OECD/NEA IAEA/ISSC Workshop on Soil Structure Interaction Knowledge 3... · OECD/NEA – IAEA/ISSC...

38
OECD/NEA OECD/NEA IAEA/ISSC IAEA/ISSC Workshop Workshop on on Soil Structure Interaction Soil Structure Interaction Knowledge Knowledge Ottawa, Canada October 2010 KARISMA Benchmark Phase I ResultsAyhan ALTINYOLLAR, ISSC/IAEA IAEA International Atomic Energy Agency

Transcript of OECD/NEA IAEA/ISSC Workshop on Soil Structure Interaction Knowledge 3... · OECD/NEA – IAEA/ISSC...

OECD/NEA OECD/NEA –– IAEA/ISSC IAEA/ISSC Workshop Workshop

on on

Soil Structure InteractionSoil Structure Interaction KnowledgeKnowledge

Ottawa, Canada

October 2010

“KARISMA Benchmark Phase I Results”

Ayhan ALTINYOLLAR, ISSC/IAEA

IAEA International Atomic Energy Agency

Content

1. Objectives of the benchmark

2. Features of the benchmark

3. Organisation

4. Participants

5. Tasks

6. Phase I results

7. Conclusions from Phase I

8. Perspectives (Phase II)

9. Activities to be continued (Phases II and III)

3

1. Main objectives of the KARISMA 1. Main objectives of the KARISMA

benchmarkbenchmark

•• to understand behaviour of the soil and structures to understand behaviour of the soil and structures during the July 2007 during the July 2007 Niigataken Niigataken ChuetsuChuetsu--Oki Oki earthquakeearthquake (NCOE).(NCOE).

•• to capture the main characteristics of the responseto capture the main characteristics of the response of structure and equipment.of structure and equipment.

•• to calibrate different simulation methodologies and to calibrate different simulation methodologies and to identify main parameters influencing the analytical to identify main parameters influencing the analytical response, by collecting and analysing the results response, by collecting and analysing the results from different teams.from different teams.

•• to understand margins: quantifying what will happen to understand margins: quantifying what will happen both in soil and in structure, when the input is both in soil and in structure, when the input is increased. How a major event such as increased. How a major event such as Niigataken Niigataken ChuetsuChuetsu--Oki one helps reducing epistemic Oki one helps reducing epistemic uncertainties.uncertainties.

KAshiwazaki-Kariwa Research Initiative for

Seismic Margin Assessment

4

2. KARISMA benchmark features2. KARISMA benchmark features

Two parts:Two parts:

•• Structures and soilStructures and soil

•• Recorded signals Recorded signals in the soil (boreholes) and in some in the soil (boreholes) and in some

inin--structure pointsstructure points

•• Possibility of Possibility of comparison between observations and comparison between observations and

analyses analyses resultsresults

•• EquipmentEquipment

•• No recordings on equipmentNo recordings on equipment

•• “Qualitative” appreciation of damage: buckling of “Qualitative” appreciation of damage: buckling of

tanks, sloshing of poolstanks, sloshing of pools

•• Margins estimationMargins estimation

5

Layout of main buildings and seismometer positions

Cross-sectional view showing the location map of seismometers in Unit 7 and recorded maximum acceleration in N-S, E-W and U-D

directions respectively (in gal)

367, 435, 464

267, 356, 355

418, 506, 342673, 1007, 362

964,1223, 539

685, 737, 308

415, 388, 166

318, 322, 336

+9.3m

-24m

-100m

-180m

-300m

396, 586, 226

419, 407, 146

407, 450, 187

5G1

G51

G52

G53

G54

G55

2. KARISMA benchmark features2. KARISMA benchmark features

•• Different teams are calculating the behaviour of structures Different teams are calculating the behaviour of structures under the same strong event; each team use under the same strong event; each team use their their own own approach.approach.

•• Interaction between teamsInteraction between teams

•• Use of “national practices”Use of “national practices”

•• The possibility of constructing their own model of R/B, soil The possibility of constructing their own model of R/B, soil and equipment are given to teamsand equipment are given to teams..

•• Models should capture the linear and non linear Models should capture the linear and non linear behaviour of soil and structurebehaviour of soil and structure

•• NNeeded data for analyseseeded data for analyses were provided bywere provided by TEPCOTEPCO.

