Ofer Lahav University College London

44
Ofer Lahav University College London (I)Neutrino Masses from LSS (I)Neutrino Masses from the CMB (III) The Dark Energy Survey

description

Neutrino Masses from LSS Neutrino Masses from the CMB (III) The Dark Energy Survey. Ofer Lahav University College London. Concordance Cosmology. SN Ia CMB LSS – Baryonic Oscillations Cluster counts Weak Lensing Integrated Sachs Wolfe Physical effects: * Geometry - PowerPoint PPT Presentation

Transcript of Ofer Lahav University College London

Page 1: Ofer Lahav    University College London

Ofer Lahav University College London

(I) Neutrino Masses from LSS

(I) Neutrino Masses from the CMB

(III) The Dark Energy Survey

Page 2: Ofer Lahav    University College London

Concordance Cosmology

SN Ia CMB LSS – Baryonic

Oscillations Cluster counts Weak Lensing Integrated Sachs Wolfe

Physical effects: * Geometry * Growth of Structure

Page 3: Ofer Lahav    University College London

Massive Neutrinos and Cosmology

* Why bother? – absolute mass, effect on other parameters * Brief history of ‘Hot Dark Matter’

* Limits on the total Neutrino mass from cosmology within CDM M < 1 eV * Mixed Dark Matter? * Non-linear power spectrum and biasing – halo model

* Combined cosmological observations and laboratory experiments

Page 4: Ofer Lahav    University College London

Brief History of ‘Hot Dark Matter’

* 1970s : Top-down scenario with massive neutrinos (HDM) – Zeldovich Pancakes

* 1980s: HDM - Problems with structure formation

* 1990s: Mixed CDM (80%) + HDM (20% )

* 2000s: Baryons (4%) + CDM (26%) +Lambda (70%): But now we know HDM exists! How much?

Page 5: Ofer Lahav    University College London

Globalisation and the New Cosmology

How is the New Cosmology affected by Globalisation?

Recall the Cold War era: Hot Dark Matter/top-down (East) vs. Cold Dark Matter/bottom-up (West)

Is the agreement on the `concordance model’ a product of Globalisation?

OL, astro-ph/0610713

Page 6: Ofer Lahav    University College London

From Great Walls to Neutrino Masses

Page 7: Ofer Lahav    University College London

Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales

k > knr = 0.026 (m/1 eV)1/2 m1/2 h/Mpc

Colombi, Dodelson, & Widrow 1995

WDMCDM+HDM

CDM

Massive neutrinos mimica smaller source term

Page 8: Ofer Lahav    University College London
Page 9: Ofer Lahav    University College London
Page 10: Ofer Lahav    University College London

Neutrino properties

TheThe number of neutrino species Nnumber of neutrino species N affects affects

the expansion rate of the universe, hence BBN.the expansion rate of the universe, hence BBN.

BBN constraints BBN constraints NN between between 1.7 and 31.7 and 3 (95% CL) (95% CL)

(e.g. Barger et al. 2003).(e.g. Barger et al. 2003).

From CMB+LSS+SN Ia, From CMB+LSS+SN Ia, NN =4.2 =4.2+1.2+1.2-1.7-1.7 (95% CL)(95% CL)

(Hannestad 2005)(Hannestad 2005)

We shall assume NWe shall assume N=3=3

Electron, muon and tau neutrinos neutrinos Eigen states Eigen states m1, m2, m3

neutrinos per cmneutrinos per cm33

hheVeV

Page 11: Ofer Lahav    University College London

Neutrino Mass Hierarchy

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 12: Ofer Lahav    University College London

Absolute Masses of Neutrinos

Based onmeasuredsquared mass differences from solar and atmosphericoscillations

Assuming

m1 < m2 < m3

E & L, NJP 05

Page 13: Ofer Lahav    University College London

What could cosmic probes tell us about Neutrinos and

Dark Energy?

