Oliver Orasch Christof Gattringer Mario Giuliani

20
Low T condensation and scattering data Oliver Orasch Christof Gattringer Mario Giuliani Lattice 2018, East Lansing, July 24 th C. Gattringer, M. Giuliani, O. Orasch, PRL 120, 241601 (2018)

Transcript of Oliver Orasch Christof Gattringer Mario Giuliani

Page 1: Oliver Orasch Christof Gattringer Mario Giuliani

Low T condensation and scattering data

Oliver Orasch Christof Gattringer Mario Giuliani

Lattice 2018, East Lansing, July 24th

C. Gattringer, M. Giuliani, O. Orasch, PRL 120, 241601 (2018)

Page 2: Oliver Orasch Christof Gattringer Mario Giuliani

Motivation: Particle Number vs. µ

I Typical scenario at low T (fixed) and finite V (= Ld−1):

0.95 1 1.05 1.1µ

0

0,5

1

1,5

2

N

L = 2L = 4L = 10

I Nature of condensation steps?I Condensation thresholds µi

c ⇔ low energy parameters2

Page 3: Oliver Orasch Christof Gattringer Mario Giuliani

Our approach

I We study the low temperature regime of a QFT at finite density

I For small spatial lattices particle sectors are separated by finite energysteps ⇒ particle condensation

I Critical chemical potentials µic of these transitions are related to the

minimal N-particle energies WN

I At finite volume scattering information is encoded in WN

I We measure the µic with worldline simulations and extract low energy

scattering parameters

3

Page 4: Oliver Orasch Christof Gattringer Mario Giuliani

The framework

I Model: complex scalar field with φ4 interaction in 2D and 4D

S =∑n∈Λ

((2d + m2

0)|φn|2 + λ|φn|4 −

d∑ν=1

[eµδν,dφ∗nφn+ν + e−µδν,dφ∗nφn−ν

])

I Sign problem ⇒ MC not possible in conventional representation

I Worldline representation withreal and positive weights solvessign problem

4C. Gattringer, T. Kloiber, Nucl.Phys. B869, 56 (2013)

space

time

Page 5: Oliver Orasch Christof Gattringer Mario Giuliani

Measuring the condensation thresholds (2D case)Fit the steps to a logistic function ⇒ µi

c is inflection point

N(µ) = (i − 1) +[1 + e−k(µ−µi

c )]−1

0,24 0,25 0,26 0,27 0,28µ

0

0,2

0,4

0,6

0,8

1

N

Simulation data

Fit: k = 398(23), µc

1 = 0.2602(12)

5

Page 6: Oliver Orasch Christof Gattringer Mario Giuliani

Interpretation of the condensation steps

I Condensation thresholds are related to the minimal N-particle energies:Bruckmann et al., PRL 115, 231601 (2015)

W1 = µ1c ≡ m

W2 = µ1c + µ2

c

W3 = µ1c + µ2

c + µ3c

...

I WN depend on low energy parameters (LEP)

I Describe condensation thresholds in terms of LEP

6

Page 7: Oliver Orasch Christof Gattringer Mario Giuliani

Important cross-check with conventional spectroscopy

I Compute N-particle energies with connected 2N-point functions:

⟨(φt)N(φ∗0)N

⟩c∝ e−tEN

with E1 = m, E2 = W2, E3 = W3, . . .

⇒ fields are projected to zero momentum

I µ is absent ⇒ MC in conventional representation

I Extract the N-particle energies from the exponential decay of correlators

7

Page 8: Oliver Orasch Christof Gattringer Mario Giuliani

Spectroscopy versus WL simulations (2D case)

2 4 6 8 10 12 14 16

L

0.5

1.0

1.5

2.0

spectroscopy

condensation

m

W2

W3

⇒ Interpretation of condensation steps as m, W2, W3 confirmed!

8

Page 9: Oliver Orasch Christof Gattringer Mario Giuliani

L-dependence of N-particle energies (4D case)

m = m∞ + AL 3

2e−Lm∞

Rummukainen & Gottlieb 1995

W2 = 2m + 4πamL3

[1− a

LIπ

+(

aL

)2 I 2−Jπ2 +O

(aL

)3]

Huang & Yang 1957, Luscher 1986

W3 = 3m + 12πamL3

[1− a

LIπ

+(

aL

)2 I 2 +Jπ2 +O

(aL

)3]

Beane et al. 2007, Hansen & Sharpe 2014, 15, 16, Sharpe 2017

I Infinite-volume mass m∞I Scattering length a

[δ(k) = −ak +O(k2)

]I Numerical constants I = −8.914 and J = 16.532

9

Page 10: Oliver Orasch Christof Gattringer Mario Giuliani

Results for 4D

3 4 5 6 7 8 9 10N

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

spectroscopy

condensation

fit

prediction for W3

m

W2

W3

I m∞ = 0.168(1) and a = −0.078(7)I Good ”prediction” of W3 except for very small L (≡ Ns)

