OLI Mixed Solvent Electrolyte With Aspen Plus

download OLI Mixed Solvent Electrolyte With Aspen Plus

of 122

Transcript of OLI Mixed Solvent Electrolyte With Aspen Plus

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    1/122

    Opening new doors withChemistry

    THINK SIMULATION!

    OLIs Mixed SolventElectrolyte with Aspen

    PLUS

    OLI Systems, Inc.

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    2/122

    THINKSIMULATION

    2

    Agenda

    OLIs basic history

    OLIs history with Aspen Technologies

    Advantages/disadvantages of Aspen PLUS OLI

    Architecture of the Aspen PLUS OLI interfaceIntroduction to MSE

    Overview of Aspen PLUS OLI (with MSE)

    Demonstration

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    3/122

    THINKSIMULATION

    3

    OLIs basic history

    Company founded in 1971 by Marshall RafalFirst electrolyte simulator (ECES) 1973

    Developed for OLIN Chemical

    First commercial sale of ECES 1975 Dupont

    The Environmental Simulation Program developed in1991

    Linkage to simulators in 1995Windows program (Analyzers) became commercial in

    2000Mixed-Solvent Electrolytes commercially available 2005Windows based process simulator (OLI Pro) to be

    available in 2007

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    4/122

    THINKSIMULATION

    4

    OLIs history with Aspen Technologies

    That Other chemical company that has a D in its name. 25 years of process simulation experience with electrolyte

    1995 switched to Aspen PLUS as their process simulator

    Wanted OLIs electrolytes in Aspen PLUS

    1996 first Aspen PLUS OLI interface created

    No model manager, version 8.2

    1997 Aspen PLUS OLI linked to model manager

    Version 9.0

    2006 Aspen PLUS OLI updated for Aspen ONE 2006

    Included change in concentration basis

    Included MSE

    2007 Aspen PLUS OLI updated for Aspen ONE 2006.5

    General release of MSE for all Aspen PLUS OLI clients

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    5/122

    THINKSIMULATION

    5

    Advantages of Aspen PLUS OLI

    User Interface

    Learn one flow sheeting system

    Multiple Property Options in same flowsheet

    Different Non-electrolyte capability Sizing

    Costing

    Two Software Venders

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    6/122

    THINKSIMULATION

    6

    Disadvantages of Aspen PLUS OLI

    No Corrosion

    No advanced OLI technology

    No Ion-exchange

    No Surface Complexation No Bio-kinetics

    No Scaling Tendencies

    Two Software Venders

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    7/122

    THINKSIMULATION

    7

    Architecture of the Aspen PLUS OLI interface

    OLI ChemistryGenerator

    OLIDatabases

    OLI/A+XREF

    OLI NumericalSolver/Engine

    .BKP

    .ASP/.INP

    .DBS

    A+Model Manager

    A+Simulation Engine

    Electrolyte Flash or Property

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    8/122

    THINKSIMULATION

    8

    Architecture of the Aspen PLUS OLI interface

    Aspen Unit Operations available with the OLI Property Set MIXERS FSPLIT SEP SEP2 HEATER

    FLASH2 FLASH3 HEATX MHEATX RADFRAC RSTOIC RYIELD RCSTR RPLUG PUMP COMPR

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    9/122

    THINKSIMULATION

    9

    Architecture of the Aspen PLUS OLI interface

    Thermodynamic Properties from OLI used by AspenPLUS (OLI propset)

    PHIVMX DLMX KL DGL

    PHILMX SIGLMX DV PHILPC

    HVMX PHIV DL DSV

    HLMX PHIL SIGL KVPCGVMX HV HSMX

    GLMX HL PHIL

    SVMX GV VV

    SLMX GL MUVMXL

    VVMX SV MUVLP

    VLMX SL KVMXLP

    MUVMX VV KVLP

    MULMX VL DHV

    KVMX MUV DHL

    KLMX MUL DHLPC

    DVMX KV DGV

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    10/122

    THINKSIMULATION

    10

    Architecture of the Aspen PLUS OLI interface

    The OLI-Aspen Plus Cross Reference File (partial listing) Full listing is available on your computer:

    C:\Program Files\OLI Systems\Alliance Suites\Aspen OLI2006\Databanks\OLIAspenPlusCompXRef.lis