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 14: Ofer Lahav    University College London

The Growth factor: degeneracy of Neutrinos Mass and Dark Energy

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Kiakotou, Elgaroy, OL

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 15: Ofer Lahav    University College London

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Kiakotou, Elgaroy, OL 2007, astro-ph 0709.0253

P(k)/P(k) P(k)/P(k) = -8 = -8 mm

Not valid on useful Not valid on useful

scales!scales!

Page 16: Ofer Lahav    University College London

Weighing Neutrinos with 2dFGRS

Free streaming effect: /m< 0.13

Total mass M< 1.8 eV

(Oscillations) (2dF)

a Four-Component Universe ?

Elgaroy , Lahav & 2dFGRS team, astro-ph/0204152 , PRL

= 0.05

0.01

0.00

Page 17: Ofer Lahav    University College London

What do we mean by ‘systematic uncertainties’?

• Cosmological (parameters and priors)

• Astrophysical (e.g. Galaxy biasing)

• Instrumental (e.g. ‘seeing’)

Page 18: Ofer Lahav    University College London

Degeneracy of neutrino mass

n= 0.9

n= 1.1

n=1.0

Prior 0< m<0.5

Page 19: Ofer Lahav    University College London

Biasing vs. neutrino mass

Elgaroy & Lahav , JCAP, astro-ph/030389

---- SAM for

L>0.75 L*

Pg(k) = b2(k) Pm(k)

b(k) = a log(k) + c a

Total neutrino mass

Page 20: Ofer Lahav    University College London

Weak Lensing is promising

Abazajian & Dodelson (2003)

also Hannestad et al. 2006

Page 21: Ofer Lahav    University College London

Non-linear P(k) with massive neutrinosAbazajian et al. (astro-ph/0411552) modeled the effects of neutrino infall into CDM halos and incorporated it in the halo model. The effect is small: P(k)/P(k) » 1%

at k » 0.5 h/Mpc for M » 1 eV

Future work : high-resolution simulations with CDM, baryons and neutrinos

Page 22: Ofer Lahav    University College London

CMB with massive

E&L 2004E&L 2004M =0.3, 0.9, 1.5, 6.0 eVFixed cdm = 0.26

Page 23: Ofer Lahav    University College London

Neutrinos masses and the CMB If znr > zrec h2 > 0.017 (i.e. M > 1.6 eV) Then neutrinos behave like matter - this defines a critical value in CMB features * Ichikawa et al. (2004 ) from WMAP1 alone M < 2.0 eV * Fukugita et al. (2006) from WMAP3 alone M < 2.0 eV

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 24: Ofer Lahav    University College London

Normalization vs neutrino mass using WMAP alone +

concordance model

Page 25: Ofer Lahav    University College London

Is CMB polarisation useful for neutrino mass?

Fukugita, Ichikawa,

Kawasaki, OL, astro-ph/0605362

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Not directly, but reduces degeneracy with the reionization optical depth

Page 26: Ofer Lahav    University College London

Ratio of bulk flows with massive neutrinos =0.04

Page 27: Ofer Lahav    University College London

Deriving Neutrino mass from Cosmology

Data Authors Mmi

2dF (P01) Elgaroy, OL et al.02 < 1.8 eV

WMAP+LSS+SN…

Spergel et al. 06 < 0.68 eV

2dF (C05)+CMB Sanchez et al. 05 < 1.2 eV

BAO+CMB+LSS+SN

Goobar et al. 06 < 0.62 eV

Ly- + SDSS+ WMAP+…

Seljak et al. 04 < 0.17 eV

WMAP alone Ichikawa et al. 04

Fukugita et al. 06

< 2.0 eV

All upper limits 95% CL, but different assumed priors !

Page 28: Ofer Lahav    University College London

Forecasting Neutrino mass from Cosmology

Data Authors error

High-z galaxy surveys + Planck

Takada et al. (2006) 0.03-0.06 eV

High-z galaxy surveys + Planck

Hannestad & Wong (2007)

0.05 eV

SKA + Planck Abdalla & Rawlings(2007)

0.05 eV

Note different error definitions and assumed priors !

