One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials...

17
International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of TE devices using SPICE One-dimensional modeling of TE devices using SPICE One-dimensional modeling of TE devices Daniel Mitrani and Juan A. Chávez Electrical Engineering Department, Universitat Politècnica de Catalunya Barcelona, Spain. Email: [email protected]

Transcript of One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials...

Page 1: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 1

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

One-dimensional modeling of TE devices

Daniel Mitrani and Juan A. ChávezElectrical Engineering Department, Universitat Politècnica de Catalunya

Barcelona, Spain. Email: [email protected]

Page 2: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 2

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

• Overview

• TEM description and formulae

• Steady-state electrical models and simulations

• Dynamic electrical model and simulations

• Conclusions

Contents

Presentation contents

Page 3: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 3

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

TEM Description

Negative (-)

Positive (+)MoistureProtection

Ceramic Plates

Thermocouples

T

p J

x

x=0 x=L

Th

TcI np

Qh

Qc

TE module characteristics

• Solid-state devices.

• Couples connected electrically in series and thermally in parallel.

• Peltier mode: heat pump.

• Seebeck mode: electrical power generation.

Single couple unitFree standing pellet

Th

Tc

Page 4: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 4

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

Interaction between thermaland electrical domains2T ds T

J JTx x dT x

1-D steady-state energy balance equation

Thomson Effect

Joule Effect

Fourier’s Law

TEM Formulae (I)

Tq sJT

x

Heat flow per unit area

Peltier Effect Fourier’s Law

TE J s

x

Electric field per unit length

Ohm’s Law Seebeck Effect

Electrical domain

Thermal domain

Peltier Effect

Thomson Effect

Seebeck Effect

ConductionConvection

Radiation

Joule Effect

Ohm’s Law

Page 5: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 5

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

TEM Formulae (II)

( ) ( )h cL J L s T T

2 ( )

2h c

c c

J L T Tq s J T

L

2 2

2

( )T x J

x

Constant material properties

( 0) ( ) ( 0) 0Vc hT x T T x L T x

Dirichlet boundary conditions

2 22( )

2 2h c

c

J T T J LT x x x T

L

1-D temperature distribution

2 ( )

2h c

h h

J L T Tq s J T

L

222

2

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

T x d T T x ds T T xT J T JT x

x dT x dT x

Heat flow per unit area at x=0 and x=L

Electrical potential at x=L

p-typeJ

xx=0 x=L

ThTc

qc qh

Page 6: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 6

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

V h cI R S T T

212 ( )h h h cQ S I T I R K T T

2e h C sP Q Q I R I V

Heat absorbed at the cold side

212 ( )c c h cQ S I T I R K T T

Electrical power

Heat released at the hot side

Voltage across the terminalsp p n n

p n

A AK N

L L

p p n n

p n

L LR N

A A

p nS N s s

• Parallel thermal conductance of the N couples

• Serial electrical resistance of the N couples

• Seebeck coefficient of the N couples

TEM Formulae (III)

Qh

- +

np Inp np

Qc

Page 7: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 7

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

Lumped Electrical Model (I)

Electrical steady-state three-port model

+

-

V

ThPe

+-

R

Vs

Px

TEM model

Rth

+

-

Tc

Qc Qh

I

+

-

Thermal and electrical analogies

Thermal Domain Electrical Domain

Heal Flow (W) Electrical Current (A)

Temperature Difference (K) Voltage (V)

Thermal Resistance (K/W) Electrical Resistance ()

Thermal Mass, (J/K) Electrical Capacitance (F)

Vs h cS T T 2e h CP Q Q I R I V

Model expressions21

2x cP SIT I R

• Thermal processes described in electrical terms.

• Flexible boundary conditions.

• Simulation of control electronics and thermal elements.

Material parameters are set prior to simulation !!!

Page 8: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 8

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

Temperature profile for Qcmax case

25

30

35

40

45

50

55

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x (mm)

Tem

per

atu

re (

ºC)

Th=300K, Qc=Qcmax

Tm

Tc Th

Temperature profile for Tmax case

-40

-30

-20

-10

0

10

20

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x (mm)

Tem

per

atu

re (

ºC)

Th=300K, T=Tmax

Tm

Tavg

Tc

Th

2h c

avg

T TT

0

1( )

L

mT T x dxL

• Average temperature between hot and cold side • Mean module temperature

Lumped Electrical Model (II)

Page 9: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 9

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

2

0

1 1( )

2 12

Lh c

m

T T I RT T x dx

L K

2h c

avg

T TT

• Mean module temperature:

• Hot side temperature

• Cold side temperature

• Average module temperature:

( ) ( )k

k T TS T S T ( ) ( )k

k T TR T R T ( ) ( )k

k T TK T K T

Material properties are calculated as:

+

-

V

Th

+

-

Tc

Qc Qh

I

+

-

Pe

+-Vs

Px

TEM model

Tcon+-

+ -

Vr

+-

S(Tk)+-

R(Tk)+-

K(Tk)+-

Tk

S R K Tk

Where Tk can be calculated as:

Tk

( )x c

conk

P QT

K T

( )r kV I R T

Additional VCVS’s are defined as:

Lumped Electrical Model (III)

Page 10: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 10

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

+

-

V

Th

+

-Tc

Qc Qh

I

+

-

+

-T1Pe

Vs

Px

Tcon

+-

+ -

Vr

+ -

S1 R1 K1 Tm1

Pe

Vs

Px

Tcon

+-

+ -

Vr

+ -

S2 R2 K2 Tm2

+

-T2 Pe

Vs

Px

Tcon

+-

+ -Vr

+ -

S3 R3 K3 Tm3

+

-T3 Pe

Vs

Px

Tcon

+-

+ -

Vr

+ -

S4 R4 K4 Tm4

Steady-state equations are accurate as long as the thermoelectric properties do not vary over the region where they are applied.

• Divide the pellets of a TEM into many small segments• Each segment would be closer to meeting such criteria

Distributed Parameter Electrical Model

N

N-1

2

1

N

N-1

2

1

Tn

Tn-1

Qn-1

Qn

QN=Qh

Q0=Qc

TN=Th

T0=Tc

n nSn=S(Tn)Rn=R(Tn)Kn=K(Tn)

Page 11: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 11

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

Steady-State Simulation Setup and Results (I)

s(T) = -0.0024 T2 + 1.7062 T - 73.929R2 = 0.9992

0

50

100

150

200

250

0 100 200 300 400T (K)

s (1

0-6V

·K-1

)

Experimental data

s(T)

s(T) = 0.0024 T2 - 1.6293 T + 326.5

R2 = 0.9972

0

50

100

150

200

250

300

0 100 200 300 400T (K)

s 103

1m

1

Experimental datasT

(T) = 3E-05 T2 - 0.0193 T + 4.1157

R2 = 0.9966

1.00

1.50

2.00

2.50

3.00

3.50

0 100 200 300 400T (K)

·m1K

1

Experimental data(T)

(Bi0.5Sb0.5)2Te3

L

Th

Th=300 K

L=1 mm

A=1 mm2

Page 12: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 12

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

Temperature Difference vs. Electrical Current

ElecMod NumMod

NumMod

RelativeError 100T T

T

Model Tmax ITmaxRelative

Error

Lumped @ Th 59.83 31.21 4.06%

Lumped @ Tm 60.51 31.34 2.97%

Lumped @ Tavg 60.62 32.38 2.78%

Lumped @ Tc 59.65 35.68 4.34%

Distributed (10 FE) 62.34 32.97 0.03%

Numerical 62.36 32.99

0

10

20

30

40

50

60

70

0 10 20 30 40 50I (A)

T (

ºC)

0

2

4

6

8

10

12

14

Rel

ativ

e E

rro

r (%

)

Lumped @ThLumped @TmLumped @TavgLumped @TcDist. (10 FE)Numerical

Th=300K, Qc=0

58

59

60

61

62

63

30 31 32 33 34 35 36I (A)

T (

ºC)

Lumped @Th Lumped @Tc

Lumped @Tavg Lumped @Tm

Distributed (10 FE) Numerical

Th=300K, Qc=0

Steady-State Simulation Setup and Results (II)

Page 13: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 13

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 10 20 30 40 50

I (A)

Qc

(W)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Rel

ativ

e E

rro

r (%

)

Lumped @Th=Tc=TavgLumped @TmDistributed (10 FE)Numerical

Th=300K, T=0

1.229

1.230

1.231

1.232

1.233

1.234

1.235

1.236

1.237

36.5 36.7 36.9 37.1 37.3 37.5 37.7 37.9

I (A)

Qc

(W)

Lumped @ Th=Tc=Tavg

Lumped @ Tm

Distributed (10 FE)

