On-line Calibration for Dynamic Traffic Assignment

56
On–line Calibration for Dynamic Traffic Assignment Constantinos Antoniou October 5, 2007 Seminar at Portland State University

Transcript of On-line Calibration for Dynamic Traffic Assignment

On–line Calibration for Dynamic TrafficAssignment

Constantinos Antoniou

October 5, 2007

Seminar at Portland State University

Constantinos Antoniou October 5, 2007

Outline

• Introduction

• Formulation

• Solution approaches

• Case study

• Directions for further research

• A glimpse at ongoing research

Seminar at Portland State University 1

!"#$%&'!"#$%&'!"#$%&'!"#$%&'DYnamic Network Assignment

for the Management of Information to Travelers

!"#$%&'!"#$%&'!"#$%&'!"#$%&'!"#$%&'!"#$%&'!"#$%&'!"#$%&' ()*$()*$()*$()*$()*$()*$()*$()*$

)(+, $.(/#01$)23

42$ 0.(+2*)").2+

5423(6.(#7*.4$88(6

54/9(3(#7*.4$92 *(#8/4+$.(/#

DynaMIT GUI

:(+, $.(/#:(+, $.(/#:(+, $.(/#:(+, $.(/#:(+, $.(/#:(+, $.(/#:(+, $.(/#:(+, $.(/#

!!2+$#3; %(64/*)(+, $./4; !25$4.,42*.(+2*6</(62; =/,.2*6</(62; =2)5/#)2*./*&':; >4(7(#032).(#$.(/#*8 /?)

!:,55 "; %2)/)6/5(6 '4$88(6*)(+, $./4

=2$ =2$ =2$ =2$ =2$ =2$ =2$ =2$ 00000000'(+2'(+2'(+2'(+2'(+2'(+2'(+2'(+2

!@/#.(#,/,)*3$.$*6/ 26.(/#!A$).*54/62))(#7

; B$).C >4(7(#$ "*32)(7#23*$)*3().4(1,.23*)/8.?$42

; B42)2#.C D+/#/ (.<(6E; A,.,42C 5$4$ 2 (F$.(/#*288/4.)*,#324?$"

"Processors no longer getting faster, but adding cores

! &++23($.2*3())2+(#$.(/#

'4$88(6*5423(6.(/#'4$88(6*5423(6.(/#'4$88(6*5423(6.(/#'4$88(6*5423(6.(/#'4$88(6*5423(6.(/#'4$88(6*5423(6.(/#'4$88(6*5423(6.(/#'4$88(6*5423(6.(/#

! =/ (#7*</4(F/#! @/#)().2#6"

=/ (#7*G/4(F/#=/ (#7*G/4(F/#=/ (#7*G/4(F/#=/ (#7*G/4(F/#=/ (#7*G/4(F/#=/ (#7*G/4(F/#=/ (#7*G/4(F/#=/ (#7*G/4(F/#

!"#$%&'!"#$%&'!"#$%&'!"#$%&'!"#$%&'!"#$%&'!"#$%&'!"#$%&' 6/#).$#. "*5423(6.)*.4$88(6*6/#).$#. "*5423(6.)*.4$88(6*6/#).$#. "*5423(6.)*.4$88(6*6/#).$#. "*5423(6.)*.4$88(6*6/#).$#. "*5423(6.)*.4$88(6*6/#).$#. "*5423(6.)*.4$88(6*6/#).$#. "*5423(6.)*.4$88(6*6/#).$#. "*5423(6.)*.4$88(6*6/#3(.(/#)*8/4*$*5426/#3(.(/#)*8/4*$*5426/#3(.(/#)*8/4*$*5426/#3(.(/#)*8/4*$*5426/#3(.(/#)*8/4*$*5426/#3(.(/#)*8/4*$*5426/#3(.(/#)*8/4*$*5426/#3(.(/#)*8/4*$*54200000000)526(8(23*.(+2*524(/3)526(8(23*.(+2*524(/3)526(8(23*.(+2*524(/3)526(8(23*.(+2*524(/3)526(8(23*.(+2*524(/3)526(8(23*.(+2*524(/3)526(8(23*.(+2*524(/3)526(8(23*.(+2*524(/3

8:007:55 9:00

Estimation PredictionRunning

time

8:007:55 9:00

Estimation PredictionRunning

time

8:07

8:07

9:07

At 8:00

At 8:07

Broadcasting forecasts does not affect the weather

But with traffic…

DynaMIT Evaluation

MITSIM

Surveillance System

DynaMIT

Information

%2$),42)/8

28826.(92#2))

!"#$%&'!"#$%&'C*H2.?/4I*=2542)2#.$.(/#C*H2.?/4I*=2542)2#.$.(/#

!"#$%&'!"#$%&'

>924$

A4$+2?/4I

Information dissemination

DatabaseNetwork representationHistorical information

Real-Time inputsTraffic Surveillance and

Control

State Estimation

DemandSimulation

SupplySimulation

Prediction-based Information Generation

InformationGeneration

DemandSimulation

SupplySimulation

Constantinos Antoniou October 5, 2007

On–line DTA framework

Demand

simulator

Supply simulator

State estimation and model calibration

Network representation

Historical data

A-priori

parameter

values

Surveillance

information

Demand

simulator

Supply simulator

State prediction

Network

performance

Seminar at Portland State University 2

Constantinos Antoniou October 5, 2007

Motivation• Models/components

– Demand–side! OD flows! Behavioral models (e.g. route choice)

– Supply–side

! Speed–density relationship (e.g. u = uf

[1 !

(max(0,K!Kmin)

Kjam

)!]"

· where u denotes the speed, uf is the free flow speed, K is thedensity, Kmin is the minimum density, Kjam is the jam density and" and ! are model parameters.)

