On the variance curve of outputs for some queues and networks Yoni Nazarathy Gideon Weiss Yoav...

48
1 On the variance curve of outputs for some queues and networks Yoni Nazarathy Gideon Weiss Yoav Kerner QPA Seminar, EURANDOM January 8, 2009

Transcript of On the variance curve of outputs for some queues and networks Yoni Nazarathy Gideon Weiss Yoav...

1

On the variance curve of outputs for some queues and

networks

Yoni NazarathyGideon WeissYoav Kerner

QPA Seminar,EURANDOM January 8, 2009

2

Queueing System

Output Counts

t

1( , )D t

3( , )D t 2( , )D t

Var( ( ))D t

t

( )D t

Example 1: Stationary stable M/M/1, D(t) is PoissonProcess:( )

Example 2: Stationary M/M/1/1 with . D(t) is RenewalProcess(Erlang(2, )):

21 1 1

Var( ( ))4 8 8

tD t t e

Var( ( ))D t t

(1)Vt B o

B

V

Asymptotic Variance RateV

B Y-intercept

3

Outline of the Talk: Models and Methods

Outline of the Talk: Models and Methods

Models:• Finite Capacity Birth Death Queues (M/M/1/K)

• General Lossless Queues

• M/G/1 Queue

• Push-Pull (infinite supply) Network

• Infinite supply re-entrant line

Methods:• Markovian Arrival Process (MAP)

• Embedding in Renewal Reward

• Regenerative Simulation (Renewal Reward)

• Diffusion Limits

4

Finite CapacityBirth-Death Queues

5

1*

0

K

ii

V v

2

2 ii i

i

Mv M

d

*

1i i iM D P

1

i

i jj

P

0

i

i jj

D d

Theorem

i i id

Part (i)

Part (ii)

0iv

1 2 ... K

0 1 1... K

*1

V

0 0

1 1 1 1

1 1 1 1

( )

( )K K K K

K K

*1KD

Scope: Finite, irreducible, stationary,birth-death CTMC that represents a queue.

0 10

1

ii

i

0 1

0 0 1

1iK

j

i j i

and

If

Then

Calculation of iv

(Asymptotic Variance Rate of Output Process)

6

**

V V

BRAVO Effect (M/M/1/K)

2

2

1 2 1

1 3

21

3 6 3

(1 )(1 (1 2 ) (1 ) )1

(1 )

K K K

K

K K

K KV

K

2lim

3KV

7

C D

* * 2 * 2 3 2Var ( ) 2( ) 2 2( ) 2 ( )1 1 r bt

BV

D t D D t D O t e

0 0

1 1 1 1

1 1 1 1

( )

( )K K K K

K K

1

1

0 0

0 0

0

0K

K

* 1D *E[ ( )]D t t

0 0

1 1 1

1 1 1

0 ( )

0 ( )

0K K K

K

Generator Transitions without events Transitions with events

1( )1

, 0r b

Method: Markovian Arrival Process

8

General LosslessQueues

9

Stable Lossless Queues Preserve Asymptotic Variance

stable

BRAVO (?) critical

instable

arrivals

service

V

V

V

Cov ( ), ( )1

Var ( ) Var ( )

A t Q t

A t Q t Cov ( ), ( )A t Q t O t

( ) ( ) ( )D t A t Q t

0

Var ( ) Var ( ) +Var ( ) 2Cov ( ), ( )

Cov ( ), ( ) 0 2 limD A

t

D t A t Q t A t Q t

A t Q tV V

t

Proof for stable case:

10

M/G/1 Queue

11

M/G/1 Linear AsymptoteTheorem:

4 4 2 4 2 2 2 3 3 2 4 3 3

2

2

3 6 18 18 10 18 4 (1 )Stationary

12(1 )

Starting Empty(1 )

c c c c c

B

( ) (1)Var D t t B o

1, 2 (Exponential like) B 0

1, 2 B 0

1, 2 B 0

c

c

c

12

Shape of Variance Curve (?)

0 B

0 B

0t

Var ( )D t

1, 2 B 0

1, 2 B 0

c

c

Pas Op: Possible non-sense ahead

!!!

