On the Radio Number of Certain Classes of Circulant Graphs

5
International Journal of Trend in Scientific Research and Development (IJTSRD) Volume 4 Issue 5, August 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 โ€“ 6470 @ IJTSRD | Unique Paper ID โ€“ IJTSRD31865 | Volume โ€“ 4 | Issue โ€“ 5 | July-August 2020 Page 430 On the Radio Number of Certain Classes of Circulant Graphs Kins Yenoke PG & Research, Department of Mathematics, Loyola College, Chennai, Tamil Nadu, India ABSTRACT Radio labelling problem is a special type of assignment problem which maximizes the number of channels in a specified bandwidth. A radio labelling of a connected graph = (, ) is an injection โ„Ž: () โ†’ such that (, ) + |() โˆ’ ()| โ‰ฅ 1 + ()โˆ€ , โˆˆ (), where () is the diameter of the graph . The radio number of denoted (โ„Ž), is the maximum number assigned to any vertex of . The radio number of , denoted (), is the minimum value of (โ„Ž) taken over all labellingโ€™s โ„Ž of . In this paper we have obtained the radio number certain classes of circulant graphs, namely (; {1,2 โ€ฆ โŒŠ 2 โŒ‹โˆ’ 1}) , (; {1, 2 }) , (; {1, 3 }) and (; {1, 5 }). KEYWORDS: Labelling, Radio labelling, Radio number, Circulant graphs How to cite this paper: Kins Yenoke "On the Radio Number of Certain Classes of Circulant Graphs" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456- 6470, Volume-4 | Issue-5, August 2020, pp.430-434, URL: www.ijtsrd.com/papers/ijtsrd31865.pdf Copyright ยฉ 2020 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) 1. INTRODUCTION In the modern world, all the communications are based on the wireless mode. In the end of the 20 th century most of the communication were developed based on the wireless networks. These communications are working based on the specified allocation of the electromagnetic spectrum. One of the main applications is based on the low frequency long wavelength waves called radio waves. Among this, a fixed bandwidth ranges from 88.1 MHZ to 108 MHZ was allotted for the channel assignment of FM radio stations. 88.1 MHz and finished at 108MHz This real-life minimax problem motivated Chartrand et al. [6] in the year 2001 to introduced a new labelling called the radio labelling. He defined the formal graph theoretical definition for radio labelling problem as follows: Let () be the diameter of a connected graph G. An injection h from the vertex set of G to N such that (, ) + |โ„Ž() โˆ’ โ„Ž()| โ‰ฅ 1 + ()) for every pair of vertices in G. The radio number of h, denoted by (โ„Ž), is the maximum number assigned to any vertex of G. The radio number of G, denoted by (), is the minimum value of (โ„Ž) taken over all labellingโ€™s โ„Ž of . The radio number problem is NP-hard [9], even for graphs with diameter 2. In the past two decades plenty of research articles are published in this area and also developed new labelling problems based on the radio number. 2. An Overview of the Paper For the past 20 years, several authors studied the radio labelling problem and its variations in various networks and graphs. Radio labelling problem is a particular case of radio K- Chromatic number [7]. In the recent years few new labellingโ€™s were introduced by different authors based on the k value, namely, radio mean labelling, radio multiplicative labelling, radial radio labelling etc. The radio number of square cycles was determined by Liu et.al [12]. Bharati et.al [2,3] obtained the bounds for the hexagonal mesh as 3 2 โˆ’ 3 + 2 + 12 โˆ‘ ( โˆ’ โˆ’ 1) โ‰ค โˆ’2 =0 () โ‰ค (3 2 โˆ’ 4 โˆ’ 1) + 3 and completely determined the radio number of graphs with small diameters. Kchikech et.al [10] studied the radio k-labelling of graphs. Fernandez et al. [8] computed the radio number for gear graph. Kins et. al. [11] investigated the radio number for mesh derived architectures and wheel extended graphs. In this paper we have investigated the radio labelling of certain classes of circulant graphs. 3. Circulant Graphs Circulant graphs have been used for several decades in the design of telecommunication networks because of their optimal fault-tolerance and routing capabilities [5]. For designing certain data alignment networks, the circulant graphs are being used. for complex memory systems [13]. Most of the earlier research concentrated on using the circulant graphs to build interconnection networks for distributed and parallel systems [2]. By using circulant graph we can adapt the performance of the network to user needs. Itโ€™s a regular graph which includes standard such as the complete graph and the cycle. IJTSRD31865

description

Radio labelling problem is a special type of assignment problem which maximizes the number of channels in a specified bandwidth. A radio labelling of a connected graph G= V,E is an injection h V G N such that d x,y |f x f y | =1 d G x,y V G , where d G is the diameter of the graph G. The radio number of h denoted rn h , is the maximum number assigned to any vertex of G. The radio number of G, denoted rn G , is the minimum value of rn h taken over all labellingโ€™s h of G. In this paper we have obtained the radio number certain classes of circulant graphs, namely G n {1,2รขโ‚ฌยฆ n 2 1} ,G n {1,n 2} ,G n {1,n 3} and G n {1,n 5} . Kins Yenoke "On the Radio Number of Certain Classes of Circulant Graphs" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-5 , August 2020, URL: https://www.ijtsrd.com/papers/ijtsrd31865.pdf Paper Url :https://www.ijtsrd.com/mathemetics/computational-science/31865/on-the-radio-number-of-certain-classes-of-circulant-graphs/kins-yenoke