! Segment capacities

• Existing state estimation and model calibration approaches include subsetof these models

Seminar at Portland State University 3

Constantinos Antoniou October 5, 2007

Literature review

• Demand parameters

– OD estimation [Ashok and Ben–Akiva (1993, 2000)]

• Supply parameters

– Capacity estimation [van Arem and van der Vlist (1992)]

– Estimation of dynamic speed–density functions [Tavana andMahmassani (2000), Huynh et al. (2002), Qin and Mahmassani(2004)]

– Tra!c state estimation in freeway stretches [Wang and Papageorgiou(2005, 2007)]

Seminar at Portland State University 4

Constantinos Antoniou October 5, 2007

Research objectives

• Develop an integrated approach for on–line calibration that

– Jointly estimates and predicts demand and supply parameters

– Is general and flexible! Not tied to a particular DTA system

! Applicable to any calibration parameters

! Can exploit any available information

– Is computationally feasible

• Demonstrate the feasibility of the approach

Seminar at Portland State University 5

Constantinos Antoniou October 5, 2007

Inputs and outputs

On-line

calibration

A priori

parameter

values

Surveillance

data

Historical

data

On-line calibrated

parameters

Seminar at Portland State University 6

Constantinos Antoniou October 5, 2007

Formulation

• State–space model

– State vector

– Measurement equations

– Transition equations

• Idea of deviations

Seminar at Portland State University 7

Constantinos Antoniou October 5, 2007

State vector

• Deviations #!h of model inputs and parameters !h from availableestimates

#!h = !h ! !Hh

• State vector includes

– OD flows xijh: number of vehicles departing from origin i towardsdestination j during time interval h

– Model parameters, e.g.! route choice model parameters

! speed–density relationship parameters

! segment capacities

Seminar at Portland State University 8

Constantinos Antoniou October 5, 2007

Measurement equations (I)

• Direct measurement equation

!ah = !h + vh

• In deviations’ form (subtracting !Hh from both sides)

!ah ! !H

h = !h ! !Hh + vh !

#!ah = #!h + vh

where

– a denotes a priori values, H indicates historical estimates, vh is arandom error vector.

Seminar at Portland State University 9

Constantinos Antoniou October 5, 2007

Measurement equations (II)• Indirect measurement equation

Mh = S(!h

)+ "h

• In deviations’ form (subtracting MHh from both sides)

Mh ! MHh = S

(!h

)! MH

h + "h !

#Mh = S(!H

h + #!h

)! MH

h + "h

where

– Mh is a vector of measurements for interval h, and "h is a randomerror vector.

– S is the simulator function mapping the state to the measurements(no analytic expression).

Seminar at Portland State University 10

Constantinos Antoniou October 5, 2007

Transition equations

!h+1 =h"

q=h!p

Fh+1q · !q + #h

• In deviations’ form (subtracting !H for appropriate interval from bothsides)

!h+1 ! !Hh+1 =

h"

q=h!p

Fh+1q

(!q ! !H

q

)+ #h !

#!h+1 =h"

q=h!p

Fh+1q · #!q + #h

where

– Fh+1q is a transition matrix of e"ects of #!q on #!h+1

– p is the degree of the autoregressive process, and– #h is a random error vector

Seminar at Portland State University 11

Constantinos Antoniou October 5, 2007

The model at a glance

#!ah = #!h + vh

#Mh = S(!H

h + #!h

)! MH

h + "h

#!h+1 =h"

q=h!p

Fh+1q · #!q + #h

Seminar at Portland State University 12

Constantinos Antoniou October 5, 2007

Solution approaches

• Linear models

– Kalman Filter (KF)

• Non–linear models

– Extended Kalman Filter (EKF)– Limiting Extended Kalman Filter (LimEKF)– Unscented Kalman Filter (UKF)

Seminar at Portland State University 13

Constantinos Antoniou October 5, 2007

Kalman Filtering principles

• Prediction–correction approach

1. Predict a priori state for interval h (using information up to h ! 1)

2. Compute Kalman gain matrix

3. Combine Kalman gain and surveillance from interval h to correct stateprediction for interval h

Seminar at Portland State University 14

Constantinos Antoniou October 5, 2007

Extended Kalman Filter

• Extension of Kalman Filter for non–linear models

– First order Taylor expansion approximation

• Can use numerical derivatives, if no analytical relationship exists (formeasurement equations)

– Large number of function evaluations is required– e.g. 2n evaluations if central di"erences are used (n is state dimension)

• Computation of Kalman gain most “expensive” operation

Seminar at Portland State University 15

Constantinos Antoniou October 5, 2007

Limiting Extended Kalman Filter

• Use a pre–computed Kalman gain

– E.g.: (weighted) average of Kalman gains (computed o"–line)– No need to compute the Kalman gain on–line

• Only a single function evaluation is required on–line

• Can run EKF o"–line and periodically re–compute Kalman gain

Seminar at Portland State University 16

Constantinos Antoniou October 5, 2007

Unscented Kalman Filter

• Uses Unscented Transformation

– The state mean and covariance are used to generate 2n + 1 sigmapoints (n is the dimension of the state)

– These points are propagated through the true nonlinearity

• Kalman gain is computed from the state and measurement covariances

• No limiting version is possible

– Mean measurement vector (from 2n + 1 replications) is required forthe correction stage

Seminar at Portland State University 17

Constantinos Antoniou October 5, 2007

Case study — Objectives

• Demonstrate feasibility of the on–line calibration approach

• Verify importance of on–line calibration

– Impact of joint estimation and prediction of demand and supplyparameters

• Test candidate algorithms based on several criteria

– Performance/Fit (estimation and prediction)– Computational properties– Robustness

Seminar at Portland State University 18

Constantinos Antoniou October 5, 2007

The DynaMIT–R system

• State–of–the–art, simulation–based DTA system

– Transportation network and supply characteristics– OD demand and travel behavior

• Operates in rolling horizon for:

– Real–time estimation of network performance– Short–term prediction of future network conditions– Generation of tra!c information

• Inputs

– A-priori OD flows– Route choice parameters– Tra!c dynamics models’ parameters– Segment capacities

Seminar at Portland State University 19

Constantinos Antoniou October 5, 2007

Network (I)

Seminar at Portland State University 20

Constantinos Antoniou October 5, 2007

Network (II)Southampton, U.K. (35km portion of freeway M27)

Direction of flow

Traffic sensor

• 45 segments (three types)

• 10 sensors

• 20 OD pairs

• PM data (peak direction)

Seminar at Portland State University 21

Constantinos Antoniou October 5, 2007

Traffic flow characteristics

Seminar at Portland State University 22

Constantinos Antoniou October 5, 2007

Experimental design

• Type of day: Dry/wet weather

• Scope of on–line calibration: demand only vs. joint demand and supply

Type of day

Scope Dry Wet

Demand only (base) KF/GLS KF/GLS

EKF EKF

Demand and supply LimEKF LimEKF

UKF UKF

Seminar at Portland State University 23

Constantinos Antoniou October 5, 2007

Measures of effectiveness

1. Fit of estimated/predicted vs. observed speeds

2. Fit of estimated/predicted vs. observed sensor counts

• Aggregate statistic: Normalized root mean square error (RMSN)

RMSN =

√N"

#n=1:N(yn ! yn)2

#n=1:N yn

3. Computational performance

Seminar at Portland State University 24

Constantinos Antoniou October 5, 2007

Summary results for estimated and predicted speeds(Dry)

0

0.05

0.1

0.15

0.2

0.25

Three-step PredictionTwo-step PredictionOne-step PredictionEstimation

RMSN

BaseEKF

LimEKFUKF

Seminar at Portland State University 25

Constantinos Antoniou October 5, 2007

Summary results for estimated and predicted speeds(Wet)

0

0.05

0.1

0.15

0.2

0.25

Three-step PredictionTwo-step PredictionOne-step PredictionEstimation

RMSN

BaseEKF

LimEKFUKF

Seminar at Portland State University 26

Constantinos Antoniou October 5, 2007

On–line calibrated speed–density relationshipsMainline segments – EKF

top: dry weather, bottom: wet weather

10 20 30 40 50 60

70

80

90

10

01

10

12

0

Density (veh/km/lane)

Sp

ee

d (

kp

h)

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!!

!

!!

!

!

!! !

!

!

!

!!

!!

!

!

!!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!!

!!

!

!

!

!

!

!

!

!!

!!

!

!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

! !

!

! !

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!!

!

!

!!

!!

!

!

!

!

!

!

! !

!

!

! !!

!!

!

!

!

!

!

!!!

!

!

!

!

!

!

! !

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!!

!!

!

!!

!

!

!!!

!

!

!

!

! !

!

!

Off!lineOn!line

! Observations

10 20 30 40 50 60

70

80

90

10

01

10

12

0

Density (veh/km/lane)

Sp

ee

d (

kp

h)

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !

!

!!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! ! !

!

!

!

!!!

!

!!

!

!

!

!

!

!

!

!!!

!

!

!

!!

!!

!!

!

!

!

!

!

!

!

!!

!

!

! !

!

!

!

!

!

!!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!! !

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

! !

!

!

!

!

! !

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !

!

!

!!

!

!

! !

!

!

!!!

!!

!

!

!

!

!!

!

!

!

!!

!!

!

!

!!

!

!

Off!lineOn!line

! Observations

Seminar at Portland State University 27

Constantinos Antoniou October 5, 2007

Computational performance (I)

• EKF/UKF

– Similar performance (2n vs. 2n + 1 function evaluations)

• Limiting Kalman Filter

– Order–of–magnitude improvement

– Single function evaluation required (independent of state dimension)

Seminar at Portland State University 28

Constantinos Antoniou October 5, 2007

Computational performance (II)

Function Runtime

evaluations (min:sec)

EKF 2n 98:29

LimEKF 1 0:43

UKF 2n 97:44

• Pentium 4 2.8GHz computer with 512MB RAM

Seminar at Portland State University 29

Constantinos Antoniou October 5, 2007

Additional analysis - LimEKF(top:speeds, bottom:counts)

0

0.05

0.1

0.15

0.2

0.25

0.3

Five-step pred.Four-step pred.Three-step pred.Two-step pred.One-step pred.Estimation

RMSN

BaseLimEKF

0

0.05

0.1

0.15

0.2

0.25

0.3

Five-step pred.Four-step pred.Three-step pred.Two-step pred.One-step pred.Estimation

RMSN

BaseLimEKF

Seminar at Portland State University 30

Constantinos Antoniou October 5, 2007

Conclusions/Findings (I)

• Joint on–line calibration of demand and supply parameters can improveprediction accuracy

• Changes in parameters are consistent with tra!c engineering principlesand expectations

• Interactions between many parameters are captured

– Many degrees of freedom

Seminar at Portland State University 31

Constantinos Antoniou October 5, 2007

Conclusions/Findings (II)

• EKF/UKF: “Real-time” performance in a small, but non-trivial realnetwork

• Limiting EKF

– Order(s) of magnitude improvement in computational performance

– Comparable accuracy to EKF/UKF

– Robustness

Seminar at Portland State University 32

Constantinos Antoniou October 5, 2007

Conclusions/Findings (III)

• EKF has more desirable properties than UKF (in this application)

– EKF generally outperforms UKF! Full power of UKF is not exhibited, because transition equation is

already linear

– UKF is not as robust (perhaps due to the number of points used)

– EKF and UKF have similar computational properties

– Limiting EKF (while no similar UKF version exists)

Seminar at Portland State University 33

Constantinos Antoniou October 5, 2007

Directions for further research

• Further experimental analysis

– Scalability– Robustness– Sensitivity

• Impact of grouping segments (for speed–density relationship estimation)