13

( )R t

Derivation Method:Embedding in Renewal Reward

( )D t

t

V

V

a

ar

r ( )

( ) (1

(1)

)

R RR t V t

D t V

o

t o

B

B

2

11

1

R

R

R

nV m

m

V

B

V

B

0t

0 0( ) ( )D t R t

Busy Cycle Duration

Number Customers

Served

14

Linear Asymptote of Renewal Reward is Known

Linear Asymptote of Renewal Reward is Known

Var ( ) (1)R RD t V t B o

22 1 11 1 23 2

1 1 1

1 2 1 2 111 2 3 1 2 11 12 21

1 1 1 = 2

m

long expression( , , , , , , , , , , , , )

R

R

V m n k n nm m

B m m m n n k k k m m n n k

Brown, Solomon 1975:

2

11

1

R

R R

V V

nB B V m

m

15

Using in Regenerative Simulation

16

t

1( , )D t

3( , )D t 2( , )D t ( )Var D T

VT

( )D t

( )(1)

Var D T BV o

T T T

Naive Estimation of Asymptotic Variance:

There is bias due to intercept:

Regenerative Estimation of Asymptotic Variance:

22 1 11 1 23 2

1 1 1

1 1 1 = 2

mRV m n k n nm m

Estimate moments of busy cycle and number served…. Plug in…

17

0 .2 0 .4 0 .6 0 .8 1 .0 1 .2

0 .2

0 .4

0 .6

0 .8

Example

M/M/1/K “like” systems (D. Perry, Boxma, et. al.)

V

Customers that have to wait more than 5 time units will not enter the queue.

18

A Push-Pull Queueing Network

19 2 ( )Q t

4 ( )Q t

1S

2S

• 2 job streams, 4 steps

• Queues at 2 and 4

• Infinite job supply at 1 and 3

• 2 servers

The Push-Pull Network

1 2

34

1S 2S

2 4( ), ( )Q t Q t• Control choice based on

• No idling, FULL UTILIZATION

• Preemptive resume

Push

Push

Pull

Pull

Push

Push

Pull

Pull

2Q

4Q

20

Policies

1 2

4 3

Inherently stable

Inherently unstable

Policy: Pull priority (LBFS)

Policy: Linear thresholds

1 2

4 3

1 2

34

TypicalBehavior:

2 ( )Q t

4 ( )Q t

2,4

1S 2S

3

4

2 1

1,3

TypicalBehavior:

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

5

1 0

2 2 4Q Q

4 1 2Q Q

Server: “don’t let opposite queue go below threshold”

1S

2S

Push

Pull

Pull

Push

1,3

21

KSRS

1 2

34

22

M/G/. Pull Priority

M G

MG

2 2 2 2 2 21 11 1 2 1 2 2 1 1 1 2 1 1 2 2 23

1 2 1 2

(1 )( ) ( )( )( )

V c c

Using the Renewal Reward Method :

1

2

1 1,c

2 2,c

Number served of type 1, during a cycle is 0 w.p. . 2

1 2

23

Using DiffusionLimits

Now assume general processing times with finite second moment.

24

Network View of the Model

1

1 4 2 3

k

k

1

Dynamics

( ) sup{ : }

(0) 0, ( )

( ) ( ) , ( ) ( )

D ( ) ( ( ))

(0) 0, Q (t) 0

( ) (0) ( ) ( )

nj

k kj

k k

k k

k

k k k k

S t n t

T T t

T t T t t T t T t t

t S T t

Q

Q t Q D t D t

4 1 2 1

0 0

Pull priority policy

( ) ( ) 0 ( ) ( ) 0t t

Q s dT s Q s dT s 4 1 2 1 2 2 4 3

0 0

2 4 4 4 2 21 20 0

Linear thresholds policy

{0 ( ) ( )} ( ) 0 {0 ( ) ( )} ( ) 0

1 1

{ ( ) ( )} ( ) 0 { ( ) ( )} ( ) 0

1 1

1 1

t t

t t

Q s Q s dT s Q s Q s dT s

Q s Q s dT s Q s Q s dT s

2 4 1 2 3 4

Network process

( ) ( ), ( ), ( ), ( ), ( ), ( )Y t Q t Q t T t T t T t T t

or

1 2

34

1S 2S

25

Stability Result

( ) Q(t), U(t)X t

1 2

34

Queue Residual

is strong Markov with state space

( )X t

Theorem: X(t) is positive Harris recurrent.

Proof follows framework of Jim Dai (1995)

2 Things to Prove:

1. Stability of fluid limit model

2. Compact sets are petite

Positive Harris Recurrence:

26

Diffusion Scaling

Now find a limiting process, such that . ( )D t ( ) ( )wn

nD t D t

Var (1)V D

27

Diffusion Limit

Theorem: When network is PHR and follows rates,

With .

( ) ( ) ( ) B(0, )n wn n

D t T t Q t

10 dimensional Brownian motion

( ) 0wn

Q t

Proof Outline: Use positive Harris recurrence to show, , simple calculations along with functional CLT for renewal processes yields the result.