Page 29: Ofer Lahav    University College London

Combined Cosmology & Terrestrial Experiments

Fogli et al.Hep-ph/0408045

Page 30: Ofer Lahav    University College London

Combining KATRIN+CMB (Host, OL, Abdalla & Eitel 2007) =>> Ole’s talk

Page 31: Ofer Lahav    University College London

Neutrinos - Summary * Redshift surveys (+ CMB) M < 0.7-1.8 eV

Ly-(+ CMB+LSS) M < 0.17 eV

* Within the -CDM scenarios, subject to priors. * Alternatives: MDM ruled out. * Future: errors down to 0.05 eV using SDSS+Planck, and weak gravitational lensing of background

galaxies and of the CMB. Resolve the neutrino absolute mass!

Page 32: Ofer Lahav    University College London

Baryon Wiggles as Standard Rulers

Page 33: Ofer Lahav    University College London

Imaging Surveys Survey Sq. Degrees Filters Depth Dates Status

CTIO 75 1 shallow published

VIRMOS 9 1 moderate published

COSMOS 2 (space) 1 moderate complete

DLS (NOAO) 36 4 deep complete

Subaru 30? 1? deep 2005? observing

CFH Legacy 170 5 moderate 2004-2008 observing

RCS2 (CFH) 830 3 shallow 2005-2007 approvedVST/KIDS/

VISTA/VIKING 1700 4+5 moderate 2007-2010? 50%approved

DES (NOAO) 5000 4 moderate 2008-2012? proposedPan-

STARRS ~10,000? 5? moderate 2006-2012? ~funded

LSST 15,000? 5? deep 2014-2024? proposed

JDEM/SNAP1000+ (space)

9 deep 2013-2018? proposed

VST/VISTA

DUNE

5000? 2010-2015?moderate 4+5 proposed

20000? (space) 2+1? moderate 2012-2018? proposed

Y. Y. Mellier

Page 34: Ofer Lahav    University College London

DUNE: Dark UNiverse Explorer

Mission baseline: • 1.2m telescope • FOV 0.5 deg2

• PSF FWHM 0.23’’• Pixels 0.11’’ • GEO (or HEO) orbit

Surveys (3-year initial programme):• WL survey: 20,000 deg2 in 1 red broad band, 35 galaxies/amin2 with median z ~ 1, ground based complement for photo-z’s

• Near-IR survey (J,H). Deeper than possible from ground. Secures z > 1 photo-z’s

• SNe survey: 2x60 deg2, observed for 9 months each every 4 days in 6 bands, 10000 SNe out to z ~ 1.5, ground based spectroscopy

Page 35: Ofer Lahav    University College London

Photometric redshift

• Probe strong spectral features (4000 break)

• Difference in flux through filters as the galaxy is redshifted.

Page 36: Ofer Lahav    University College London

*Training on ~13,000 2SLAQ

*Generating with ANNz Photo-z for ~1,000,000

LRGs MegaZ-LRG

z = 0.046

Collister, Lahav,Blake et al., astro-ph/0607630

Page 37: Ofer Lahav    University College London

Baryon oscillations

Blake, Collister, Bridle & Lahav; astro-ph/0605303

Page 38: Ofer Lahav    University College London

The Dark Energy Survey• Study Dark Energy using 4 complementary techniques: I. Cluster Counts II. Weak Lensing III. Baryon Acoustic Oscillations IV. Supernovae

• Two multi-band surveys 5000 deg2 g, r, i, z 40 deg2 repeat (SNe)

• Build new 3 deg2 camera and data management system Survey 2010-2015 (525 nights) Response to NOAO AO