    ESP-NAME DB 8-CHAR ASP-ALIAS ASP-NAME

    ================ = ====== ========= =====================================

    AR P AR AR ARGON 7440-37-1 Ar

    ABIETICAC P ABIETICA C20H30O2 ABIETIC-ACID 514-10-3 C20H30O2

    ACENAPHTHN P ACENAPHT C12H10-D0 ACENAPHTHENE 83-32-9 C12H10

    ACENITRILE P ACENTL C2H3N ACETONITRILE 75-05-8 C2H3N

    ACET2 P ACET2 ........... C4H8O4

    ACETACID P ACETACID C2H4O2-1 ACETIC-ACID 64-19-7 C2H4O2

    ACETAL P ACETAL C6H14O2-D1 ACETAL 105-57-7 C6H14O2

    ACETALDEHD P ACEALD C2H4O-1 ACETALDEHYDE 75-07-0 C2H4O

    ACETAMIDEPPT P ACETAM-S 60-35-5 C2H5NO

    ACETAMIDE P ACETAMD C2H5NO-D1 ACETAMIDE 60-35-5 C2H5NO

    ACETANHYD P ACETAHYD C4H6O3 ACETIC-ANHYDRIDE 108-24-7 C4H6O3

    ACETANILID P ACEANILD C8H9NO ACETANILIDE

    ACETATEION P ACET- CH3COO- CH3COO- ........... C2H3O2-1

    ACETBR P ACETBR 506-96-7 C2H3BrO

    ACETCL P ACETCL C2H3CLO ACETYL-CHLORIDE 75-36-5 C2H3ClO

    ACETONE P ACETONE C3H6O-1 ACETONE 67-64-1 C3H6O

    ACETPHENON P ACEPHEN C8H8O METHYL-PHENYL-KETONE 98-86-2 C8H8O

    ACETYLENE P ACETYLN C2H2 ACETYLENE 74-86-2 C2H2

    ACRIDINE P ACRIDINE 260-94-6 C13H9N

    ACROLEIN2 P ACROLIN2 C3H4O ACROLEIN 107-02-8 C3H4O

    ACRYLAMIDEPPT P ACRAMI-S 79-06-1 C3H5NO

    ACRYLAMIDE P ACRYAMID C3H5NO-D1 ACRYLAMIDE 79-06-1 C3H5NO

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    11/122

    THINKSIMULATION

    11

    Architecture of the Aspen PLUS OLI interface

    OLI added user blocks to Aspen PLUS

    EFRACH

    EFLASH

    Available during Aspen PLUS Installation Must be enabled at run-time

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    12/122

    THINKSIMULATION

    12

    Architecture of the Aspen PLUS OLI interface

    EFLASH

    Organic (3)

    Solid (4)

    EFLASH

    (Four outlet material streams)

    Feeds

    Heat

    Heat

    Vapor (1)

    Aqueous (2)

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    13/122

    THINKSIMULATION

    13

    Architecture of the Aspen PLUS OLI interface

    EFRACH

    DECANTER

    Vapor or Liquid

    Organic

    Heat Heat1

    2

    3

    N

    Feeds Products

    Heat Heat

    Heat Heat

    Bottoms

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    14/122

    THINKSIMULATION

    14

    Introduction to MSE

    Why develop a new thermodynamic model? The Bromley-Zemaitis model (a/k/a Aqueous Model-AE)

    had limitations Water was required as a solvent Mole fraction of all solutes was limited to approximately 0.35

    Limited in temperature (Approximately 300o

    C) LLE predictions exclude critical solution points (limited to

    strongly dissimilar phases)

    A Mixed Solvent Electrolyte model (MSE) has advantages Water is not required Mole fraction of solute can approach and be equal to 1.0 Temperature can be up to 0.9 Tc of solution Full range of LLE calculations including electrolytes in both

    phases

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    15/122

    THINKSIMULATION

    15

    Introduction to MSEAdvantages and disadvantages between AE and MSE

    MSE model Model advantages:

    No composition limitations

    Reliable predictions formulticomponent concentratedsolutions

    Full range of LLE calculationsincluding electrolytes in bothphases

    Methodological advantages Multi-property regressions

    Consistent use ofthermochemical properties

    (no shortcuts like KFITs) Rigorous quality assurance

    Disadvantages:A smaller in-place databank

    but it is continuouslyextended

    AE Model Advantages:

    Larger existing databank

    The only model available forrates of corrosion

    Disadvantages:

    Limitations with respect tocomposition (30 m withrespect to electrolytes,x=0.3 with respect tononelectrolytes

    LLE predictions excludecritical solution points

    (limited to strongly dissimilarphases)

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    16/122

    THINKSIMULATION

    16

    Introduction to MSE

    Overview of species coverage between AE and MSE models.