Transcript of On the Radio Number of Certain Classes of Circulant Graphs

Page 1: On the Radio Number of Certain Classes of Circulant Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 4 Issue 5, August 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 โ€“ 6470

@ IJTSRD | Unique Paper ID โ€“ IJTSRD31865 | Volume โ€“ 4 | Issue โ€“ 5 | July-August 2020 Page 430

On the Radio Number of Certain Classes of Circulant Graphs Kins Yenoke

PG & Research, Department of Mathematics, Loyola College, Chennai, Tamil Nadu, India

ABSTRACT Radio labelling problem is a special type of assignment problem which maximizes the number of channels in a specified bandwidth. A radio labelling of a connected graph ๐บ = (๐‘‰, ๐ธ) is an injection โ„Ž: ๐‘‰(๐บ) โ†’ ๐‘ such that ๐‘‘(๐‘ฅ, ๐‘ฆ) + |๐‘“(๐‘ฅ) โˆ’ ๐‘“(๐‘ฆ)| โ‰ฅ 1 + ๐‘‘(๐บ)โˆ€ ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰(๐บ), where ๐‘‘(๐บ) is the diameter of the graph ๐บ. The radio number of ๐’‰ denoted ๐‘Ÿ๐‘›(โ„Ž), is the maximum number assigned to any vertex of ๐บ. The radio number of ๐‘ฎ, denoted ๐‘Ÿ๐‘›(๐บ), is the minimum value of ๐‘Ÿ๐‘›(โ„Ž) taken over all labellingโ€™s โ„Ž of ๐บ. In this paper we have obtained the radio number certain classes of

circulant graphs, namely ๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’

1}) , ๐บ (๐‘›; {1,๐‘›

2}) , ๐บ (๐‘›; {1,

๐‘›

3}) and ๐บ (๐‘›; {1,

๐‘›

5}).

KEYWORDS: Labelling, Radio labelling, Radio number, Circulant graphs

How to cite this paper: Kins Yenoke "On the Radio Number of Certain Classes of Circulant Graphs" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-5, August 2020, pp.430-434, URL: www.ijtsrd.com/papers/ijtsrd31865.pdf Copyright ยฉ 2020 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

1. INTRODUCTION In the modern world, all the communications are based on the wireless mode. In the end of the 20th century most of the communication were developed based on the wireless networks. These communications are working based on the specified allocation of the electromagnetic spectrum. One of the main applications is based on the low frequency long wavelength waves called radio waves. Among this, a fixed bandwidth ranges from 88.1 MHZ to 108 MHZ was allotted for the channel assignment of FM radio stations. 88.1 MHz and finished at 108MHz This real-life minimax problem motivated Chartrand et al. [6] in the year 2001 to introduced a new labelling called the radio labelling. He defined the formal graph theoretical definition for radio labelling problem as follows: Let ๐‘‘๐‘–๐‘Ž๐‘š(๐บ) be the diameter of a connected graph G. An injection h from the vertex set of G to N such that ๐‘‘(๐‘ข, ๐‘ฃ) +|โ„Ž(๐‘ข) โˆ’ โ„Ž(๐‘ฃ)| โ‰ฅ 1 + ๐‘‘๐‘–๐‘Ž๐‘š(๐บ)) for every pair of vertices in G. The radio number of h, denoted by ๐‘Ÿ๐‘›(โ„Ž), is the maximum number assigned to any vertex of G. The radio number of G, denoted by ๐‘Ÿ๐‘›(๐บ), is the minimum value of ๐‘Ÿ๐‘›(โ„Ž) taken over all labellingโ€™s โ„Ž of ๐บ. The radio number problem is NP-hard [9], even for graphs with diameter 2. In the past two decades plenty of research articles are published in this area and also developed new labelling problems based on the radio number. 2. An Overview of the Paper For the past 20 years, several authors studied the radio labelling problem and its variations in various networks

and graphs. Radio labelling problem is a particular case of radio K- Chromatic number [7]. In the recent years few new labellingโ€™s were introduced by different authors based on the k value, namely, radio mean labelling, radio multiplicative labelling, radial radio labelling etc. The radio number of square cycles was determined by Liu et.al [12]. Bharati et.al [2,3] obtained the bounds for the hexagonal mesh as 3๐‘›2 โˆ’ 3๐‘› + 2 + 12 โˆ‘ ๐‘–(๐‘– โˆ’ ๐‘› โˆ’ 1) โ‰ค๐‘›โˆ’2