2. KARISMA benchmark features2. KARISMA benchmark features

3 3 -- Organization the KARISMA benchmarkOrganization the KARISMA benchmark

•• IAEA Secretariat is managing the benchmark. IAEA Secretariat is managing the benchmark.

•• ISSC Information System (IIS) is being used.ISSC Information System (IIS) is being used.

•• Guidance documents, result templatesGuidance documents, result templates

•• Organizing Committee (OC) of the benchmark adviseOrganizing Committee (OC) of the benchmark advisess

the IAEA Secretariat. the IAEA Secretariat.

•• The role of the OC is to review the participant results and to The role of the OC is to review the participant results and to

make decisions for the conduct of the benchmark. make decisions for the conduct of the benchmark.

•• Members of OC are: participant representatives, a Members of OC are: participant representatives, a

representative of the scientific committee of the EBP, experts representative of the scientific committee of the EBP, experts

and IAEA Secretariat (3 OC meetingand IAEA Secretariat (3 OC meetingss))

Guidance Document for 1. Structure

3 3 -- Organization the KARISMA benchmarkOrganization the KARISMA benchmark

Result Templates for 1. Structure

3 3 -- Organization the KARISMA benchmarkOrganization the KARISMA benchmark

Rev 01 - 11/12/2009

1. STRUCTURE

TASK 1.1- Construction and validation of the soil and structure models

Ayhan ALTINYOLLAR

IAEA/NSNI/ESS Engineering Safety Section

Phone : + 43 0 2600 26399

E-mail : [email protected]

Contact

Email

Phone

Fax

If you have any question, please do not hesitate to contact

KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment

KARISMA BENCHMARK RESULT TEMPLATES

IAEA-EBP-SS-WA2- KARISMA-SP-003

Address

Country

IAEA Extrabudgetary project on Seismic safety of Existing Nuclear Power Plants

Working Area 2: Re-evaluation of the seismic safety of existing NPPs

Company / Organisation

10

• July 2007: NCOE

• December 2007 – Seismic EBP visit to K-K

• 29-30 May 2008: 1st CS meeting (Vienna, Austria) to set up the main specifications of the Benchmark

• July 2008: First Announcement

• September 2008: 21 teams expressed their intention to participate

• October 2008: KO meeting during 2nd StC

• January 2009: first OC meeting – list of missing data

• Feb-June 2009: assembling available data

• July 2009: Launching of the Benchmark

• September 2009: Second OC meeting – need of complementary data from TEPCO

• Analyses by different teams

• End of January 2010: first results are uploaded

• May 2010: First Review Meeting

• August 2010: Uploading revised result templates

Main steps of the benchmark

3 3 -- Organization the KARISMA benchmarkOrganization the KARISMA benchmark

4. Participants to KARISMA benchmark

4

2

6 5

5. Tasks of the KARISMA Benchmark

Phase I Phase II Phase III

Task 1.1 Construction and validation of the soil and structure models

Subtask 1.1.1. Static and modal analyses of the fixed base model

A. Static analysis of the fixed base under vertical loads (weight)

B. Static analysis of the fixed base model under horizontal forces

C. Modal analysis of the fixed base model

Subtask 1.1.2. Soil column analyses

A. Soil Column Analyses under Aftershock I (16th July, 15:37)

B. Soil Column Analyses under Aftershock II (16th July, 17:42)

C. Soil Column Analyses under Mainshock

Subtask 1.1.3. Analysis of the complete model

A. Modal Analysis

B. Frequency Domain Analyses

Task 1.2 Main shock

response

Task 1.3 Margin

assessment

2.1 RHR Piping System

Task 2.1.1 Initial analyses

A. Static analysis under vertical loads (weight) + pressure

B. Modal analysis of the RHR piping system

C. Modal response spectrum analysis

D. Time history analysis

Task 2.1.2 Multi

support analyses*

Task 2.1.3 Margin

assessment*

2.2 Sloshing Fuel Pool

Task 2.2.1 Initial analyses

A. Modal analysis of the sloshing

B. Estimation of maximum wave height assuming no water spill

C. Estimation of spilled water amount during NCOE

D. Free surface evolution

Task 2.2.2

Complementary

analyses*

Task 2.2.3

Methodology for

evaluation of spilled

water*

2.3 Tank Buckling

Task 2.3.1 Initial analyses

A. Modal analysis of the tank

B. Modal spectrum analysis of the pure water tank

C. Time history analysis of the pure water tank

D. Buckling estimation

Task 2.3.2

Complementary

analyses (SSI)*

Task 2.3.3 Fragility

evaluation*

2.