• Algorithms

– e.g. particle filters (generalization of UKF)

Seminar at Portland State University 34

Constantinos Antoniou October 5, 2007

A glimpse at ongoing researchMesoscopic traffic simulation

Density

Calculate speed

Advance vehicles

Data-

base

Density and other

explanatory variables

Calculate speed

Advance vehicles

Typical approach Alternative approach

u=f(k)

Seminar at Portland State University 35

Constantinos Antoniou October 5, 2007

More flexible functional forms

Plus: easily incorporate additional measurements

Seminar at Portland State University 36

Constantinos Antoniou October 5, 2007

A comparison of data–driven approaches (I)

• Locally weighted regression

• Support vector regression

• Neural networks

Seminar at Portland State University 37

Constantinos Antoniou October 5, 2007

A comparison of data–driven approaches (II)

Seminar at Portland State University 38

Constantinos Antoniou October 5, 2007

A comparison of data–driven approaches (III)

Notes: Application runtimes. SVR is an order of magnitude slower.

Seminar at Portland State University 39

Constantinos Antoniou October 5, 2007

An integrated machine learning approach

k-means,

Fuzzy c-means, etc

Flexible

relationships f(x)

K-nearest

neighbors

Clustering

Fitting

Classification

Flexible

relationships f(x)Estimation

Training data

(Speeds/Densities/flows)

Estimated

speeds

Training

Explanatory data

(Densities/flows)

Application

Seminar at Portland State University 40

Constantinos Antoniou October 5, 2007

An integrated approach: loess and clustering (I)

!!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!!

!!

!!

!

!!

!!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!!

!!

!

!!!

!

!

!

!

!

!

!!

!

!!

!

!!!

!

!

!

!!!

!

!

!

!!

!!

!

!

!!

!!

!

!

!!!!

Classic

loess

(dsy)

loess

(dsy+flw)

loess!clust

(dsy)

loess!clust

(dsy+flw)

!40

!20

020

40

B. Distribution of speed deviations by approach

Approach

Devia

tions in s

peeds (

kph)

Seminar at Portland State University 41

Constantinos Antoniou October 5, 2007

An integrated approach: loess and clustering (II)

!!!!! !!!! !! !!!!! ! !! !! !!! ! !!! !!!!!! !! ! !! !! !! !!!! !! !!! !!! ! !!!! ! ! !! ! ! !!!! !!!!! !!!! ! !!!! ! !! !! !! ! ! !!! ! !!! !! !! ! !!!! !!! !! !!!!!! !! ! !!! !!! !!! !!! !!!!! !!! !! !!!!!! ! !!!!! ! ! !!! ! !! ! !! !!!!! ! !! !! !! !!! !! ! !!!!! !!! ! ! !! !!!! !!! !! !! ! ! !! ! ! !!!! !! !!!!!!! !! !! !! ! !!!!! !!!!!!! !!! !!!!!! !! ! ! !!! !!! !! !! ! !!!! ! !!! !!!

!

!! !! !!! !! !!! !!!! !!!! !! ! !!!!

!!! !!!!!!! !!! !!! !!

!!

!

!! !!

!

!!

!

!!!

!!!

! !!

!!!! !!! !

!!!

!

!!!

!

!!!

!! !

!

!!!! !!! !!!!!

!

!!

!

!

!!!

!

! !

!

! !

!

!!!!

!

!!

!

!!

!

!!!!!

!!

!

!! !!

!!

!!

!

!!

!

!!

!

!!

!

!!

!

!!!!

!

!! !!

!!

!

!!!!

!

!!

!

!!

!

!

!

!

!

!!

!

!

!

!

!!

!!!

!

!

!

!

!

!

!!!

! !

!

!

!!

!

!

!

!

!

!

!

!!

! !!

!

!

!!!!

!

!!!

!!!

!!

!!

!!!

!!

!

!!!

!!!

!!

!

!

!

!

!

!!! !

!!

!! !

!!!

!!

!

!

!

!

!!

!!

!!!

! !! !

!! !

!! !!

!!!

!

!!

!

!

!!

!!

!

!!!

!

!

!!

!

!

!!

!!

!

!!!!!

!

!!!!

!!

!!

! !!! !!!

!!

!

!!!!! !! !!! !! !! !!! ! !!!! !! !!!!! !!! !!! !!!!! !!!!!! !! !!!!!

!!! !!! !! !!!! !! !!!! ! !!! ! !!!! !! !!!!!!!!! !! !

0 50 100 150

050

100

150

A. Classic speed!density relationship

Observed speeds(kph)

Estim

ate

d s

peeds (

kph)

!!!!! !!!! !! !!!!! ! !! !! !!! ! !!! !!!!!! !! ! !! !! !! !!!! !! !!! !!! ! !!!! ! ! !! ! ! !!!! !!!!! !!!! ! !!!! ! !! !! !! ! ! !!! ! !!! !! !! ! !!!! !!! !! !!!!!! !! ! !!! !!! !!! !!! !!!!! !!! !! !!!!!! ! !!!!! ! ! !!! ! !! ! !! !!!!! ! !! !! !! !!! !! ! !!!!!

!!! ! ! !! !!!! !!!!! !! ! ! !! ! ! !!!! !! !

!!!!!! !! !! !

!!

!!!!! !!!!

!!

! !!! !!!!!!

!! ! ! !!! !!! !! !

! !!!

!! ! !!! !!

!

!

!! !!

!!!

!! !!! !!!! !!!! !! ! !!!

!!!

! !!!

!!!!!!

!!!

! !!!

!

!

!! !!

!!!!

!!!

!!!

! !!

!!!

!!!!

!!!!

!

!!!

!!!

!!! !

!

!!!! !!! !!!!!

!

!!

!!

!!