๐‘–=0

๐‘Ÿ๐‘›(๐บ) โ‰ค ๐‘›(3๐‘›2 โˆ’ 4๐‘› โˆ’ 1) + 3 and completely determined the radio number of graphs with small diameters. Kchikech et.al [10] studied the radio k-labelling of graphs. Fernandez et al. [8] computed the radio number for gear graph. Kins et. al. [11] investigated the radio number for mesh derived architectures and wheel extended graphs. In this paper we have investigated the radio labelling of certain classes of circulant graphs. 3. Circulant Graphs Circulant graphs have been used for several decades in the design of telecommunication networks because of their optimal fault-tolerance and routing capabilities [5]. For designing certain data alignment networks, the circulant graphs are being used. for complex memory systems [13]. Most of the earlier research concentrated on using the circulant graphs to build interconnection networks for distributed and parallel systems [2]. By using circulant graph we can adapt the performance of the network to user needs. Itโ€™s a regular graph which includes standard such as the complete graph and the cycle.

IJTSRD31865

Page 2: On the Radio Number of Certain Classes of Circulant Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID โ€“ IJTSRD31865 | Volume โ€“ 4 | Issue โ€“ 5 | July-August 2020 Page 431

Definition 3.1: An undirected circulant graph denoted by

๐บ(๐‘›; ยฑ{1,2 โ€ฆ ๐‘—}), 1 โ‰ค ๐‘— โ‰ค โŒŠ๐‘›

2โŒ‹ , ๐‘› โ‰ฅ 3, is defined as a graph

with vertex set ๐‘‰ = {0,1 โ€ฆ ๐‘› โˆ’ 1} and the edge set ๐ธ ={(๐‘–, ๐‘—): |๐‘— โˆ’ ๐‘–| โ‰ก ๐‘˜(๐‘š๐‘œ๐‘‘ ๐‘›), ๐‘˜ โˆˆ {1,2 โ€ฆ ๐‘—}. Remark 1: In this paper for our convenience we take the vertex set ๐‘‰ as {๐‘ฃ1, ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘›}, which is named in clockwise order.

Remark 2: It is clear that, when ๐‘— =๐‘›

2, the circulant graph

๐บ (๐‘›; ยฑ {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹}), become a complete graph.

Lemma 3.1: The diameter of the circulant graph

๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1}) is 2.

Proof: As we know that, the circulant graph

๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1}) is obtained from the circulant graph

๐บ (๐‘›; ยฑ {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹}) by the removal of an unique one edge

from each vertex with maximum distance on the outer

cycle. Since the diameter of ๐บ (๐‘›; ยฑ {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹}) is 1, it is

obvious that the diameter of the circulant graph

๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1}) is 2.

Theorem 3.1: The radio number of the circulant graph

๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1}) is given by ๐บ (๐‘›; {1,2 โ€ฆ โŒŠ

๐‘›

2โŒ‹ โˆ’ 1}) =

๐‘›.

Proof: Let ๐‘‰ (๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1})) = {๐‘ฃ1, ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘›}. Define

an injection โ„Ž: {๐‘ฃ1, ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘›} โ†’ ๐‘ as follows: โ„Ž(๐‘ฃ๐‘–) = 2๐‘– โˆ’

1, ๐‘– = 1,2 โ€ฆ โŒˆ๐‘›

2โŒ‰, โ„Ž (๐‘ฃ

โŒˆ๐‘›

2โŒ‰+๐‘–

) = 2๐‘–, ๐‘– = 1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹.

Next, we claim that the defined injection h is a valid radio labeling. Using Lemma 3.1, we must verify the radio labelling condition ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 3 โˆ€ ๐‘ฅ, ๐‘ฆ โˆˆ

๐‘‰ (๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1})).

Case 1: If ๐‘ฅ = ๐‘ฃ๐‘˜ and ๐‘ฆ = ๐‘ฃ๐‘š, 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค โŒˆ๐‘›

2โŒ‰, then

๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1, โ„Ž(๐‘ฅ) = 2๐‘˜ โˆ’ 1 and โ„Ž(๐‘ฆ) = 2๐‘š โˆ’ 1. Hence ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1 + 2(๐‘˜ โˆ’ ๐‘š) โ‰ฅ 3, since ๐‘˜ โ‰  ๐‘š.

Case 2: If ๐‘ฅ = ๐‘ฃโŒˆ๐‘›

2โŒ‰+๐‘˜

and ๐‘ฆ = ๐‘ฃโŒˆ๐‘›

2โŒ‰+๐‘š

, 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค โŒŠ๐‘›

2โŒ‹,

then ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1, โ„Ž(๐‘ฅ) = 2๐‘˜ and โ„Ž(๐‘ฆ) = 2๐‘š. Hence ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1 + 2(๐‘˜ โˆ’ ๐‘š) โ‰ฅ 3, since ๐‘˜ โ‰  ๐‘š.