Eq

uip

men

t

* Details of task will be defined by OC (Organizing Committee).

1. Structure

6. Phase I results

• 1. Structure • 23 teams intended to participate, we have 17 results, 2

teams grouped together

• 2.1 RHR Piping system • 10 teams intended to participate, we have 2 full results

and 4 partial results.

• 2.2 Sloshing of the fuel pool • 12 teams intended to participate, we have 3 full results

and 4 partial results.

• 2.3 Tank buckling • 10 teams intended to participate, we have 2 full results

and 3 partial results.

14

ObjectiveObjective :: ToTo constructconstruct thethe model,model, toto validatevalidate thethe

modelmodel usingusing existingexisting datadata andand toto comparecompare thethe participant’sparticipant’s

resultsresults

11..11..11.. StaticStatic andand modalmodal analysesanalyses ofof thethe fixedfixed basebase modelmodel

11..11..22.. SoilSoil columncolumn analysesanalyses

11..11..33.. AnalysisAnalysis ofof thethe completecomplete modelmodel

Task 1.1 Construction and validation of

the soil and structure models

6. Phase I results

15

K-K Unit 7 Reactor Building Floor plan: 3rd Basement (T.M.S.L. -8.2m)

6. Phase I results

16

No Participant Organization Type of

model

Model characteristics

(Number of nodes, elements)

Concrete young

modulus (MPa)

Calcuation code

1 TEAM SA Stick model 10 nodes, 9 beam elements 31300 Super-sap/ansys11.0

2 TEAM SB 3D FEM 9037 nodes, 5829 elements 31300 ANSYS 11.0

3 TEAM SC 3D FEM 2603 nodes, 4406 elements 31300 ANSYS 11.0

4 TEAM SD 3D FEM 5400 nodes, 6200 elements 30000 Abaqus/Standard-6.9

5 TEAM SE 3D FEM 4546 nodes, 6265 elements 31300 Finite Element code CAST3M (Version 2010)

6 TEAM SF 3D FEM 12600 nodes, 14500 elements 31300 Code_Aster (STA9.6)

7 TEAM SG 3D FEM 19000 nodes 31300 Sofistik 25

8 TEAM SH 3D FEM 12560 nodes, 15288 elements 31300 Femap with NX Nastran 10.1

9 TEAM SI Stick model 123 nodes, 120 elements 31300 SOFiSTiK, Version 23

10 TEAM SJ 3D FEM 16297 nodes, 16686 elements 30000 ANSYS

11 TEAM SK 3D FEM 41901 nodes, 47834 elements 31300 COSMOS/M version 2.0

12 TEAM SL 3D FEM 74780 nodes, 57316 elements 31300 COSMOS/M 2.5

13 TEAM SM 3D FEM 7571 nodes, 9440 elements 31300 SAP 2000 Ver 11.0

14 TEAM SN Stick model 31300 SAP2000 Version 7.42

15 TEAM SO 3D FEM

16 TEAM SP 3D FEM 10596 nodes, 10745 elements SAP2000 v.14.1.0 Advanced (Computer & Structures, Inc.)

17 TEAM SR 3D FEM 11278 nodes, 15626 elements 38500 SAP2000 Version 14

TASK 1- STRUCTURE: SUBTASK 1.1- Construction and validation of the soil and structure models

Subtask 1.1.1. Static and modal analysis of the fixed base model - Model Presentation

Subtask 1.1.1. Static and modal analysis of the fixed base

model: Model Presentation

6. Phase I results

17

Subtask 1.1.1. Static and modal analysis of the fixed base

model: Model Presentation

6. Phase I results

18

Subtask 1.1.1. Static and modal analysis of the fixed

base model: Resultant Forces

under Vertical

loads (weight)

Force (MN)Force

(MN)

Moment

(MNm)

Fz Fx My

1 TEAM SA 1903 19032 TEAM SB 2018 2128 16023 83 TEAM SC 2011 2011 37956 194 TEAM SD 1421 14215 TEAM SE 1971 1971 44749 236 TEAM SF 1956 1956 37843 197 TEAM SG 2051 2044 36412 188 TEAM SH 1874 1872 41853 229 TEAM SI 1992 199210 TEAM SJ 2017 2028 47803 2411 TEAM SK 1638 175712 TEAM SL 1941 1942 42860 2213 TEAM SM 2019 2019 45650 2314 TEAM SN 1992 1992 39393 2015 TEAM SO 2208 2208 43838 2016 TEAM SP 1865 1876 41069 2217 TEAM SR 2103 2103 17061 8