!

!

! !

!! !

!

!!!!

!

!!!

!!!

!!!!!

!!

!

!! !

!!!

!!

!

!!

!

!!

!

!

!!

!!

!

!!!!

!

!! !!

!!

!

!!!!

!

!!

!

!!

!

!

!

! !

!! !

!

!

!

!

!

!!!

!

!

!

!

!

!

!!!

! !

!

!

!!

!

!

!

!

!

!

!!

!

! !!

!

!

!!!!

!

!!!

!!!

!!

!!

!

!!

!!

!

!!!

!

!!!!

!

!

!

!

!

!!! !

!!

!! ! !!!

!!!

!

!

!

!!

!

!

!!!

! !! !

!! !

!! !!

!!!

!

!!

!

!!

!

!!

!

!!!

!

!

!!

!

!

!!

!!

!! !!!!

!

!! !!!

!

!!

! !!

! !!!

!!

!

!!!!! !!

!!

!!! !! !!! ! !!

!! !! !!!

!! !!

! !!!

!!!!! !!!!!

!!! !

!!!!

!!!!

!! !! !!!!

!! !!

!! ! !!! ! !!!! !! !!!!!!!!! !! !

0 50 100 150

050

100

150

B. Loess (density)

Observed speeds (kph)

Estim

ate

d s

peeds (

kph)

!!!!

!

!!

!!

!

!

!!

!!

!!

!!

!!!

!!

!!

!!

!

!!!

!! !! !

!

! !

! !

!!

!!

!

!

!

!!!

!!!

!

!

!

!

!!

! !

!

!

!!!

!

!

!

!!

!!

!

!!

!

! !!

!!

!!!

!

!

!

! !

!!

!

!

!

!

!!

!

!

!! ! !!

!

! !

!

!

!

!

!!!

!!

!

!

!

!!

!!

!!!

!!

!

!!

!

!!!!! !

!

!

!!

!!

!!!

!

!

!!

!

!

!

!

! !!

!

!

!

!

! !!

!

!!!

!!

!

!

!

!

!!

!

!

!

!

!!

!!!

!!

!!

!

!!

!!

!

!

!!

!

!! !

!

!!

! !

!

!

!

!!!

!

!

!

!!!!

!!

!

!

!

!

!

!

!

!

!!!

!!

!

!

!!! !!!

!

!!

!!!

!

!!

!

!!

! !

!!

!!!

!

! !

!

!!

!

!!!

!!!

!!!

!

!

!

!!

!!! !!

!!

!!

!!

!

!!!! !

!

! !!!

! !!

!

!!!

!!!!

!!

! !!

!

!

!!

!

!

!!!

!!

!!!

!!!!!!!

!

!!! !

!!!

!!

!!!!!!!

!

!!

!!

! !!

!!

!!!!!

!!!!

!

!

! !!!!

!

!!! !

!!

!!!!!!

!!!!

!!

!!!

!!!

!

!!!!!

! !!

!

!

!

!

!!

!

!

!!

!

!!

!! !!!!!!

!!!

!!!!!

!!!!!

!!

!!

!

!

!

!

!! !!

!

!

!!!!!!

!

!! !

!

!

!!!

!!!! !

!!

!

!

!

!!

!

!

!

!!!

!

!!!!!!

!!!!!

!

!!!

!!!

!!

!

!!!

!

!!!!

!

!!

!

!

!!

! !!!

!!

!

!!

!!!!

!!

!!!!

!!

!!

!

!!!

!!

!!! !!!!!

!

!!

!!

!!!

!

!

!!!

!

!!!

!

!

!!

!

!!

!

!!!

! !

!! !!

!

!!!

!!

!!

!

!

! !!!

!!!!!

!!

!

!

!

!

! !!

!

!

!

!!!

!! !

!!!!!

! !!

!!!

! !!

!

!!!

!!!!!!! !

!

!!!

!!!

!!!

!! !!!

!

!

!

!!!

!

!!

!! !!

!!!

!

!

!!!

!

!!

!!! !

!

!

0 50 100 150

050

100

150

C. Loess (density+flow)

Observed speeds (kph)

Estim

ate

d s

peeds (

kph)

!!!!

!!

!!!

!

!

!!!!!

! !!!

!!

!

!

!

!!

! !!

!!

!! !!!

!

!!

! !! !!!

!

!

!!!!

!!! !

!

!

!

!!

!!!

!

!!!

!!

!

!

!

!!

!

!!

!

!

!!

!

!

! !!

!

!!

!

!

! !

!!!

!!!

!

!

!!!

!!

!

! !

!!

!!

!!

!

!

!

!

!

!

! !!! !!

!

!!

!

!!

!

!!

!

!

!!!

!

!!!

!

!!!

!

! !!!

!

!

! ! !!!

!

!!

! !! !!!!

! !

!

!

!

!

!

!

!!

!

!

! !!!!!!

!!

!

! ! !

!

!!

!!

!!!

!! !!

!!

!!

! ! !!!!

!

! !!!!!!

!

!

!!

! !

!

!!!

!!!

!!

!!!!

!

!

!!

!!!!

!!

!

!

!

! !

!!

!!!

!

! !

!

!!!

!!

! !!!

!!!

!

!

!!! !!

!!!!!

!

!!!

!!!!

! !!

! !!!

! !!

!!!

!

!!

!!

!

!

!!

!

!!

!!!

!!!

!!! !!!

!!!!!!! !

!!! !

! !!

!!

!!!!

!!!!

!!

!!

!!

!!

!!!!!!

!!!!!

!

!!

!!

!!!!

! !

!! !!

!!!

!

!!!!!!

!

!

!!!

!

!

!!!

!!

!!!

!!

!

!

!

!

!

!!

!

!

!!

!!

!!!!

!!!

!!

!! !

!!

!!

!!!

!

!!!

!

!

! !