Case 3: If ๐‘ฅ = ๐‘ฃ๐‘˜ and ๐‘ฆ = ๐‘ฃโŒˆ๐‘›

2โŒ‰+๐‘š

, 1 โ‰ค ๐‘˜ โ‰ค โŒˆ๐‘›

2โŒ‰, 1 โ‰ค ๐‘š โ‰ค โŒŠ

๐‘›

2โŒ‹,

then either ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1 and |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 2 or ๐‘‘(๐‘ฅ, ๐‘ฆ) =2 |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1. In both the cases we have ๐‘‘(๐‘ฅ, ๐‘ฆ) +|โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 3. Thus, ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 3 for all ๐‘ฅ, ๐‘ฆ โˆˆ

๐‘‰ (๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1})).

Therefore, โ„Ž is a radio labelling and ๐‘Ÿ๐‘›(๐บ) โ‰ค ๐‘›. Since the mapping is an injection, all the ๐‘› vertices of

๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1}) received different radio labelling.

Hence, we conclude that the radio number of

๐บ (๐‘›; {1,2 โ€ฆ โŒŠ๐‘›

2โŒ‹ โˆ’ 1}) is exactly ๐‘›.

Lemma 3.2: The diameter of ๐บ (๐‘›; {1,๐‘›

3}) is โŒŠ

๐‘›

6โŒ‹ +1,

whenever ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 3). Proof: As in the proof of Lemma 3.2, with a common

difference of length ๐‘›

3โˆ’ 1 in the outer cycle, we construct

the graph ๐บ (๐‘›; {1,๐‘›

3}) by joining the vertices ๐‘ฃ1 to ๐‘ฃ๐‘›

3, ๐‘ฃ2 to

๐‘ฃ๐‘›

2+1 โ€ฆ. Therefore, the diameter of ๐บ (๐‘›; {1,

๐‘›

3}) is โŒŠ

๐‘›

6โŒ‹ +1.

Theorem 3.2: The radio number of ๐บ (๐‘›; {1,๐‘›

3}) , ๐‘› โ‰ก

0(๐‘š๐‘œ๐‘‘3), satisfies ๐‘Ÿ๐‘› (๐บ (๐‘›; {1,๐‘›

2})) โ‰ค

{(

๐‘›

6+ 1) (

๐‘›

2+ 1) + โŒˆ

๐‘›

12โŒ‰ + 1, if ๐‘› is even

โŒˆ๐‘›

6โŒ‰ (

๐‘›โˆ’1

2) +, if ๐‘› is odd.

Proof: We partition the vertex set ๐‘‰ = {๐‘ฃ1, ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘›} into

four disjoint set ๐‘‰1, and ๐‘‰2, where ๐‘‰1 = {๐‘ฃ1, ๐‘ฃ2 โ€ฆ ๐‘ฃโŒˆ๐‘›

2โŒ‰} , ๐‘‰2 =

{๐‘ฃโŒˆ

๐‘›

2โŒ‰+1

, ๐‘ฃ๐‘ฃโŒˆ๐‘›2โŒ‰+2

โ€ฆ ๐‘ฃ๐‘›}. We discuss the proof for n even and

odd case separately.

Figure 1: Radio labelling of circulant graphs ๐‘ฎ(๐’; {๐Ÿ,

๐’

๐Ÿ‘})

with ๐’ = ๐Ÿ๐Ÿ– ๐’‚๐’๐’… ๐Ÿ๐Ÿ. Case 1: n is even

Page 3: On the Radio Number of Certain Classes of Circulant Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID โ€“ IJTSRD31865 | Volume โ€“ 4 | Issue โ€“ 5 | July-August 2020 Page 432

Define a mapping โ„Ž: ๐‘‰ (๐บ (๐‘›; {1,๐‘›

3})) โ†’ ๐‘ as follows:

โ„Ž(๐‘ฃ๐‘–) = (๐‘›

6+ 1) (๐‘– โˆ’ 1) + 1, ๐‘– = 1,2 โ€ฆ

๐‘›

2.

โ„Ž (๐‘ฃ๐‘›

2+๐‘–

) = (๐‘›

6+ 1) (๐‘– โˆ’ 1) + โŒˆ

๐‘›

12โŒ‰ + 1, ๐‘– = 1,2 โ€ฆ

๐‘›

2. See

Figure 1.

Case 1.1: Suppose ๐‘ฅ = ๐‘ฃ๐‘˜ and ๐‘ฆ = ๐‘ฃ๐‘š, 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค๐‘›

2,

then ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1. Also, โ„Ž(๐‘ฅ) = (๐‘›

6+ 1) (๐‘˜ โˆ’ 1) + 1, and

โ„Ž(๐‘ฆ) = (๐‘›

6+ 1) (๐‘š โˆ’ 1) + 1,. Hence ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’

โ„Ž(๐‘ฆ)| โ‰ฅ (๐‘›

6+ 1) (๐‘˜ โˆ’ ๐‘š) โ‰ฅ 2 + โŒŠ

๐‘›

6โŒ‹, since ๐‘˜ โ‰  ๐‘š.