1940 1954 37885 19

179 173 10033 5

0.09 0.09 0.26 0.28

Mean

Standard deviationCoefficient of variation

No Participant Organization

My/Fx

Uniform distribution of 1 g acceleration, applied in X

1. STRUCTURE

TASK 1.1- Construction and validation of the soil and structure models

Subtask 1.1.1. Static and modal analysis of the fixed base model

General resultant of forces at the centre of the basemat (T.M.S.L. -13.7 m),

BP1

6. Phase I results

19

Subtask 1.1.1. Static and modal analysis of the fixed

base model: Displacement

6. Phase I results

20

Subtask 1.1.1. Static and modal analysis of the fixed

base model: Displacement

under Vertical loads (weight)Uniform distribution of 1 g

acceleration, applied in X

Uniform distribution of 1 g

acceleration, applied in Y

Δz (mm) Δx (mm) Δy (mm)

1 TEAM SA 1.84 19.73 19.37

2 TEAM SB 3.61 21.96 18.69

3 TEAM SC 2.30 17.97 16.31

4 TEAM SD

5 TEAM SE 2.57 19.43 17.72

6 TEAM SF 2.44 17.92 16.77

7 TEAM SG 2.07 15.61 13.84

8 TEAM SH 2.40 18.60 17.00

9 TEAM SI

10 TEAM SJ 2.91 19.51 18.12

11 TEAM SK 1.61 14.97 13.56

12 TEAM SL 2.36 16.56 15.95

13 TEAM SM 2.10 18.50 16.73

14 TEAM SN 2.20 14.90 11.90

15 TEAM SO 2.02 20.40 18.93

16 TEAM SP 1.74 13.93 12.03

17 TEAM SR 1.71 12.59 10.90

2.26 17.50 15.86

0.51 2.65 2.75

0.23 0.15 0.17

Mean

Standard deviation

Coefficient of variation

1. STRUCTURE

TASK 1.1- Construction and validation of the soil and structure models

Subtask 1.1.1. Static and modal analysis of the fixed base model

No Participant Organization Roof Displacement (T.M.S.L. +49.7m) at WP1

6. Phase I results

21

Subtask 1.1.1. Static and modal analysis of the fixed

base model: Modal Analysis

in X in Y in Z

1 TEAM SA 4.43 4.45 14.21

2 TEAM SB 4.58 5.08 8.00

3 TEAM SC 4.24 4.63 8.86

4 TEAM SD 4.88 4.85 8.35

5 TEAM SE 4.04 4.43 8.31

6 TEAM SF 4.08 4.54 9.41

7 TEAM SG 4.40 5.10 11.00

8 TEAM SH 3.93 4.33

9 TEAM SI 4.84 5.24 13.85

10 TEAM SJ 4.29 4.59 9.01

11 TEAM SK 5.21 5.62 7.70

12 TEAM SL 4.48 4.77 8.55

13 TEAM SM 4.42 4.87 11.05

14 TEAM SN 5.31 5.63 12.73

15 TEAM SO 3.50 4.07 5.10

16 TEAM SP 4.70 5.42 10.59

17 TEAM SR 4.85 5.64 7.48

4.48 4.90 9.64

0.46 0.49 2.45

0.10 0.10 0.25

Mean

Standard deviation

Coefficient of variation

1. STRUCTURE

TASK 1.1- Construction and validation of the soil and structure models -

Subtask 1.1.1. Static and modal analysis of the fixed base model

C. Modal analysis of the fixed base model

No Participant OrganizationNatural Frequency

(Hz)

6. Phase I results

22

Example: IAEA CRP Results

6. Phase I results

The CAMUS speciman is 5 stories shear wall structure.