!! !!

!

!!!

!!!!

!

!

!

!

!

!

!!! !

!!! !

!!

!

!

!

!

!

!!

!

!!!

!

!!!

!

!

!

!!!!!

!

!!!

!!

!!!

!!!

!!

!!!!

!

!!

!

!

!!! !

!!

!! !

!!

!!!!

!!!

!!!

!!

!!

!!! !

!!

!!! !!!!

!!

!!!

!!!!

!

!

!!!

!

!

!!

!

! !!

!

!!

! !!!

!

!

!! !!

!!!!

!!

!!

!

!

!

!!

!!!!!

!

!

!!

!

!

!

!!

!

!!

!

! !!!!!

! !!!!! !

!!!!!!!

!!!

!!

!

!!

!!!!

!

!!!

!!! !

!!

!! !!!

!!

!!

!!

!

!

!!! !

!

!

!!

!

!

!!!!!

!!!

! !

!!

0 50 100 150

050

100

150

D. Clustered Loess (density)

Observed speeds (kph)

Estim

ate

d s

peeds (

kph)

!!!!

!

!!

!! !

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!!!!

!!

!

!

!!

!

!

!

!

!!

!

!

!

!!!

!!

!

!!

!

!

! !

!!

!!

! !!

!!

!!!

!!

!!!

!

! !!

!

!

!!!

!

!

!

!!

!

!!

!

!

!

!!

!

!

!! !!

!

!

!

!

!!

!

!

!!!!!

!

!

!

! !

!

!!

!

!

!!

!

!!

!!!

!!! !!

!

!!!

!!

!!

!

!

!!

!

!

!

!! !!

!

!

!

!

! !!

!

!!!

! !

!

!

!

!

!!

!

!

!

!

!! !!

!

!!

!!

!

! ! !!

!!

!!

!

!!

!

!!!

!! !

!

!

!!

!!

!!

! !!!!!!

!

!

!!

! !

!

! !!!!!

!!!! !!!

!

!!

!!!

!!!

!

!

!

! !

!!

!!

!

!

! !

!

!!!

!!! !

!!!!!

!

!

!

!

!

!!! !!

!!

!

!

!!!

!!!! !

!

! !!!

! !!

!

!!!

!!!!

!!

! !!

!!

!!!

!

!!!

!!

!!

!

!!!!!!

! !

!!! !

!!!

!!

!!!!!!!

!

!!

!!

! !!

!!

!!!!! !

!!!!

!

! !!!!

!

!!

! !

!!

!!!!!!

!!!!

!!

!

!!!!

!

!

!!!!!

! !!

!

!

!

!

!

!

!

!

!!

!!!

!!!!

!!

!!!!!

!! !!!

!!!!!

!!

!!

!

!

!

!

!! !

!

!!

!!

!!!!

!

!

!

!

!

!

!!!

!

!!! !

!!!

!

!

!

!!

!

!

!!!

!

!!!!

!!!!!!!

!

!!!

!!!

!!

!!!!!

!!!!

!

!!

!

!

!!! !!

!

!!

!!!

!!!!

!!!

!!!

!!

!!

!

!!!

!!

! !! !!!!!

!

!!

!!

!!!

!

!

!!!

!

!

!

!

!

!

!!

!!!

!!

!!

! !

!! !!

!

!!!

! !!

!

!

!

! !!

!

!!!!!!!

!

!

!

!

!!

!

!!

!!

!!

!!!

!!!!!

! !!!

!!! !!

!

!!!

!!!!

!

!!

!!

!!!!!

! !

!!

!! !!!

!

!!

!!!

!

!

!

!! !

!!!! !

!

!!!

!

!

!!!! !

!!

0 50 100 150

050

100

150

E. Clustered Loess (density+flow)

Observed speeds (kph)

Estim

ate

d s

peeds (

kph)

!!!!! !!!! !! !!!!! ! !! !! !!! ! !!! !!!!!! !! ! !! !! !! !!!! !! !!! !!! ! !!!! ! ! !! ! ! !!!! !!!!! !!!! ! !!!! ! !! !! !! ! ! !!! ! !!! !! !! ! !!!! !!! !! !!!!!! !! ! !!! !!! !!! !!! !!!!! !!! !! !!!!!! ! !!!!! ! ! !!! ! !! ! !! !!!!! ! !! !! !! !!! !! ! !!!!! !!! ! ! !! !!!! !!! !! !! ! ! !! ! ! !!!! !! !!!!!!! !! !! !! ! !!!!! !!!!!!! !!! !!!!!! !! ! ! !!! !!! !! !! ! !!!! ! !!! !!!

!

!! !! !!! !! !!! !!!! !!!! !! ! !!!!

!!! !!!!!!! !!! !!! !!

!!

!

!! !!

!

!!

!

!!!

!!!

! !!

!!!! !!! !

!!!

!

!!!

!

!!!

!! !

!

!!!! !!! !!!!!

!

!!

!

!

!!!

!

! !

!

! !

!

!!!!

!

!!

!

!!

!

!!!!!

!!

!

!! !!

!!

!!

!

!!

!

!!

!

!!

!

!!

!

!!!!

!

!! !!

!!

!

!!!!

!

!!

!

!!

!

!

!

!

!

!!

!

!

!

!

!!

!!!

!

!

!

!

!

!

!!!

! !

!

!

!!

!

!

!

!

!

!

!

!!

! !!

!

!

!!!!

!

!!!

!!!

!!

!!

!!!

!!

!

!!!

!!!

!!

!

!

!

!

!

!!! !

!!

!! !

!!!

!!

!

!

!

!

!!

!!

!!!

! !! !

!! !

!! !!

!!!

!

!!

!

!

!!

!!

!

!!!

!

!

!!

!

!

!!

!!

!

!!!!!

!

!!!!

!!

!!

! !!! !!!

!!

!