Case 1.2: If ๐‘ฅ = ๐‘ฃ๐‘›

2+๐‘˜ and ๐‘ฆ = ๐‘ฃ๐‘›

2+๐‘š, 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค

๐‘›

2, then

|โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| = |(๐‘›

6+ 1) (๐‘˜ โˆ’ 1) + โŒˆ

๐‘›

12โŒ‰ + 1 โˆ’

((๐‘›

6+ 1) (๐‘š โˆ’ 1) + โŒˆ

๐‘›

12โŒ‰ + 1)| โ‰ฅ (

๐‘›

6+ 1) (๐‘˜ โˆ’ ๐‘š) and

๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1. Hence ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ โŒŠ๐‘›

6โŒ‹ +

2, since ๐‘˜ โ‰  ๐‘š.

Case 1.3: If ๐‘ฅ = ๐‘ฅ = ๐‘ฃ๐‘˜ and ๐‘ฆ = ๐‘ฆ = ๐‘ฃ๐‘›

2+๐‘š , 1 โ‰ค ๐‘˜, ๐‘š โ‰ค

๐‘›

2

then ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1 and |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ |((๐‘›

6+ 1) (๐‘˜ โˆ’ 1) +

1) โˆ’ ((๐‘š โˆ’ 1) (๐‘›

4โˆ’ 1) + 2)| โ‰ฅ โŒŠ

๐‘›

6โŒ‹ + 1.

Therefore ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ โŒŠ๐‘›

6โŒ‹ + 2 .

Thus, the radio labelling condition is true for the case when n is even. Case 2: n is odd

Define an injection โ„Ž: ๐‘‰ (๐บ (๐‘›; {1,๐‘›

3})) โ†’ ๐‘ as follows:

โ„Ž(๐‘ฃ๐‘–) = โŒˆ๐‘›

6โŒ‰ (๐‘– โˆ’ 1) + 1, ๐‘– = 1,2 โ€ฆ

๐‘›+1

2.

โ„Ž (๐‘ฃ๐‘›

2+๐‘–

) = โŒˆ๐‘›

6โŒ‰ (๐‘– โˆ’ 1) + โŒˆ

๐‘›

12โŒ‰ + 1, ๐‘– = 1,2 โ€ฆ

๐‘›โˆ’1

2.

Proceeding as in previous case, we can show h is a radio

labelling and that ๐‘Ÿ๐‘› (๐บ (๐‘›; {1,๐‘›

2})) โ‰ค

{(

๐‘›

6+ 1) (

๐‘›

2+ 1) + โŒˆ

๐‘›

12โŒ‰ + 1, if ๐‘› is even

โŒˆ๐‘›

6โŒ‰ (

๐‘›โˆ’1

2) +, if ๐‘› is odd.

.

Lemma 3.3: For ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 4), the diameter of

๐บ (๐‘›; {1,๐‘›

2}) is โŒŠ

๐‘›

4โŒ‹.

Proof: Let {๐‘ฃ1, ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘›} be the vertices in the outer circle.

We construct the graph ๐บ (๐‘›; {1,๐‘›

2}) by joining the vertices

๐‘ฃ1 to ๐‘ฃ๐‘›

2, ๐‘ฃ2 to ๐‘ฃ๐‘›

2+1 โ€ฆ with a common difference of length

๐‘›

2โˆ’ 1 till the process of joining gets over. Therefore, the

maximum distance from a vertex to another vertex is at

least half of ๐‘›

2โˆ’ 1, which is equal to โŒŠ

๐‘›

4โŒ‹, since ๐‘› โ‰ก

0(๐‘š๐‘œ๐‘‘ 4).

Theorem 3.3: The radio number of ๐บ (๐‘›; {1,๐‘›

2}) , ๐‘› โ‰ก

0(๐‘š๐‘œ๐‘‘ 4), ๐‘› > 16, satisfies ๐‘Ÿ๐‘› (๐บ (๐‘›; {1,๐‘›

2})) โ‰ค

(๐‘›

2โˆ’ 1) (

๐‘›

4โˆ’ 1) + 4.

Proof: We partition the vertex set ๐‘‰ = {๐‘ฃ1, ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘›} into four disjoint set ๐‘‰1, ๐‘‰2 , ๐‘‰3 and ๐‘‰4. Let ๐‘‰1 =

{๐‘ฃ1, ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘›

4} , ๐‘‰2 = {๐‘ฃ๐‘›

4+1, ๐‘ฃ๐‘›

4+2 โ€ฆ ๐‘ฃ๐‘›

2}, ๐‘‰3 =

{๐‘ฃ๐‘›

2+1, ๐‘ฃ๐‘›

2+2 โ€ฆ ๐‘ฃ3๐‘›

2

} and ๐‘‰3 = {๐‘ฃ3๐‘›

2+1, ๐‘ฃ3

๐‘›

2+2 โ€ฆ ๐‘ฃ๐‘›}.