    Components

    Solute Mole Fraction

    0

    2000

    4000

    6000

    8000

    0.0 1.0

    AE

    MSEBuild 7.0.54

    Growing with each build

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    17/122

    THINKSIMULATION

    17

    Structure of the thermodynamic model

    Definition of species that may exist in the liquid,vapor, and solid phases

    Excess Gibbs energy model for solution

    nonidealityCalculation of standard-state properties

    Helgeson-Kirkham-Flowers equation for ionic andneutral aqueous species

    Standard thermochemistry for solid and gasspecies

    Algorithm for solving phase and chemical

    equilibria

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    18/122

    THINKSIMULATIONOutline of the model:

    Solution nonideality

    RT

    G

    RT

    G

    RT

    G

    RT

    Gex

    IIex

    LCex

    LRex

    LR Debye-Hckel theory for long-range electrostaticinteractions

    LC Local composition model (UNIQUAC) for neutralmolecule interactions

    II Ionic interaction term for specific ion-ion and ion-

    molecule interactions

    Excess Gibbs energy

    i j

    xijji

    i

    i

    exII IBxxn

    RT

    G

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    19/122

    THINKSIMULATION

    19

    Outline of the model:Chemical equilibrium calculations

    For a chemical reaction:

    At equilibrium

    with

    dDcCbBaA

    bB

    aA

    dD

    cC

    bB

    aA

    dD

    cC

    0

    xx

    xxln

    RT

    G

    i

    0

    ii

    0vG

    Standard-statechemicalpotential of i

    Infinite-dilution properties

    Thermochemical databases for aqueous systems

    Helgeson-Kirkham-Flowers model for T and P dependence

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    20/122

    THINKSIMULATION

    20

    Outline of the model:Constraints

    Activity coefficients are converted to unsymmetrical normalization towork with infinite-dilution properties

    Constraining the parameters of the GE model to reproduce the Gibbs

    energy of transfer

    RO2Hx

    i

    ,,S,O2H,x

    i

    Activity coefficient of ion iin solvents R andS in unsymmetrical, mole-fraction basedconvention

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    21/122

    THINKSIMULATION

    21

    Mixed-solvent electrolyte model:Applicability

    Simultaneous representation of multiple properties

    Vapor-liquid equilibria

    Osmotic coefficient/water activity and activity coefficients

    Solid-liquid equilibria Properties of electrolytes at infinite dilution, such as acid-

    base dissociation and complexation constants

    Properties that reflect ionic equilibria, e.g., solution pH andspecies distribution

    Enthalpy (Hdil or Hmix) Heat capacity

    Density

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    22/122

    THINKSIMULATION

    22

    Validity range

    Concentrations from infinite dilution tosaturation or fused salt or pure solute limit

    Temperatures up to 0.9Tc of mixtures

    This translates into 300 C for H2O dominatedsystems

    For concentrated inorganic systems, substantiallyhigher temperatures can be reached

    Solvents: water, various organics or solventmixtures

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    23/122

    THINKSIMULATION

    23

    Representative applications of the MSEthermodynamic model

    Strong acid systems Simultaneous representation of phase equilibria

    and speciation

    Salt systems

    Prediction of properties of multicomponentsystems

    Organic salt water systems

    Salt effects on VLE, LLE and SLE

    Acid-base equilibria

    pH of mixed-solvent systems

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    24/122

    THINKSIMULATION

    24

    VLE for H2SO4 + SO3 + H2O

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    1.0E-03

    1.0E-02

    1.0E-01

    1.0E+00

    1.0E+01

    1.0E+02

    1.0E+03

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    x SO3

    P,atm

    0C

    200C

    100C

    50C

    25C

    500C 400C300C

    Phaseequilibria areaccuratelyreproduced

    from 0 C to500 C

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    25/122

    THINKSIMULATION

    25

    Speciation for H2SO4 + SO3 + H2O:

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.0 0.2 0.4 0.6 0.8 1.0

    (x SO3)1/2

    molepercen

    t1957HR

    1959YMS

    1994CRP&1995CB

    2000WYCHSO4

    -2

    H2SO40

    O30

    x (SO3)=0.5

    HSO4-

    Predictedspeciation inconcentratedsolutions agrees

    withspectroscopicdata

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    26/122

    THINKSIMULATION

    26

    Partial pressures in the H2SO4 + SO3 + H2O system

    Partial pressuresof H2SO4, SO3and H2O arealso correctlyreproduced

    1.E-15

    1.E-14

    1.E-13

    1.E-12

    1.E-11

    1.E-10

    1.E-09

    1.E-08

    1.E-07

    50 55 60 65 70 75 80

    H2SO4, Wt%

    H2SO4,atm

    25C

    30C35C

    25C

    30C35CPerry 30C

    Partial pressures of H2SO4

    THINK

    100

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    27/122

    THINKSIMULATION

    27

    Salt systems:Na K Mg Ca Cl NO3

    Step 1: Binary systems solubility of solids

    The model is valid for

    systems ranging fromdilute solutions to thefused salt limit

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

    Temperature, C

    NaNO3,weight%

    NaNO3

    H2O(s)