!!!!! !! !!! !! !! !!! ! !!!! !! !!!!! !!! !!! !!!!! !!!!!! !! !!!!!

!!! !!! !! !!!! !! !!!! ! !!! ! !!!! !! !!!!!!!!! !! !

0 50 100 150

050

100

150

A. Classic speed!density relationship

Observed speeds(kph)

Estim

ate

d s

peeds (

kph)

!!!!! !!!! !! !!!!! ! !! !! !!! ! !!! !!!!!! !! ! !! !! !! !!!! !! !!! !!! ! !!!! ! ! !! ! ! !!!! !!!!! !!!! ! !!!! ! !! !! !! ! ! !!! ! !!! !! !! ! !!!! !!! !! !!!!!! !! ! !!! !!! !!! !!! !!!!! !!! !! !!!!!! ! !!!!! ! ! !!! ! !! ! !! !!!!! ! !! !! !! !!! !! ! !!!!!

!!! ! ! !! !!!! !!!!! !! ! ! !! ! ! !!!! !! !

!!!!!! !! !! !

!!

!!!!! !!!!

!!

! !!! !!!!!!

!! ! ! !!! !!! !! !

! !!!

!! ! !!! !!

!

!

!! !!

!!!

!! !!! !!!! !!!! !! ! !!!

!!!

! !!!

!!!!!!

!!!

! !!!

!

!

!! !!

!!!!

!!!

!!!

! !!

!!!

!!!!

!!!!

!

!!!

!!!

!!! !

!

!!!! !!! !!!!!

!

!!

!!

!!

!

!

! !

!! !

!

!!!!

!

!!!

!!!

!!!!!

!!

!

!! !

!!!

!!

!

!!

!

!!

!

!

!!

!!

!

!!!!

!

!! !!

!!

!

!!!!

!

!!

!

!!

!

!

!

! !

!! !

!

!

!

!

!

!!!

!

!

!

!

!

!

!!!

! !

!

!

!!

!

!

!

!

!

!

!!

!

! !!

!

!

!!!!

!

!!!

!!!

!!

!!

!

!!

!!

!

!!!

!

!!!!

!

!

!

!

!

!!! !

!!

!! ! !!!

!!!

!

!

!

!!

!

!

!!!

! !! !

!! !

!! !!

!!!

!

!!

!

!!

!

!!

!

!!!

!

!

!!

!

!

!!

!!

!! !!!!

!

!! !!!

!

!!

! !!

! !!!

!!

!

!!!!! !!

!!

!!! !! !!! ! !!

!! !! !!!

!! !!

! !!!

!!!!! !!!!!

!!! !

!!!!

!!!!

!! !! !!!!

!! !!

!! ! !!! ! !!!! !! !!!!!!!!! !! !

0 50 100 150

050

100

150

B. Loess (density)

Observed speeds (kph)

Estim

ate

d s

peeds (

kph)

!!!!

!

!!

!!

!

!

!!

!!

!!

!!

!!!

!!

!!

!!

!

!!!

!! !! !

!

! !

! !

!!

!!

!

!

!

!!!

!!!

!

!

!

!

!!

! !

!

!

!!!

!

!

!

!!

!!

!

!!

!

! !!

!!

!!!

!

!

!

! !

!!

!

!

!

!

!!

!

!

!! ! !!

!

! !

!

!

!

!

!!!

!!

!

!

!

!!

!!

!!!

!!

!

!!

!

!!!!! !

!

!

!!

!!

!!!

!

!

!!

!

!

!

!

! !!

!

!

!

!

! !!

!

!!!

!!

!

!

!

!

!!

!

!

!

!

!!

!!!

!!

!!

!

!!

!!

!

!

!!

!

!! !

!

!!

! !

!

!

!

!!!

!

!

!

!!!!

!!

!

!

!

!

!

!

!

!

!!!

!!

!

!

!!! !!!

!

!!

!!!

!

!!

!

!!

! !

!!

!!!

!

! !

!

!!

!

!!!

!!!

!!!

!

!

!

!!

!!! !!

!!

!!

!!

!

!!!! !

!

! !!!

! !!

!

!!!

!!!!

!!

! !!

!

!

!!

!

!

!!!

!!

!!!

!!!!!!!

!

!!! !

!!!

!!

!!!!!!!

!

!!

!!

! !!

!!

!!!!!

!!!!

!

!

! !!!!

!

!!! !

!!

!!!!!!

!!!!

!!

!!!

!!!

!

!!!!!

! !!

!

!

!

!

!!

!

!

!!

!

!!

!! !!!!!!

!!!

!!!!!

!!!!!

!!

!!

!

!

!

!

!! !!

!

!

!!!!!!

!

!! !

!

!

!!!

!!!! !

!!

!

!

!

!!

!

!

!

!!!

!

!!!!!!

!!!!!

!

!!!

!!!

!!

!

!!!

!

!!!!

!

!!

!

!

!!

! !!!

!!

!

!!

!!!!

!!

!!!!

!!

!!

!

!!!

!!

!!! !!!!!

!

!!

!!

!!!

!

!

!!!

!

!!!

!

!

!!

!

!!

!

!!!

! !

!! !!

!

!!!

!!

!!

!

!

! !!!

!!!!!

!!

!

!

!

!

! !!

!

!

!

!!!

!! !

!!!!!

! !!

!!!

! !!

!

!!!

!!!!!!! !

!

!!!

!!!

!!!

!! !!!

!

!

!

!!!

!

!!

!! !!

!!!

!

!

!!!

!

!!

!!! !

!

!

0 50 100 150

050

100

150

C. Loess (density+flow)

Observed speeds (kph)

Estim

ate

d s

peeds (

kph)

!!!!

!!

!!!

!

!

!!!!!

! !!!

!!

!

!

!

!!

! !!

!!

!! !!!

!

!!

! !! !!!