Define a mapping โ„Ž: ๐‘‰ (๐บ (๐‘›; {1,๐‘›

2})) โ†’ ๐‘ as follows:

โ„Ž(๐‘ฃ2๐‘–โˆ’1) = (๐‘– โˆ’ 1) (๐‘›

4โˆ’ 1) , ๐‘– = 1,2 โ€ฆ โŒˆ

๐‘›

8โŒ‰.

โ„Ž(๐‘ฃ2๐‘–) = (โŒˆ๐‘›

8โŒ‰ + (๐‘– โˆ’ 1)) (

๐‘›

4โˆ’ 1) + 1, ๐‘– = 1,2 โ€ฆ โŒŠ

๐‘›

8โŒ‹.

โ„Ž (๐‘ฃ๐‘›

4+2๐‘–โˆ’1

) = (๐‘– โˆ’ 1) (๐‘›

4โˆ’ 1) + 2, ๐‘– = 1,2 โ€ฆ โŒˆ

๐‘›

8โŒ‰.

โ„Ž (๐‘ฃ๐‘›4

+2๐‘–) = (โŒˆ

๐‘›

8โŒ‰ + (๐‘– โˆ’ 1)) (

๐‘›

4โˆ’ 1) + 2, ๐‘– = 1,2 โ€ฆ โŒŠ

๐‘›

8โŒ‹.

โ„Ž (๐‘ฃ๐‘›โˆ’(2โŒˆ

๐‘›8

โŒ‰+2๐‘–โˆ’3) = (

๐‘›

4+ ๐‘– โˆ’ 1)(

๐‘›

4โˆ’ 1)) + 4, ๐‘– = 1,2 โ€ฆ โŒˆ

๐‘›

8โŒ‰

โ„Ž (๐‘ฃ๐‘›โˆ’(2โŒˆ

๐‘›8

โŒ‰+2๐‘–โˆ’2)) = (โŒˆ

๐‘›

8โŒ‰ + ๐‘– +

๐‘›

4โˆ’ 1)(

๐‘›

4โˆ’ 1)) + 4, ๐‘–

= 1,2 โ€ฆ โŒŠ๐‘›

8โŒ‹.

โ„Ž(๐‘ฃ๐‘›โˆ’2(๐‘–โˆ’1)) = (๐‘›

4+ (๐‘– โˆ’ 1)) (

๐‘›

4โˆ’ 1) + 3, ๐‘– = 1,2 โ€ฆ โŒˆ

๐‘›

8โŒ‰.

โ„Ž(๐‘ฃ๐‘›โˆ’(2๐‘–โˆ’1)) = (โŒˆ๐‘›

8โŒ‰ +

๐‘›

4+ (๐‘– โˆ’ 1)) (

๐‘›

4โˆ’ 1) + 3, ๐‘– =

1,2 โ€ฆ โŒŠ๐‘›

8โŒ‹. See Figure 2.

Next, we verify that ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1 + โŒŠ๐‘›

4โŒ‹ for

all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰ (๐บ (๐‘›; {1,๐‘›

2}))

Figure 2: A circulant graph graph ๐†(๐Ÿ๐ŸŽ, {๐Ÿ, ๐Ÿ๐ŸŽ}) and its

radio labelling Case 1: Suppose ๐‘ฅ = ๐‘ฃ2๐‘˜โˆ’1 and ๐‘ฆ = ๐‘ฃ2๐‘šโˆ’1๐‘š , 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค

โŒˆ๐‘›

8โŒ‰, then the distance between them is at least 1.

Also, โ„Ž(๐‘ฅ) = (๐‘˜ โˆ’ 1) (๐‘›

4โˆ’ 1) and โ„Ž(๐‘ฆ) = (๐‘š โˆ’ 1) (

๐‘›

4โˆ’ 1).

Hence ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1 +๐‘›

4(๐‘˜ โˆ’ ๐‘š) โ‰ฅ 1 +

โŒŠ๐‘›

4โŒ‹ , since ๐‘˜ โ‰  ๐‘š.

Page 4: On the Radio Number of Certain Classes of Circulant Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID โ€“ IJTSRD31865 | Volume โ€“ 4 | Issue โ€“ 5 | July-August 2020 Page 433

Case 2: If ๐‘ฅ = ๐‘ฃ2๐‘˜ and ๐‘ฆ = ๐‘ฃ2๐‘š, 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค โŒŠ๐‘›

8โŒ‹, then

โ„Ž(๐‘ฅ) = (โŒˆ๐‘›

8โŒ‰ + (๐‘˜ โˆ’ 1)) (

๐‘›

4โˆ’ 1) and โ„Ž(๐‘ฆ) = (โŒˆ

๐‘›

8โŒ‰ +

(๐‘š โˆ’ 1)) (๐‘›

4โˆ’ 1) and ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1. Hence ๐‘‘(๐‘ฅ, ๐‘ฆ) +

|โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ๐‘›

4(๐‘˜ โˆ’ ๐‘š) โ‰ฅ 1 + โŒŠ

๐‘›

4โŒ‹ , since ๐‘˜ โ‰  ๐‘š.