    Cal, NaNO3

    Cal, H2O(s)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -40 -20 0 20 40 60 80 100 120 140 160 180 200

    Temperature, C

    Mg(NO3)2,

    weight%

    H2O(s)Mg(NO3)2.9H2O

    Mg(NO3)2.6H2OMg(NO3)2.2H2OMg(NO3)2Cal, H2O(s)Cal, Mg(NO3)2.9H2O

    Cal, Mg(NO3)2.6H2OCal, Mg(NO3)2.2H2OCal, Mg(NO3)2

    NaNO3 H2O

    Mg(NO3)2 H2O

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    28/122

    SIMULATION

    28

    Modeling salt systems:Na K Mg Ca Cl NO3

    Step 1: Binarysystems solubilityof solids

    Water activitydecreases with saltconcentration untilthe solution becomessaturated with asolid phase

    00.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

    Total apparent salt, mole fraction

    Wateractivity

    1 - NaCl

    6 - LiCl

    11 - CaCl2

    3 - Mg(NO3)2

    12 - Ca(NO3)2Ca(NO3)2

    LiCl

    Mg(NO3)2

    CaCl2.2H2O

    NaCl

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    29/122

    SIMULATION

    29

    Step 2: Ternary systems

    Solubility in the systemNaNO3 KNO3 H2Oat various

    temperatures

    Activity of water over

    saturated NaNO3KNO3 solutions at 90 C:Strong depression atthe eutectic point

    0.35

    0.4

    0.45

    0.5

    0.55

    0.6

    0.65

    0.7

    0.75

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    NaNO3, mole fraction (water free)

    WaterActivity

    KNO3

    NaNO3+KNO3

    NaNO3

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

    KNO3, weight %

    NaNO3,

    weight%

    0C 10C

    20C 25C

    30C 40C

    50C 75C

    100C 125C

    150C 175C

    200C

    NaNO3(s)

    KNO3(s)

    NaNO3.KNO3(s)

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    30/122

    SIMULATION

    30

    Step 3: Verification of predictions for multicomponent systems

    Deliquescence datasimultaneouslyreflect solidsolubilities and

    water activities

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Total apparent salt, mole fraction

    Wateractivity

    10 - NaNO3+KNO3

    4 - NaNO3+KNO3+Ca(NO3)2+Mg(NO3)2

    NaNO3

    NaNO3+NaNO3.KNO3NaNO3

    NaNO3+Ca(NO3)2

    Mixed nitrate systems at 140 C

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    31/122

    SIMULATION

    31

    Electrolyte + organic systems:Examples

    Effect of electrolytes on phase equilibria in nonelectrolyte watersystems

    Salting out(in) effects

    Liquid-liquid equilibria in aqueous systems containing water-soluble polymers and salts

    Liquid immiscibility is induced by the presence of a salt

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    32/122

    SIMULATION

    32

    LLE results salt effect

    0.00000

    0.00005

    0.00010

    0.00015

    0.00020

    0.000250.00030

    0.00035

    0.00040

    0.00045

    0 100 200 300 400

    g salt/kg H2O

    Solubilityofbenzene(x)

    inaqueoussaltso

    lutions

    NaCl

    25 C

    (NH4)2SO4

    Solubility ofbenzene inaqueous(NH4)2SO4 andNaCl solutionsat 25C

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    33/122

    SIMULATION

    33

    VLE: salting-out effect

    60

    70

    80

    90

    100

    110

    0.0 0.2 0.4 0.6 0.8 1.0

    x, y (methanol)

    t/C

    P=1 bar

    ---- Salt-free

    Saturated NaCl0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    0.0 0.2 0.4 0.6 0.8 1.0

    x-methanol

    molNaCl/kgsolvent

    Solubility

    25C

    Simultaneous representation ofthermodynamic properties:NaCl-methanol-water

    THINK

    0.09

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    34/122

    SIMULATION

    34

    LLE in aqueous polymersalt systems

    PEG (MW=1000) + NaH2PO4 + H2O at25 C

    PEG (MW=4000) + (NH4)2SO4 + H2Oat 25 C

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.000 0.005 0.010 0.015 0.020 0.025

    x - PEG1000

    X

    -NaH2PO4

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

    x - PEG 4000

    x-(N

    H4)2SO4

    THINK

    Acid base and phase equilibria:

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    35/122

    SIMULATION

    35

    Acid-base and phase equilibria:Treatment of pH in mixed solvents

    Classical treatment

    pH scale can be defined separately for each, pure or mixed,solvent

    pH scales can be converted using the Gibbs energy of transferof the proton

    Such a conversion is inconvenient (availability of Gibbs energy of

    transfer, extrathermodynamic assumptions) However, it opens the possibility of a uniform calculation of pH

    using an activity coefficient model as long as the modelaccurately reproduces activity coefficients of individual speciesand the Gibbs energy of transfer

    10ln

    ,

    RT

    GpHpH

    Awt

    HwA

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    36/122

    SIMULATION

    36

    Treatment of pH in mixed-solvents

    Uniform treatment of apparent pH

    Starting point: Aqueous definition of pH

    Conversion to mole fraction scale and solvated proton basis

    Activity coefficients are obtained directly from the model Values can be compared with measurements using glass

    electrode

    Does not require the presence of water equivalentexpressions can be obtained for other solvents

    0

    loglogm

    mapH HH

    H

    OHOH

    OHOHOH

    xM

    xpH22

    2

    33

    loglog1000

    logloglog

    THINK

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    37/122

    SIMULATION

    37

    Speciation Effects

    Acetic Acid in EtOH-H2O Acetic Acid in MeOH-H2O

    Apparent (Mixed Solvent-Based) Ionization Constants

    4

    6

    8

    10

    12

    0.0 0.2 0.4 0.6 0.8 1.0

    x-Methanol

    pKa

    cal

    exp

    4

    6

    8

    10

    12

    0.0 0.2 0.4 0.6 0.8 1.0

    x-Ethanol

    pKa

    cal

    Sen et al.

    Woolley

    Equilibrium constantobtained from aqueoussolutions

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    38/122

    SIMULATION

    38

    Parameters in the MSE Databank (1)

    Binary and principal ternary systems composed of the following primary ions

    and their hydrolyzed forms Cations: Na+, K+, Mg2+, Ca2+, Al3+, NH4

    +

    Anions: Cl-, F-, NO3

    -, CO3

    2-, SO4

    2-, PO4

    3-, OH-

    Aqueous acids, associated acid oxides and acid-dominated mixtures

    H2SO4 SO3

    HNO3 N2O5

    H3PO4 H4P2O7 H5P3O10 P2O5

    H3PO2

    H3PO3

    HF

    HCl

    HBr

    HI

    H3BO3

    CH3SO3H

    NH2SO3H

    HFSO3 HF H2SO4HI I2 H2SO4

    HNO3 H2SO4 SO3

    H3PO4 with calcium phosphates

    H Na Cl NO3

    H Na Cl F

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    39/122

    SIMULATION

    39

    Parameters in the MSE Databank (2)

    Inorganic gases in aqueous systems CO2 + NH3

    H2S + NH3

    SO2 + H2SO4

    N2 O2

    H2 Transition metal aqueous systems

    Fe(III) H O SO4, NO3

    Fe(II) H O SO4, Br

    Sn(II, IV) H O CH3SO3

    Zn(II) H SO4, NO3, Cl

    Zn(II) Li - Cl

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    40/122

    SIMULATION

    40

    Parameters in the MSE Databank (3)

    Transition metal aqueous systems - continued

    Cu(II) H SO4, NO3

    Ni(II) H SO4, NO3, Cl

    Mo(VI, IV) H O Cl, SO4, NO3

    W(VI) H - O - Na Cl, NO3

    Most elements from the periodic table in their elemental form

    Base ions and hydrolyzed forms for the majority of elements from theperiodic table

    Hydrogen peroxide chemistry

    H2O2 H2O H - Na OH SO4 NO3

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    41/122

    SIMULATION

    41

    Parameters in the MSE Databank (4)

    Miscellaneous inorganic systems in water NH2OH

    NH4HS + H2S + NH3

    LiCl KCl

    LiCl CaCl2

    Na2S2O3 LiOH H3BO3 H2O

    Organic acids in water, methanol and ethanol and their Na salts Formic

    Acetic (also K salt)

    Citric

    Adipic

    Nicotinic

    Terephthalic

    Isophthalic

    Trimellitic

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    42/122

    SIMULATION

    42

    Parameters in the MSE Databank (5)