!

!

!!!!

!!! !

!

!

!

!!

!!!

!

!!!

!!

!

!

!

!!

!

!!

!

!

!!

!

!

! !!

!

!!

!

!

! !

!!!

!!!

!

!

!!!

!!

!

! !

!!

!!

!!

!

!

!

!

!

!

! !!! !!

!

!!

!

!!

!

!!

!

!

!!!

!

!!!

!

!!!

!

! !!!

!

!

! ! !!!

!

!!

! !! !!!!

! !

!

!

!

!

!

!

!!

!

!

! !!!!!!

!!

!

! ! !

!

!!

!!

!!!

!! !!

!!

!!

! ! !!!!

!

! !!!!!!

!

!

!!

! !

!

!!!

!!!

!!

!!!!

!

!

!!

!!!!

!!

!

!

!

! !

!!

!!!

!

! !

!

!!!

!!

! !!!

!!!

!

!

!!! !!

!!!!!

!

!!!

!!!!

! !!

! !!!

! !!

!!!

!

!!

!!

!

!

!!

!

!!

!!!

!!!

!!! !!!

!!!!!!! !

!!! !

! !!

!!

!!!!

!!!!

!!

!!

!!

!!

!!!!!!

!!!!!

!

!!

!!

!!!!

! !

!! !!

!!!

!

!!!!!!

!

!

!!!

!

!

!!!

!!

!!!

!!

!

!

!

!

!

!!

!

!

!!

!!

!!!!

!!!

!!

!! !

!!

!!

!!!

!

!!!

!

!

! !

!! !!

!

!!!

!!!!

!

!

!

!

!

!

!!! !

!!! !

!!

!

!

!

!

!

!!

!

!!!

!

!!!

!

!

!

!!!!!

!

!!!

!!

!!!

!!!

!!

!!!!

!

!!

!

!

!!! !

!!

!! !

!!

!!!!

!!!

!!!

!!

!!

!!! !

!!

!!! !!!!

!!

!!!

!!!!

!

!

!!!

!

!

!!

!

! !!

!

!!

! !!!

!

!

!! !!

!!!!

!!

!!

!

!

!

!!

!!!!!

!

!

!!

!

!

!

!!

!

!!

!

! !!!!!

! !!!!! !

!!!!!!!

!!!

!!

!

!!

!!!!

!

!!!

!!! !

!!

!! !!!

!!

!!

!!

!

!

!!! !

!

!

!!

!

!

!!!!!

!!!

! !

!!

0 50 100 150

050

100

150

D. Clustered Loess (density)

Observed speeds (kph)

Estim

ate

d s

peeds (

kph)

!!!!

!

!!

!! !

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!!!!

!!

!

!

!!

!

!

!

!

!!

!

!

!

!!!

!!

!

!!

!

!

! !

!!

!!

! !!

!!

!!!

!!

!!!

!

! !!

!

!

!!!

!

!

!

!!

!

!!

!

!

!

!!

!

!

!! !!

!

!

!

!

!!

!

!

!!!!!

!

!

!

! !

!

!!

!

!

!!

!

!!

!!!

!!! !!

!

!!!

!!

!!

!

!

!!

!

!

!

!! !!

!

!

!

!

! !!

!

!!!

! !

!

!

!

!

!!

!

!

!

!

!! !!

!

!!

!!

!

! ! !!

!!

!!

!

!!

!

!!!

!! !

!

!

!!

!!

!!

! !!!!!!

!

!

!!

! !

!

! !!!!!

!!!! !!!

!

!!

!!!

!!!

!

!

!

! !

!!

!!

!

!

! !

!

!!!

!!! !

!!!!!

!

!

!

!

!

!!! !!

!!

!

!

!!!

!!!! !

!

! !!!

! !!

!

!!!

!!!!

!!

! !!

!!

!!!

!

!!!

!!

!!

!

!!!!!!

! !

!!! !

!!!

!!

!!!!!!!

!

!!

!!

! !!

!!

!!!!! !

!!!!

!

! !!!!

!

!!

! !

!!

!!!!!!

!!!!

!!

!

!!!!

!

!

!!!!!

! !!

!

!

!

!

!

!

!

!

!!

!!!

!!!!

!!

!!!!!

!! !!!

!!!!!

!!

!!

!

!

!

!

!! !

!

!!

!!

!!!!

!

!

!

!

!

!

!!!

!

!!! !

!!!

!

!

!

!!

!

!

!!!

!

!!!!

!!!!!!!

!

!!!

!!!

!!

!!!!!

!!!!

!

!!

!

!

!!! !!

!

!!

!!!

!!!!

!!!

!!!

!!

!!

!

!!!

!!

! !! !!!!!

!

!!

!!

!!!

!

!

!!!

!

!

!

!

!

!

!!

!!!

!!

!!

! !

!! !!

!

!!!

! !!

!

!

!

! !!

!

!!!!!!!

!

!

!

!

!!

!

!!

!!

!!

!!!

!!!!!

! !!!

!!! !!

!

!!!

!!!!

!

!!

!!

!!!!!

! !

!!

!! !!!

!

!!

!!!

!

!

!

!! !

!!!! !

!

!!!

!

!

!!!! !

!!

0 50 100 150

050

100

150

E. Clustered Loess (density+flow)

Observed speeds (kph)

Estim

ate

d s

peeds (

kph)

Reduction in RMSN:

Loess (density): -7%, Loess (density+flow): -35%

Loess/clust (density): -41%, Loess/clust (density+flow): -47%

Seminar at Portland State University 42

Constantinos Antoniou October 5, 2007

An integrated approach: loess and clustering (III)

N/A: not applicable

Seminar at Portland State University 43

Constantinos Antoniou October 5, 2007

Thank you

Questions?

Contact information:

Constantinos Antoniou ([email protected])

Seminar at Portland State University 44