Case 3: If ๐‘ฅ = ๐‘ฃ๐‘›

4+2๐‘˜โˆ’1 and ๐‘ฆ = ๐‘ฃ๐‘›

4+2๐‘šโˆ’1, 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค โŒˆ

๐‘›

8โŒ‰,

then ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1 and |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ |(๐‘˜ โˆ’ 1) (๐‘›

4โˆ’ 1) +

2 โˆ’ ((๐‘š โˆ’ 1) (๐‘›

4โˆ’ 1) + 2)| โ‰ฅ โŒŠ

๐‘›

4โŒ‹ , since ๐‘˜ โ‰  ๐‘š.

Therefore ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1 + โŒŠ๐‘›

4โŒ‹ .

Case 4: If ๐‘ฅ = ๐‘ฃ๐‘›

4+2๐‘š and ๐‘ฆ = ๐‘ฃ๐‘›

4+2๐‘˜, 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค โŒŠ

๐‘›

8โŒ‹, then

๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 1 and the modulus difference of

โ„Ž(๐‘ฅ)and โ„Ž(๐‘ฆ) is altleast โŒŠ๐‘›

4โŒ‹.

Therefore ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1 + โŒŠ๐‘›

4โŒ‹.

|โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ |(๐‘˜ โˆ’ 1) (๐‘›

4โˆ’ 1) + 2

โˆ’ ((๐‘š โˆ’ 1) (๐‘›

4โˆ’ 1) + 2)| โ‰ฅ โŒŠ

๐‘›

4โŒ‹ , since ๐‘˜

โ‰  ๐‘š.

Therefore ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1 + โŒŠ๐‘›

4โŒ‹ .

Case 5: Suppose x and y are of the form ๐‘ฃ

๐‘›โˆ’(2โŒˆ๐‘›

8โŒ‰+2๐‘˜โˆ’3

and

๐‘ฃ๐‘›โˆ’(2โŒˆ

๐‘›

8โŒ‰+2๐‘šโˆ’3

, 1 โ‰ค ๐‘˜ โ‰  ๐‘š โ‰ค โŒˆ๐‘›

8โŒ‰, then the distance between

them is at least 1 and |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ |((๐‘›

4+ ๐‘˜ โˆ’ 1)(

๐‘›

4โˆ’

1)) + 4) โˆ’ (๐‘›

4+ ๐‘š โˆ’ 1)(

๐‘›

4โˆ’ 1)) + 4| โ‰ฅ |(

๐‘›

16

2+ ๐‘˜

๐‘›

4) โˆ’

(๐‘›

16

2+ ๐‘š

๐‘›

4)|.

Hence ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 1 + โŒŠ๐‘›

4โŒ‹, since ๐‘˜ โ‰  ๐‘š.

Case 6: If ๐‘ฅ = ๐‘ฃ2๐‘˜โˆ’1 and ๐‘ฆ = ๐‘ฃ๐‘›

4+2๐‘˜, 1 โ‰ค ๐‘˜ โ‰ค โŒˆ

๐‘›

8โŒ‰, 1 โ‰ค ๐‘š โ‰ค

โŒŠ๐‘›

8โŒ‹, then ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 3 and โ„Ž(๐‘ฅ) = (๐‘˜ โˆ’ 1) (

๐‘›

4โˆ’ 1) , โ„Ž(๐‘ฆ) =

(โŒˆ๐‘›

8โŒ‰ + (๐‘˜ โˆ’ 1)) (

๐‘›

4โˆ’ 1) + 2.

Therefore ๐‘‘(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ 3 + |(โŒˆ๐‘›

8โŒ‰ +

(๐‘š โˆ’ 1)) (๐‘›

4โˆ’ 1) + 2 โˆ’ ((๐‘˜ โˆ’ 1) (

๐‘›

4โˆ’ 1))| โ‰ฅ 3 +

โŒˆ๐‘›

8โŒ‰ (

๐‘›

4โˆ’ 1) > โŒŠ

๐‘›

4โŒ‹ + 1.

Case 7: Suppose ๐‘ฅ = ๐‘ฃ

๐‘›โˆ’(2โŒˆ๐‘›

8โŒ‰+2๐‘˜โˆ’2)

and ๐‘ฃ๐‘›โˆ’(2๐‘šโˆ’1), 1 โ‰ค

๐‘˜, ๐‘š โ‰ค โŒŠ๐‘›

8โŒ‹, then โ„Ž(๐‘ฅ) = (โŒˆ

๐‘›

8โŒ‰ + ๐‘š +

๐‘›

4โˆ’ 1)(

๐‘›

4โˆ’ 1)) + 4 and

โ„Ž(๐‘ฆ) = (โŒˆ๐‘›

8โŒ‰ +

๐‘›

4+ (๐‘š โˆ’ 1)) (

๐‘›

4โˆ’ 1) + 3.

