    Supply VO = 0,ICC current (each 25°C 1.4 2.8 1.4 2.8 1.4 2.8 1.4 2.8 mANo loadamplifier)

    VO1/VO Crosstalk AVD = 100 25°C 120 120 120 120 dB2 attenuation

    (1) All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range forTA is 0°C to 70°C for TL08_C, TL08_AC, TL08_BC and −40°C to 85°C for TL08_I.

    (2) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, asshown in Figure 17. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature aspossible.

    4 Submit Documentation Feedback Copyright © 1977–2014, Texas Instruments Incorporated

    Product Folder Links: TL081 TL081A TL081B TL082 TL082A TL082B TL084 TL084A TL084B

    TL081, TL081A, TL081B, TL082, TL082A, TL082BTL084, TL084A, TL084BSLOS081H –FEBRUARY 1977–REVISED JANUARY 2014 www.ti.com

    Electrical CharacteristicsVCC± = ±15 V (unless otherwise noted)

    TL081C TL081AC TL081BC TL081ITL082C TL082AC TL082BC TL082ITESTPARAMETER TA(1) UNITTL084C TL084AC TL084BC TL084ICONDITIONS

    MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX

    25°C 3 15 3 6 2 3 3 6Input offset VO = 0,VIO mVvoltage RS = 50 Ω Full range 20 7.5 5 9

    Temperaturecoefficient of VO = 0,αVIO Full range 18 18 18 18 μV/°Cinput offset RS = 50 Ωvoltage

    25°C 5 200 5 100 5 100 5 100 pAInput offsetIIO VO = 0current(2) Full range 2 2 2 10 nA

    25°C 30 400 30 200 30 200 30 200 pAInput biasIIB VO = 0current(2) Full range 10 7 7 20 nA

    Common- –12 –12 –12 –12VICR mode input 25°C ±11 ±11 ±11 ±11 Vto 15 to 15 to 15 to 15voltage range

    RL = 10 kΩ 25°C ±12 ±13.5 ±12 ±13.5 ±12 ±13.5 ±12 ±13.5MaximumVOM peak output RL ≥ 10 kΩ ±12 ±12 ±12 ±12 V

    Full rangevoltage swing RL ≥ 2 kΩ ±10 ±12 ±10 ±12 ±10 ±12 ±10 ±12

    Large-signal 25°C 25 200 50 200 50 200 50 200differential VO = ±10 V,AVD V/mVvoltage RL ≥ 2 kΩ Full range 15 15 25 25amplification

    Unity-gainB1 25°C 3 3 3 3 MHzbandwidth

    Inputri 25°C Ω1012 1012 1012 1012resistance

    Common- VIC = VICRmin,CMRR mode VO = 0, 25°C 70 86 75 86 75 86 75 86 dB

    rejection ratio RS = 50 Ω

    Supply- VCC = ±15 Vvoltage to ±9 V,kSVR 25°C 70 86 80 86 80 86 80 86 dBrejection ratio VO = 0,(ΔVCC±/ΔVIO) RS = 50 Ω

    Supply VO = 0,ICC current (each 25°C 1.4 2.8 1.4 2.8 1.4 2.8 1.4 2.8 mANo loadamplifier)

    VO1/VO Crosstalk AVD = 100 25°C 120 120 120 120 dB2 attenuation

    (1) All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range forTA is 0°C to 70°C for TL08_C, TL08_AC, TL08_BC and −40°C to 85°C for TL08_I.

    (2) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, asshown in Figure 17. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature aspossible.

    4 Submit Documentation Feedback Copyright © 1977–2014, Texas Instruments Incorporated

    Product Folder Links: TL081 TL081A TL081B TL082 TL082A TL082B TL084 TL084A TL084B

    10 M1 M100 k10 k1 k100f − Frequency − Hz

    VOM

    − M

    axim

    um P

    eak

    Out

    put V

    olta

    ge −

    V

    0

    ±2.5

    ±5

    ±7.5

    ±10

    ±12.5

    ±15

    See Figure 2TA = 25°CRL = 2 kΩ

    VCC± = ±10 V

    VCC± = ±5 V

    MAXIMUM PEAK OUTPUT VOLTAGEvs

    FREQUENCY

    V OM

    VCC± = ±15 V

    RL = 10 kΩTA = 25°CSee Figure 2

    ±15

    ±12.5

    ±10

    ±7.5

    ±5

    ±2.5

    0

    VOM

    − M

    axim

    um P

    eak

    Out

    put V

    olta

    ge −

    V

    f − Frequency − Hz100 1 k 10 k 100 k 1 M 10 M

    MAXIMUM PEAK OUTPUT VOLTAGEvs

    FREQUENCY

    V OM

    VCC± = ±5 V

    VCC± = ±10 V

    VCC± = ±15 V

    TL081, TL081A, TL081B, TL082, TL082A, TL082BTL084, TL084A, TL084B

    www.ti.com SLOS081H –FEBRUARY 1977–REVISED JANUARY 2014

    Typical CharacteristicsData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various

    devices.

    Table of GraphsFigure

    vs Frequency Figure 5, Figure 6, Figure 7vs Free-air temperature Figure 8VOM Maximum peak output voltage vs Load resistance Figure 9vs Supply voltage Figure 10

    Large-signal differential voltage vs Free-air temperature Figure 11amplification vs Load resistance Figure 12AVDDifferential voltage amplification vs Frequency with feed-forward compensation Figure 13

    PD Total power dissipation vs Free-air temperature Figure 14vs Free-air temperature Figure 15ICC Supply current vs Supply voltage Figure 16

    IIB Input bias current vs Free-air temperature Figure 17Large-signal pulse response vs Time Figure 18

    VO Output voltage vs Elapsed time Figure 19CMRR Common-mode rejection ratio vs Free-air temperature Figure 20Vn Equivalent input noise voltage vs Frequency Figure 21THD Total harmonic distortion vs Frequency Figure 22

    Figure 5. Figure 6.