    Organic components and their mixtures with water Hydrocarbons

    Straight chain alkanes: C1 through C30

    Isomeric alkanes: isobutane, isopentane, neopentane

    Alkenes: ethene, propene, 1-butene, 2-butene, 2-methylpropene

    Aromatics: benzene, toluene, o-, m-, p-xylenes, ethylbenzene, cumene,naphthalene, anthracene, phenantrene

    Alcohols

    Methanol, ethanol, 1-propanol, 2-propanol, cyclohexanol

    Glycols

    Mono, di- and triethylene glycols, propylene glycol, polyethylene glycols

    Phenols

    Phenol, catechol

    Ketones

    Acetone, methylisobutyl ketone

    Aldehydes

    Butylaldehyde

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    43/122

    SIMULATION

    43

    Parameters in the MSE Databank (6)

    Organic solvents and their mixtures with water

    Carbonates

    Diethylcarbonate, propylene carbonate

    Amines

    Tri-N-octylamine, triethylamine, methyldiethanolamine Nitriles

    Acetonitrile

    Amides

    Dimethylacetamide, dimethylformamide

    Halogen derivatives

    Chloroform

    Aminoacids

    Methionine

    Heterocyclic components

    N-methylpyrrolidone, 2,6-dimethylmorpholine

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    44/122

    SIMULATION

    44

    Parameters in the MSE Databank (7)

    Polyelectrolytes

    Polyacrylic acid

    Complexes with Cu, Zn, Ca

    Mixed-solvent organic systems HAc tri-N-octylamine toluene H2O

    HAc tri-N-octylamine methylisobutylketone H2O

    HAc MeOH EtOH H2O

    HAc MeOH CO2 H2O

    Dimethylformamide HFo H2O

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    45/122

    SIMULATION

    45

    Parameters in the MSE Databank (8)

    Mixed-solvent inorganic/organic system

    Hydrocarbon water salt (Na, K, Ca, Mg, NH4, H, Cl, SO4, NO3) systems

    Mono, di- and triethylene glycols - H Na Ca Cl CO3 HCO3 - CO2H2S H2O

    Phenol - acetone - SO2 - HFo - HCl H2O

    Benzene NaCl and (NH4)2SO4 - H2O

    Cyclohexane NaCl - H2O

    n-Butylaldehyde NaCl - H2O

    LiPF6 diethylcarbonate propylene carbonate

    Ethanol LiCl - H2O

    Methanol - H2O + NaCl, HCl

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    46/122

    SIMULATION

    46

    Predictive character of the model

    Levels of predictivity Prediction of the properties of multicomponent

    systems based on parameters determined fromsimpler (especially binary) subsystems

    Extensively validated for salts and organics

    Prediction of certain properties based onparameters determined from other properties

    Extensively validated (e.g., speciation or caloricproperty predictions)

    THINKSIMULATION

    Wh t d it f th

    40

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    47/122

    SIMULATION

    47

    What does it mean for themodel to be predictive?

    Parameters were determinedusing only binary salt + H2Odata

    SLE for the ternary system

    was predicted without makingany ternary fits

    MSE is clearly superior evenin the applicability range ofthe aqueous model

    This can work only when the

    ternary system does notintroduce a chemistry change(e.g., double salts)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

    NaH2PO4, weight %

    KH2PO

    4,weight%

    0C 5C

    10C 15C

    20C 25C

    30C 35C

    40C 45C

    50C 55C

    60C 65C

    70C 75C

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

    NaH2PO4, weight %

    KH2PO

    4,weight%

    0C 5C

    10C 15C

    20C 25C

    30C 35C

    40C 45C

    50C 55C

    60C 65C

    70C 75C

    MSE (no ternary fits)

    Aqueous model(no ternary fits)

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    48/122

    SIMULATION

    48

    Predictive character of the model

    Levels of predictivity - continued Prediction of properties without any knowledge of

    properties of binary systems Standard-state properties: Correlations to predict the

    parameters of the HKF equation Ensures predictivity for dilute solutions

    Properties of solids: Correlations based on family analysis Parameters for nonelectrolyte subsystems

    Group contributions: UNIFAC estimation

    Quantum chemistry + solvation: CosmoThermestimation

    Also has limited applicability to electrolytes as longas dissociation/chemical equilibria can beindependently calculated

    THINKSIMULATION

    Transport properties in the OLI

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    49/122

    SIMULATION

    49

    Transport properties in the OLIsoftware

    Available transport properties: Diffusivity

    Viscosity

    Electrical conductivity

    OLI was the first to develop transport propertymodels for concentrated, multicomponentaqueous solutions

    More recently, the models have been extendedto mixed-solvent systems

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    50/122

    SIMULATION

    50

    Modeling diffusivity in electrolyte systems

    Limiting diffusivity

    Long-range electrostatic interactions

    Relaxation effect:

    Short-range interactions

    Hard-sphere contribution:

    Combination of the two effects:

    i

    i

    k

    k

    1

    0

    i

    HS

    i

    D

    D

    0

    i

    HS

    i

    i

    i0

    iiD

    D

    k

    k1DD

    Enskog theory:Significant forconcentrated

    solutions

    MSA theory:Important inrelatively dilutesolutions

    0

    iD

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    51/122

    SIMULATION

    51

    Calculation of diffusivity in MSE solutions

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0.0 0.2 0.4 0.6 0.8 1.0

    x'methanol

    Dmethanol*109,m

    2/s

    xLiCl=0.005

    xLiCl=0.01

    xLiCl=0.02

    xLiCl=0

    Dmethanol in methanol-water-LiClsystem at 25C at various LiClconcentrations

    xNaCl=0.005

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0.0 0.2 0.4 0.6 0.8 1.0

    x'methanol

    Dmethanol*10

    9,m

    2/s

    xNaCl=0.01

    xNaCl=0.02

    salt-free

    Dmethanol in methanol-water-NaCl systemat 25C at various NaCl concentrations

    THINKSIMULATION

    Computation of diffusion coefficients:

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    52/122

    SIMULATION

    52

    Computation of diffusion coefficients:Species in NiCl2 solutions

    For complexed species,measured diffusioncoefficients areweighted averages of

    diffusion coefficients ofindividual complexes:

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 1 2 3 4 5

    m NiCl2

    D

    109 (m2s

    -1) Ni species - Stokes et

    al. (1979)

    Ni species - Salmon et

    al. (1987)

    Cl species - Stokes et

    al. (1979)

    D iDc

    c X Q X

    Q X

    XiT i i

    i i

    T

    THINKSIMULATION

    M d li l i l d i i

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    53/122

    53

    Modeling electrical conductivity

    X

    X

    v

    v

    i

    eli

    ii

    11 0

    0

    Limitingconductivity

    Dependence of ionelectrolyte concentration

    relaxationeffect

    electrophoreticcorrection

    The model includes the computation of1. Limiting conductivities of ions as a function of temperature and

    solvent composition

    2. Dependence of electrical conductivity on electrolyte concentration(the mean spherical approximation theory)

    THINKSIMULATION

    Electrical conductivity model:

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    54/122

    54

    Electrical conductivity model:H2O H2SO4 SO3

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    x-SO3

    s

    pecificconductivity

    (S.cm-1)

    THINKSIMULATION

    Electrolytes in mixed solvents:

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    55/122

    55

    Electrolytes in mixed solvents:MgCl2 + ethanol + water

    1.0E-05

    1.0E-04

    1.0E-03

    1.0E-02

    1.0E-01

    1.0E+00

    0.0001 0.001 0.01 0.1 1 10

    mol MgCl2/kg solvent

    80%

    60%

    40%

    100% EtOH (------)

    20%

    0% EtOH

    specificconductivity,Scm-1

    THINKSIMULATION

    Vi it d l

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    56/122

    56

    Viscosity model

    sssLR

    mix

    0viscosity of the

    MSE solution

    viscosity of thesolvent mixture

    long-rangeelectrostaticcontribution

    individual ioncontributions

    interactionsbetween species

    Dependence ofon electrolyte

    concentration

    In MSE solutions, -0 is found to show regularities with respect toboth electrolyte concentrations and solvent composition, and is themost convenient quantity to define the model

    THINKSIMULATION

    Vi i i f l i 0

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    57/122

    57

    Viscosities of solvent mixtures, 0mix

    0.0

    0.5

    1.0

    1.5

    2.0

    0.0 0.2 0.4 0.6 0.8 1.0

    x-acetone

    Viscosity

    (cP)

    20C

    25C

    50C

    acetone + water

    Mixing rule

    ijjiij k12

    1 00

    l

    ll

    iii

    vx

    vxY *

    *

    illil

    lii gvxvv0410*

    Modified volume fractions

    i j

    ijjimix YY 0

    THINKSIMULATION

    Eff t f l t l t t ti

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    58/122

    58

    Effects of electrolyte concentration

    LR From the analyticalmodel by Onsager and Fuoss

    (1932)

    s defined for multiplesolvents

    s-s defined for solventcombinations

    00

    21

    42

    n

    n

    n

    N

    ii

    iiLRscr

    z

    T

    Ia

    i

    j i

    jiijjs Bcx ,0

    j l i kik,jlkijllj

    ssIDffxx

    20''

    calculated using and i0 inthe mixed solvent

    j = solvent; i = ion or neutral

    j,l = solvent; i,k = ion or neutral

    Bi,j evaluatedbased onviscosities ofelectrolyte inpure solvent

    Dik,jl(I,T) adjusted based onexperimental data

    THINKSIMULATION

    Vi it f H O H SO SO

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    59/122

    59

    Viscosity of H2O H2SO4 SO3

    0.1

    1

    10

    100

    1000

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    x-SO3

    ,cP

    THINKSIMULATION

    Viscosity of salt organic - water systems:

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    60/122

    60

    Viscosity of salt organic water systems:LiNO3-ethanol-H2O

    Viscosities of the ternary solutionsof LiNO3-ethanol-H2O as a functionof the molarity of LiNO3 at 25C and

    at various ethanol weight percent.

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 5 10 15

    c-LiNO3, mol/L

    ,cP 100 w t%

    70 w t%

    30 w t%

    EtOH=0 w t%

    THINKSIMULATION

    Sublimation / salt point10

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    61/122

    61

    Sublimation / salt pointcalculations

    Solid-gas equilibriumcomputations for pureNH4Cl and NH4HS

    0.001

    0.01

    0.1

    1

    150 200 250 300 350

    t/C

    sublima

    tionpressur

    Stull-1947

    OLI

    0.001

    0.01

    0.1

    1

    10

    -60 -30 0 30 60 90

    t/C

    sublimation

    pressure,at

    Stull-1947

    P, atm (cal)

    NH4Cl

    NH4HS

    THINKSIMULATION

    HI I2 H2O

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    62/122

    62

    HI - I2 - H2O

    H2O/HI/I2 full range of concentration, T

    The heart of the IS Process

    Challenge: presence of more than one LLEregion together with regions of VLE and SLE

    THINKSIMULATION

    MSE Challenge

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    63/122

    63

    MSE Challenge

    For systems within the AQ model limits, yes

    Binary systems give reasonable resultswhen water remains the dominant solvent

    When the 2nd solvent, or different solventpredominates

    All major components must be studied with

    respect to all solvents e.g., for MEG systems, MEG Ca and MEG Na

    must be regressed, along with

    Will MSE work out-of-the-box?

    THINKSIMULATION

    Overview of Aspen PLUS OLI

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    64/122

    64

    p(with MSE)

    Using the Aspen PLUS OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    65/122

    65

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    66/122

    66

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    67/122

    67

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    68/122

    68

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    69/122

    69

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    70/122

    70

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    71/122

    71

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    72/122

    72

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    73/122

    73

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    74/122

    74

    Aspen OLI Chemistry Generator

    THINKSIMULATION

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    75/122

    75

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    76/122

    76

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    77/122

    77

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    78/122

    78

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    79/122

    79

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    80/122

    80

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    81/122

    81

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Generator

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    82/122

    82

    Aspen OLI Chemistry Generator

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    83/122

    83

    Aspen OLI Chemistry Wizard

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    84/122

    84

    Aspen OLI Chemistry Wizard

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    85/122

    85

    Aspen OLI Chemistry Wizard

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    86/122

    86

    Aspen OLI Chemistry Wizard

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    87/122

    87

    Aspen OLI Chemistry Wizard

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    88/122

    88

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    89/122

    89

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    90/122

    90

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    91/122

    91

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    92/122

    92

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    93/122

    93

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    94/122

    94

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    95/122

    95

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    96/122

    96

    p y

    THINKSIMULATION

    Aspen OLI Chemistry Wizard

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    97/122

    97

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    98/122

    98

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    99/122

    99

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    100/122

    100

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    101/122

    101

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    102/122

    102

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    103/122

    103

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    104/122

    104

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    105/122

    105

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    106/122

    106

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    107/122

    107

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    108/122

    108

    THINKSIMULATION

    Aspen Plus 2006

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    109/122

    109

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    110/122

    110

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    111/122

    111

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    112/122

    112

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    113/122

    113

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    114/122

    114

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    115/122

    115

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    116/122

    116

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    117/122

    117

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    118/122

    118

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    119/122

    119

    THINKSIMULATION

    Aspen Plus OLI with EFRACH

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    120/122

    120

    THINKSIMULATION

    Aspen OLI

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    121/122

    121

    More examples?Live cases?

    Questions?

    THINKSIMULATION

    Conclusion

  • 8/2/2019 OLI Mixed Solvent Electrolyte With Aspen Plus

    122/122

    Using MSE in Aspen Plus is very similar to usingany property set.

    The OLI property sets can be used withstandard Aspen PLUS unit operations or with OLI

    unit operations