10C. Gattringer, M. Giuliani, O. Orasch, PRL 120, 241601 (2018)

Page 11: Oliver Orasch Christof Gattringer Mario Giuliani

Scattering data in 2D

In 2D the full scattering phase shift can be determined from the periodicboundary condition: M. Luscher, U. Wolff, Nucl. Phys. B 339, 222 (1990)

e2iδ(k) = e−ikL

For short-range interaction:

W2 = 2√

m2 + k2 ⇒ δ(k) = −L2

√√√√(W22

)2

−m2

From 4D: Up to leading order W3 should be described by δ(k)

W3 =√

m2 + (k1 + k2)2 +√

m2 + k21 +

√m2 + k2

2

11

Page 12: Oliver Orasch Christof Gattringer Mario Giuliani

Scattering data in 2D

In 2D the full scattering phase shift can be determined from the periodicboundary condition: M. Luscher, U. Wolff, Nucl. Phys. B 339, 222 (1990)

e2iδ(k) = e−ikL

For short-range interaction:

W2 = 2√

m2 + k2 ⇒ δ(k) = −L2

√√√√(W22

)2

−m2

From 4D: Up to leading order W3 should be described by δ(k)

W3 =√

m2 + (k1 + k2)2 +√

m2 + k21 +

√m2 + k2

2

11

Page 13: Oliver Orasch Christof Gattringer Mario Giuliani

Results for 2D

0.1 0.15 0.2 0.25 0.3 0.35k

-1.0

-0.8

-0.6

-0.4

δ(k)

spectroscopy

condensation

I Very good agreement of spectroscopy and worldline results

12

Page 14: Oliver Orasch Christof Gattringer Mario Giuliani

Results for 2D

2 4 6 8 10 12 14 16

L

1

1,2

1,4

1,6

1,8

2

W3

condensationprediction with δ(k) from W

2

I Good prediction of W3 with δ(k) from W2

I Condensation steps are determined by scattering phase shift δ(k)

13

Page 15: Oliver Orasch Christof Gattringer Mario Giuliani

Summary

I Low temperature study of the φ4 model at finite density

I Sign problem is evaded by using a worldline representation

I For low T particle sectors are separated by finite energy steps⇒ critical chemical potential/condensation thresholds µi

c

I The N-particle energy is the sum of the µic , i = 1, . . . ,N

I Cross-check of condensation steps with spectroscopy calculations

I Scattering parameters can be extracted from WN

I 4D: scattering length aI 2D: full scattering phase shift δ(k)

I Condensation thresholds are determined by scattering data

14

Page 16: Oliver Orasch Christof Gattringer Mario Giuliani

Thank you for listening!

15

Page 17: Oliver Orasch Christof Gattringer Mario Giuliani

Backup slides

16

Page 18: Oliver Orasch Christof Gattringer Mario Giuliani

Simulation parameters

I Parameters for 4D simulations:

I η = 2d + m20 = 7.44, λ = 1.0, NT = 320, 640, Ns = 3, 4, . . . , 10

I Parameters for 2D simulations:

I η = 2d + m20 = 2.6, λ = 1.0, NT = 400, Ns = 2, 4, . . . , 16

17

Page 19: Oliver Orasch Christof Gattringer Mario Giuliani

Worldline representation for the charged scalar φ4 field

I In the worldline approach the grand canonical partition sum is exactlyrewritten in terms of dual link variables kn,ν ∈ Z

Z =∑k

eµβWt [k] B[k] C [k]

I Wt [k] = temporal winding number of the worldlines

I Real and positive weights B[k]

I Constraints C [k] =∏nδ(~∇ · ~kn)

⇒ ~∇ · ~kn =∑ν

(kn,ν − kn−ν,ν) = 0 ∀n

18C. Gattringer, T. Kloiber, Nucl.Phys. B869, 56 (2013)

Page 20: Oliver Orasch Christof Gattringer Mario Giuliani

Interpretation of the condensation steps

Grand canonical partition sum

Z = tre−β(H−µQ) = e−βΩ(µ)

Low T : Z will be governed by the minimal grand potential Ω(µ) in eachparticle sector

Ω(µ) T→0−→

ΩN=0

min = 0, µ ∈ [0, µ1c)

ΩN=1min = W (1) − 1µ, µ ∈ (µ1

c , µ2c)

ΩN=2min = W (2) − 2µ, µ ∈ (µ2

c , µ3c)

. . . ,

with renormalized mass W (1) ≡ m, minimal 2-particle energy W (2), . . .

19Bruckmann et al., PRL 115, 231601 (2015)