Also ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ฅ 2. Hence, we get(๐‘ฅ, ๐‘ฆ) + |โ„Ž(๐‘ฅ) โˆ’ โ„Ž(๐‘ฆ)| โ‰ฅ

2 +๐‘›

4+ 1 > โŒŠ

๐‘›

4โŒ‹ + 1.

Similarly, we can prove the rest of the cases. Thus, h is a

valid radio labelling and satisfies ๐‘Ÿ๐‘› (๐บ (๐‘›; {1,๐‘›

2})) โ‰ค

(๐‘›

2โˆ’ 1) (

๐‘›

4โˆ’ 1) + 4.

Lemma 3.4: If ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 10), then the diameter of

๐บ (๐‘›; {1,๐‘›

5}) is

๐‘›

10+ 2.

Figure 3: Radio labelling of a circulant graph

๐†(๐ง; {๐Ÿ,๐ง

๐Ÿ“}) with ๐ง = ๐Ÿ๐ŸŽ.

Proof: As the proof is similar to Lemma 3.2, we omit the proof.

Theorem 3.4: The radio number of ๐บ (๐‘›; {1,๐‘›

5}) , ๐‘› โ‰ก

0(๐‘š๐‘œ๐‘‘ 10), satisfies ๐‘Ÿ๐‘› (๐บ (๐‘›; {1,๐‘›

2})) โ‰ค {

๐‘›

20(๐‘› + 18) +

โŒˆ๐‘›

20โŒ‰.

Proof: We omit the proof. Figure 3, illustrates the proof of the theorem 4. Conclusion In this article we have obtained the radio number of certain classes of circulant graphs. Further the work is extended to other extensions of channel assignment problems such as radial radio number, antipodal radio mean labelling etc. References [1] K. F. Benson - M. Porter, M. Tomova โ€œThe radio

numbers of all graphs of order ๐‘› and diameter ๐‘› โˆ’ 2โ€ vol.68, pp. 167-190, 2013.

[2] Bermond J. C., Comellas F., Hsu D. F., Distributed loop computer networks: A survey, Journal of Parallel and Distributed Computing, Vol. 24, pp. 2-10, 1995.

[3] Bharati Rajan, Kins Yenoke, โ€œOn the radio number of hexagonal meshโ€, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 79, pp. 235-244, 2011.

Page 5: On the Radio Number of Certain Classes of Circulant Graphs

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID โ€“ IJTSRD31865 | Volume โ€“ 4 | Issue โ€“ 5 | July-August 2020 Page 434

[4] Bharati Rajan, Indra Rajasingh, Kins Yenoke, Paul Manuel, Radio number of graphs with small diameter, International Journal of Mathematics and Computer Science, Vol. 2, pp. 209-220, 2007.

[5] Boesch F. T., Wang J., Reliable circulant networks with minimum transmission delay, IEEE Transactions on Circuit and Systems, Vol. 32, pp. 1286-1291, 1985.

[6] G. Chartrand, D. Erwin, P. Zhang, โ€œA radio labeling problem suggested by FM channel restrictionsโ€, Bull. Inst. Combin. Appl. Vol 33, pp.77-85, 2001.

[7] G. Chartrand, L. Nebeskยทy and P. Zhang, Radio k-colorings of paths, Discussiones Mathematicae Graph Theory, Vol. 24, pp. 5-21, 2004.

[8] C. Fernandez, A. Flores, M. Tomova and Cindy Wyels, The Radio Number of Gear Graphs, http: //arxiv.org/P Scache/arxiv/pdf /0809/0809.2623v1.pdf.

[9] D. Fotakis, G. Pantziou, G. Pentaris, and P. Spirakis, Assignment in mobile and radio networks, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 45, pp. 7390, 1999.

[10] M. Kchikech, R. Khennoufa and O. TogniLinear and cyclic radio k labelings of trees. Discussiones Mathematicae Graph Theory, 27 (1): 105-123, (2007).

[11] Kins Yenoke, P. Selvagopal, K. M. Baby Smitha, Ronald Cranston, โ€œBounds for the Radio Number of Mesh derived Architectureโ€ International Journal of Innovative Science, Engineering and Technology, Vol 9, pp. 4806-4810, 2020.

[12] D. Liu and M. Xie, โ€œRadio Number for Square Cyclesโ€, Congr. Numerantium, Vol 169 pp. 105 - 125, 2004.

[13] Wong G. K., Coppersmith D.A.; A combinatorial problem related to multitude memory organization, Journal of Association for Computing Machinery, Vol.21, pp. 392-401, 1974.