28

Infinite SupplyRe-entrant Lines

29

Infinite Supply Re-entrant Line

4

2

1C

1 3

56

78

10 9

( )D t

2C 3C

4C

2

13

1

: For any stable policy (e.g. LBFS): .k

k C

mkk C

Thm V

1

1Infinite QueuesSupply

1

1

2 21

1

1 {2,..., } ... ,

1 .

Means: ,...,

Variances: ,...,

1, i=2,...,Ii

I

k

k

kk C

i kk C

K C C

C

m m

m

m

30

“Renewal Like”

4

2

1C

1 3

56

78

10 9

2C 3C

4C1

1

2

3

kk C

kk C

V

m

1C

1

6

8

10

Renewal Output1 1 1 1 2 2 2 2 3 3 3 31 6 8 10 1 6 8 10 1 6 8 10

Job 1 Job 2 Job 3

, , , , , , , , , , , ,....x x x x x x x x x x x x

1 1 1 1 2 2 2 3 3 3 31 6 8 10 6 8 1 1 6 8 10

201, , , , , , , , , , , , ,...x x x x x x x x x x xx

31

Thank You

32

Extensions

33

• Inherently stable network

• Inherently unstable network

• Unbalanced network

• Completely balanced network

Configuration 1 2

34

1 2

4 3

1 2

4 3

1 2 1 2

4 3 4 3

or

1 2

4 3

34

Calculation of Rates

1

2

2 3 41 2 1

1 3 2 4

4 1 23 4 3

1 3 2 4

( )

( )

1 4 3 21 , 1

1 2

4 3

1 1 2 2

4 4 3 3

1 2

34

Corollary: Under assumption (A1), w.p. 1,

every fluid limit satisfies: .

k - Time proportion server works on k

k -Rate of inflow, outflow through k

Full utilization:

Stability:

( ) , ( )k kk kT t t D t t

35

Memoryless Processing(Kopzon et. al.)

1 2

4 3

Inherently stable

Inherently unstable

Policy: Pull priority

Policy: Generalized thresholds

1 2

4 3

1 2

34

1S 2S

Alternating M/M/1 Busy Periods

Results:Explicit steady state:

Stability (Foster – Lyapounov)

- Diagonal thresholds

2 ( )Q t

4 ( )Q t

- Fixed thresholds

36

37

38

39

40

41

Proof Outline

1*

0

K

ii

V v

Whitt: Book: 2001 - Stochastic Process Limits,.

Paper: 1992 - Asymptotic Formulas for Markov Processes…

1) Lemma: Look at M(t) instead of D(t).

2) Proposition: The “Fully Counting” MAP of M(t) has associated MMPP with same variance.

3) Results of Ward Whitt: An explicit expression of asymptotic variance rate of birth-death MMPP.

42

t

3 2 1

2 4 2

1 1 2

a b c

a

b

c

MMPP (Markov Modulated Poisson Process)

Example:

0 ( )N t

tabc

( )Q t

rate 4Poisson Process

rate 2

rate 3

rate 4

rate 2

rate 4

rate 3

rate 2

rate 3

rate 4

rate 2

1 0

1 0

E[ ( )] E[ ( )]

Var( ( )) Var( ( ))

N t N t

N t N t

Proposition

3 0 0 0 2 1

0 4 0 2 0 2

0 0 2 1 1 0

6 2 1 3 0 0

2 8 2 0 4 0

1 1 4 0 0 2

Transitions without events Transitions with events

1( )N tFully Counting MAP

1( ),N t

( )Q t

0 ( )N t

43

0 1 KK – 1

Some intuition for M/M/1/K-BRAVO

44

V

c

c

M/M/40/40

M/M/10/10

M/M/1/40

1

K=20K=30

c=30

c=20

45

V

1

MAP used for PH/PH/1/40 with Erlang and Hyper-Exp distributions

1

2

46

The “2/3 property”The “2/3 property”

K

• GI/G/1/K

• SCV of arrival = SCV of service

• 1 V2 42 33

3 21

2 3

6 2 455 3

1 2 132 3

47

,

2 3

,

1

11

lim Corr( ( ), ( )) 15 5 3

4 12 2 4

1

K

t

K

R

KD t L t

K K K

R

1 12

,1 2 1 2 2 1

(1 )(1 3 ) (1 )(3 )

(1 )(1 (2 1)(1 ) )((1 )(1 ) 4( 1)(1 ) )

K K K K

KK K K K K

KR

K

0.139772 1

1lim Corr( ( ), ( )) 1

41

12

tD t L t

For Large K

( )D t

( )L t

48

Proposition: For ,4 3 2

2

7 28 37 18

180 360 180D

K K K KB

K K

M/M/1/K1

* * 2 * 2 3 2Var ( ) 2( ) 2 2( ) 2 ( )

D

r bt

BV

D t D De t De O t e , 0r b

1