Blanco 4-meter at CTIO

300,000,000 photometric redshifts

Page 39: Ofer Lahav    University College London

The DES CollaborationFermilab: J. Annis, H. T. Diehl, S. Dodelson, J. Estrada, B. Flaugher, J. Frieman, S. Kent, H. Lin, P. Limon, K. W. Merritt, J. Peoples, V. Scarpine, A. Stebbins, C. Stoughton, D. Tucker, W. WesterUniversity of Illinois at Urbana-Champaign: C. Beldica, R. Brunner, I. Karliner, J. Mohr, R. Plante, P. Ricker, M. Selen, J. ThalerUniversity of Chicago: J. Carlstrom, S. Dodelson, J. Frieman, M. Gladders, W. Hu, S. Kent, R. Kessler, E. Sheldon, R. WechslerLawrence Berkeley National Lab: N. Roe, C. Bebek, M. Levi, S. PerlmutterUniversity of Michigan: R. Bernstein, B. Bigelow, M. Campbell, D. Gerdes, A. Evrard, W. Lorenzon, T. McKay, M. Schubnell, G. Tarle, M. TecchioNOAO/CTIO: T. Abbott, C. Miller, C. Smith, N. Suntzeff, A. WalkerCSIC/Institut d'Estudis Espacials de Catalunya (Barcelona): F. Castander, P. Fosalba, E. Gaztañaga, J. Miralda-EscudeInstitut de Fisica d'Altes Energies (Barcelona): E. Fernández, M. MartínezCIEMAT (Madrid): C. Mana, M. Molla, E. Sanchez, J. Garcia-BellidoUniversity College London: O. Lahav, D. Brooks, P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller University of Cambridge: G. Efstathiou, R. McMahon, W. Sutherland University of Edinburgh: J. Peacock University of Portsmouth: R. Crittenden, R. Nichol, R. Maartnes, W. PercivalUniversity of Sussex: A. Liddle, K. Romer

plus postdocs and students

Page 40: Ofer Lahav    University College London

The Dark Energy Survey UK Consortium

(I) PPARC funding: O. Lahav (PI), P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller (UCL), R. Nichol (Portsmouth), G. Efstathiou, R. McMahon, W. Sutherland (Cambridge) J. Peacock (Edinburgh)

Submitted a proposal to PPARC requesting £ 1.7M for the DES optical design. In March 2006, PPARC Council announced that it “will seek participation in DES”. PPARC already approved £220K for current R&D.

(II) SRIF3 funding: R. Nichol, R. Crittenden, R. Maartens, W. Percival (ICG Portsmouth) K. Romer, A. Liddle (Sussex)

Funding the optical glass blanks for the UCL DES optical work

These scientists will work together through the UK DES Consortium. Other DES proposals are under consideration by US and Spanish funding agencies.

Page 41: Ofer Lahav    University College London

DES Forecasts: Power of Multiple Techniques

Assumptions:Clusters: 8=0.75, zmax=1.5,WL mass calibration

BAO: lmax=300WL: lmax=1000(no bispectrum)

Statistical+photo-z systematic errors only

Spatial curvature, galaxy biasmarginalized,Planck CMB prior

Factor 4.6 improvement over Stage II

w(z) =w0+wa(1–a) 68% CL

DETF Figure of Merit: inversearea of ellipse

Page 42: Ofer Lahav    University College London

DES z=0.8 photo-z shell

Back of the envelope: improved by sqrt (volume) => Sub-eV from DES(OL, Abdalla, Black; in prep)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

0.0 eV0.40.91.7

Page 43: Ofer Lahav    University College London

• * 4-5 complementary probes

• * Survey strategy delivers substantial DE science after 2 years

• * Relatively modest (~ $20-30M), low-risk, near-term project with high discovery potential

• * Synergy with SPT and VISTA on the DETF Stage III timescale

• * Scientific and technical precursor to the more ambitious Stage IV Dark Energy projects to follow: LSST and JDEM

DES and a Dark Energy Programme

Page 44: Ofer Lahav    University College London

Some Outstanding Questions:

* Vacuum energy (cosmological constant, w= -1.000 after all ?) * Dynamical scalar field ? * Modified gravity ?

* Why /m = 3 ? * Non-zero Neutrino mass < 1eV ? * The exact value of the spectral index: n < 1 ?

* Excess power on large scales ? * Is the curvature zero exactly ?