Numerical

Th=300K, T=0

Cooling Power vs. Electrical Current

ElecMod NumMod

NumMod

RelativeError 100Q Q

Q

Model Qcmax IQcmaxRelative

Error

Lump. @ Th =Tc=Tavg 1.237 W 37.74 A 0.37%

Lumped @ Tm 1.230 W 36.95 A 0.18%

Distributed (10 FE) 1.232 W 37.14 A 0.01%

Numerical 1.232 W 37.15 A

Steady-State Simulation Setup and Results (III)

Page 14: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 14

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

218.50

212.56

208.88

195.61

190

195

200

205

210

215

220

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x (mm)

s (1

0-6V

·K-1

)

Lumped @ ThLumped @ TmLumped @ TavgLumped @ TcDistributed (10 FE)Numerical

17.37

16.16

15.44

13.20

12

13

14

15

16

17

18

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x (mm)

10

6 ·m

Lumped @ ThLumped @ TmLumped @ TavgLumped @ TcDistributed (10 FE)Numerical

1.325

1.336

1.402

1.31

1.33

1.35

1.37

1.39

1.41

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x (mm)

·m1K

1

Lumped @ Th

Lumped @ Tm

Lumped @ Tavg

Lumped @ Tc

Distributed (10 FE)

Numerical

2.074

2.110

2.116

2.068

2.05

2.06

2.07

2.08

2.09

2.10

2.11

2.12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x (mm)

z (1

0-3K

-1)

Lumped @ ThLumped @ TmLumped @ TavgLumped @ TcDistributed (10 FE)Numerical

Spatial profiles for material parameters s(x), (x), (x), and z(x)

2sz

Steady-State Simulation Setup and Results (IV)

Page 15: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 15

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

Proposed distributed parameter transient electrical model

Qpc Qph

+

-

Th

+

-

Tc

Qc Qh

Finite Elem. 1 Finite Elem. N-1 Finite Elem. N

+

-V

I

C

21 Rth 2

1 Rth

R Vs

+ -

QJ

C C

21 Rth 2

1 Rth

R Vs

+ -

QJ

C C

21 Rth 2

1 Rth

R Vs

+ -

QJ

CC

21 Rth 2

1 Rth

R Vs

+ -

QJ

C

Finite Elem. 2

2 2

2 2

T I T

x A t

No analytical

solution !!!

I → Electrical current → Electrical resistivity → Thermal conductivity → Thermal diffusivity

• Start-up and shut-down periods.• Operating conditions are varied with time.• Fast-response heat sources.• Similar TEC and Heat load thermal time constants• Pulse cooling analysis.

Dynamic Distributed Parameter Electrical Model

One-dimensional heat flow equationJustification

Page 16: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

16

210

220

230

240

250

260

270

-5 0 5 10 15 20 25 30 35 40

Time (s)

Tc

(K)

SPICE Model

Parabolic Solution

Linear SolutionT pulse @ t min

T postpulse

T ss

Return to steady-state

Th=300 KP=2.5

Pulse Cooling

t ret

205

210

215

220

225

230

235

240

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)

Tc

(K)

t0

t1/2

t1

t2

Th=300 K

P=5

Pulse cooling simulation analysis examples

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10

P = Ipulse/Imax

Tpu

lse

(K)

0.0

0.5

1.0

1.5

2.0

2.5

t min (

s)

SPICE ModelParabolic SolutionLinear Solution

Tpulse curves

tmin curves

Th =300 K

205

210

215

220

225

230

235

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

time (s)

Tc

(K)

L=1 mm

L=5 mm

L=10 mm

P=5

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10P ellet L ength (mm)

t min

(s)

P =2.5P =5

P =10

Th=300 K

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-5 0 5 10 15 20 25 30 35 40

Time (s)

Cur

rent

(A

)

I max (curent for maximum stedy-state T )

I pulse = P·I max Current Pulse

210

225

240

255

270

285

300

0 50 100 150 200 250 300Time (s)

Tc (

K)

Initial condition (Tc=Th)

Steady-state (Tc=Tcss)

Transient cooling (Tc=Tcmin)

Post pulse heating

Return to steady-state

Page 17: One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.

International Summerschool on Advanced Materials and Thermoelectricity 17

One-dimensional modeling of TE devices using SPICEOne-dimensional modeling of TE devices using SPICE

Conclusions

Conclusions

• Based on 1-D steady-state analysis we propose

– Lumped parameter model

– Distributed parameter model

• Simulation of electrical and thermal domains with a single tool

– Control electronics

– Thermal elements

• Material parameters chosen according to different module temperatures

• Dynamic Distributed Parameter Electrical Model

– Start-up and shut down periods

– Similar TEM and heat load time constants

– Transient cooling operation