    Copyright © 1977–2014, Texas Instruments Incorporated Submit Documentation Feedback 7

    Product Folder Links: TL081 TL081A TL081B TL082 TL082A TL082B TL084 TL084A TL084B

    6  

  • 2/10/15  

    3  

    Ideal  Op  Amp  Model  •  Input impedance: ∞Ω •  Output impedance: 0Ω •  With negative feedback, gain so high

    that V+ = V–

    7  

    Opera5onal  Amplifier  •  Can be configured to perform mathematical

    operations on a signal. !  Multiply by a constant (change gain) !  Change sign !  Add two or more signals !  Subtract one signal from another !  Integrate a signal !  Differentiate a signal !  Many others

    8  

    Unity  Gain  Buffer  

    9  

    •  Your go-to circuit. It solves many problems. •  Analyze circuit. •  Draws no current at input (ideal model).

    •  Provides needed current at output (ideal model).

    •  Transfers voltage with no circuit loading.

  • 2/10/15  

    4  

    Non-‐Inver5ng  

    10  

    •  High impedance input, great for measuring voltages

    •  Gains ≥1

    •  Do you see the voltage divider? •  Analyze circuit.

    V

    out= 1+

    Rf

    R1

    ⎝⎜

    ⎠⎟Vin

    Inver5ng  

    11  

    V

    out= −

    Rf

    R1

    Vin

    •  Input impedance is R1 (ideal model). •  Flips sign (or phase) of input. •  Full gain range

    •  Analyze circuit.

    Inver5ng  Summing  Amp  

    12  

    V

    out= −

    Rf

    R1

    V1+

    Rf

    R2

    V2+

    Rf

    R3

    V3

    ⎝⎜

    ⎠⎟

    •  How would you sum three signals? •  How would you average three signals? •  What is the input impedance? •  Analyze circuit. •  Non-inverting summer exists.

  • 2/10/15  

    5  

    General  Impedance  Model  

    13  

    V

    out= −

    Z1

    Z2

    Vin

    •  Analyze circuit. •  Do you see the voltage divider? •  What is the input impedance?

    Integrator  

    14  

    V

    out= −

    Z1

    Z2

    Vin= −

    1jωC

    1

    R1

    Vin= − 1

    jR1C

    Vin

    •  What is the time-domain version? •  How do you set initial condition? •  How do you reset?

    Differen5ator  

    15  

    Vout

    = −Z

    1

    Z2

    Vin= −

    R1

    1jωC

    1

    Vin= − jR

    1C

    1ω( )Vin

  • 2/10/15  

    6  

    Filters  –  LP,  HP  

    16  

    Vout

    Vin

    = H( jω ) = −R

    1R

    2

    1+ jωR1C

    1

    Vout

    Vin

    = H( jω ) = −jωR

    1C

    2

    1+ jωR2C

    2

    Filters  –  BP  

    17  

    H( jω ) =− jωR

    2C

    1

    1+ jωR1C

    1( ) 1+ jωR2C2( )

    A  Step  Up  –  Sallen  &  Key  

    18  

    Vout

    Vin

    =Z

    3Z

    4

    Z1Z

    2+ Z

    3Z

    1+ Z

    2( ) + Z3Z4

  • 2/10/15  

    7  

    Difference  Amplifier  

    19  

    V

    out=

    R4

    R3+ R

    4

    ⎝⎜

    ⎠⎟

    R1+ R

    2

    R1

    ⎝⎜

    ⎠⎟V2 −

    R2

    R1

    ⎝⎜

    ⎠⎟V1

    R3 = R1 R4 = R2 V

    out=

    R2

    R1

    V2−V

    1( )If and then

    Instrumenta5on  Amplifier  

    20  

    V

    out−V

    ref= 1+

    2R1

    Rgain

    ⎝⎜

    ⎠⎟

    R3

    R2

    Vnon−inv

    −Vinv( )

    •  Set gain with Rgain. •  Vref must be a low-impedance source. •  Never make one. Use a commercial one.

    Transimpedance  Amp  

    21  

    V

    out= iR

    f •  If Vout has the wrong sign, flip the diode. •  The far side of the photodiode can be tied

    to Vbias instead of ground.

  • 2/10/15  

    8  

    Logarithmic  Amp  

    22  

    V

    out= −V

    Tln

    Vin

    isR

    1

    ⎝⎜

    ⎠⎟

    VT and is are diode properties. •  Thermal voltage •  Saturation current

    Exponen5al  Amp  

    23  

    V

    out= −R

    1isexp

    Vin

    VT

    ⎝⎜

    ⎠⎟

    VT and is are diode properties. •  Thermal voltage •  Saturation current

    What  Does  It  Do?  

    24  

    •  What does the first voltage divider do? •  Can you find the unity gain buffer? •  Where is the instrumentation amp? •  Can you find the modified difference amp? •  What are G and K? •  Don’t use a circuit you don’t understand.

    Vout = G(V2 −V4 )+ K

  • 2/10/15  

    9  

    LabVIEW File Naming Convention: Your file name should be (Last Name)_(First Initial)_A(Assignment Number)_S(Section Number).(vi or llb). For example, if I were Greg Lake in Section 4 and I was turning in Assignment 3, my file would be named Lake_G_A3_S4.llb. If your file does not have the correct naming convention, it will not be graded.

    Professors have asked that you submit lab reports as PDF files. There are too many Mac/Win formatting battles to submit Word files.

    25