23

Subtask 1.1.2. Soil column analyses:

Model Presentation

Cross-sectional view showing the location map of seismometers in Unit 7 and recorded maximum acceleration in N-S, E-W and U-D

directions respectively (in gal)

367, 435, 464

267, 356, 355

418, 506, 342673, 1007, 362

964,1223, 539

685, 737, 308

415, 388, 166

318, 322, 336

+9.3m

-24m

-100m

-180m

-300m

396, 586, 226

419, 407, 146

407, 450, 187

5G1

G51

G52

G53

G54

G55

6. Phase I results

24

Subtask 1.1.2. Soil column analyses:

Aftershock II (16th July, 17:42)

1 TEAM SA 0.083 0.055 0.021 0.019 0.018 0.022

3 TEAM SC 0.083 0.056 0.019 0.020 0.018 0.022

5 TEAM SE 0.082 0.042 0.019 0.019 0.017 0.018

6 TEAM SF 0.083 0.037 0.020 0.016 0.015 0.016

9 TEAM SI 0.082 0.056 0.021 0.020 0.018 0.021

17 TEAM SR 0.083 0.050 0.021 0.021 0.019 0.020

0.084 0.044 0.025 0.028 0.023 0.019

0.083 0.049 0.020 0.019 0.018 0.020

0.001 0.008 0.001 0.002 0.001 0.003

0.010 0.161 0.055 0.090 0.073 0.131

7 TEAM SG 0.068 0.047 0.023 0.019 0.017 0.019

11 TEAM SK 0.127 0.091 0.036 0.033 0.029 0.019

12 TEAM SL 0.092 0.044 0.022 0.025 0.020 0.019

16 TEAM SP 0.036 0.025 0.011 0.010 0.009 0.019

0.084 0.044 0.025 0.028 0.023 0.019

0.081 0.052 0.023 0.022 0.019 0.019

0.039 0.028 0.010 0.010 0.008 0.000

0.480 0.541 0.446 0.451 0.433 0.011Coefficient of variation

G55

(T.M.S.L. -300.0)

Measured

Mean

Standard deviation

1. STRUCTURE

TASK 1.1- Construction and validation of the soil and structure models

Subtask 1.1.2. Soil Column Analyses - B. Soil Column Analyses under Aftershock II (16th July, 17:42)

No Participant Organization B.1.2.a. Maximum Acceleration at observation levels in Y direction - Aftershock II (16th July, 17:42)

(Control point: G55)

Maximum Acceleration (g)

5G-1

(T.M.S.L. +12.3)

G51

(T.M.S.L. +9.3)

G52

(T.M.S.L. -24.0)

G53

(T.M.S.L. -100.0)

G54

(T.M.S.L. -180.0)

1. STRUCTURE

TASK 1.1- Construction and validation of the soil and structure models

Subtask 1.1.2. Soil Column Analyses - B. Soil Column Analyses under Aftershock II (16th July, 17:42)

No Participant Organization B.1.2.a. Maximum Acceleration at observation levels in Y direction - Aftershock II (16th July, 17:42)

(Control Point: 5G-1)

Maximum Acceleration (g)

5G-1

(T.M.S.L. +12.3)

G51

(T.M.S.L. +9.3)

G52

(T.M.S.L. -24.0)

G53

(T.M.S.L. -100.0)

G54

(T.M.S.L. -180.0)

Coefficient of variation

G55

(T.M.S.L. -300.0)

Measured

Mean

Standard deviation

6. Phase I results

25

Subtask 1.1.2. Soil column analyses:

Aftershock II (16th July, 17:42)

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

5G-1

G51

G52

G53

G54

G55

6. Phase I results

26

Subtask 1.1.2. Soil column analyses:

Aftershock II (16th July, 17:42), Contol Point:5G-1

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

5G-1

Team SA

Team SC

Team SE

Team SF

Team SI

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G51

Team SA

Team SC

Team SE

Team SF

Team SI

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G52

Team SA

Team SC

Team SE

Team SF

Team SI

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G53

Team SA

Team SC

Team SE

Team SF

Team SI

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G54

Team SA

Team SC

Team SE

Team SF

Team SI

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G55

Team SA

Team SC

Team SE

Team SF

Team SI

Team SR

6. Phase I results

27

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G54

Team SG

Team SK

Team SL

Team SP

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G55

Team SG

Team SK

Team SL

Team SP

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G53

Team SG

Team SK

Team SL

Team SP

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G52

Team SG

Team SK

Team SL

Team SP

Subtask 1.1.2. Soil column analyses:

Aftershock II (16th July, 17:42), Contol Point:G55

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G51

Team SG

Team SK

Team SL

Team SP

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - AFTERSHOCK II

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

FREQUENCY (Hz)A

CC

EL

ER

AT

ION

(g

)

5G-1

Team SG

Team SK

Team SL

Team SP

6. Phase I results

28

Subtask 1.1.2. Soil column analyses:

Aftershock II (16th July, 17:42) MODULUS REDUCTION, G/G0 - AFTERSHOCK II in Y DIR.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

G/G0

DE

PT

H (

m)

Team SA

Team SC

TYeam SE

Team SF

Team SG

Team SI

Team SL

Team SP

Team SR

DAMPING RATIO - AFTERSHOCK II in Y DIR.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

0.0 5.0 10.0 15.0 20.0

Damping (%)

DE

PT

H (

m)

Team SA

Team SC

TYeam SE

Team SF

Team SG

Team SI

Team SL

Team SP

Team SR

MAX. SHEAR STRAIN - AFTERSHOCK II in Y DIR.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

0.0 0.1 0.2 0.3 0.4 0.5

Max. Shear Strain (%)

DE

PT

H (

m)

Team SA

Team SC

TYeam SE

Team SF

Team SG

Team SH

Team SI

Team SJ

Team SL

Team SM

Team SN

Team SP

6. Phase I results

29

Subtask 1.1.2. Soil column analyses: NCOE Mainshock

1 TEAM SA 1.247 1.154 0.473 0.417 0.400 0.344

3 TEAM SC 1.248 1.142 0.545 0.475 0.532 0.445

5 TEAM SE 1.223 0.872 0.858 1.059 1.010 1.218

6 TEAM SF 1.344 0.960 0.845 0.710 0.658 0.641

7 TEAM SG 1.220 1.160 0.539 0.503 0.372 0.425

9 TEAM SI 1.264 1.022 0.675 0.746 0.722 0.794

11 TEAM SK 1.604 1.600 1.563 1.402 1.277 1.221

12 TEAM SL 1.133 0.833 0.410 0.459 0.521 0.518

16 TEAM SP 1.287 1.024 0.675 0.829 0.697 1.522

17 TEAM SR 1.260 1.000 0.713 0.872 0.803 0.952

1.283 1.077 0.730 0.747 0.699 0.808

0.125 0.216 0.328 0.312 0.279 0.405

0.097 0.200 0.450 0.417 0.399 0.501

1.246 0.751 0.396 0.597 0.415 0.459

G55

(T.M.S.L. -300.0)

1. STRUCTURE

TASK 1.1 Construction and validation of the soil and structure models

Subtask 1.1.2. Soil Column Analyses - C. Soil Column Analyses under Mainshock

No Participant Organization A.1.2.a. Maximum Acceleration at observation levels in Y direction - Mainshock

Maximum Acceleration (g)

5G-1

(T.M.S.L. +12.3)

G51

(T.M.S.L. +9.3)

G52

(T.M.S.L. -24.0)

G53

(T.M.S.L. -100.0)

G54

(T.M.S.L. -180.0)

Measured

Mean

Standard deviation

Coefficient of variation

6. Phase I results

30

Subtask 1.1.2. Soil column analyses: NCOE Mainshock

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - MAINSHOCK

0.0

2.0

4.0

6.0

8.0

10.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

5G-1

6. Phase I results

31

Subtask 1.1.2. Soil column analyses: NCOE Mainshock

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - MAINSHOCK

0.0

2.0

4.0

6.0

8.0

10.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

5G-1

Team SA

Team SC

Team SE

Team SF

Team SG

Team SI

Team SK

Team SL

Team SP

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - MAINSHOCK

0.0

2.0

4.0

6.0

8.0

10.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G51

Team SA

Team SC

Team SE

Team SF

Team SG

Team SI

Team SK

Team SL

Team SP

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - MAINSHOCK

0.0

2.0

4.0

6.0

8.0

10.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G52

Team SA

Team SC

Team SE

Team SF

Team SG

Team SI

Team SK

Team SL

Team SP

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - MAINSHOCK

0.0

2.0

4.0

6.0

8.0

10.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G53

Team SA

Team SC

Team SE

Team SF

Team SG

Team SI

Team SK

Team SL

Team SP

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - MAINSHOCK

0.0

2.0

4.0

6.0

8.0

10.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G54

Team SA

Team SC

Team SE

Team SF

Team SG

Team SI

Team SK

Team SL

Team SP

Team SR

ACCELERATION SPECTRUM AT 5 % DAMPING

Y DIRECTION - MAINSHOCK

0.0

2.0

4.0

6.0

8.0

10.0

0.1 1 10 100

FREQUENCY (Hz)

AC

CE

LE

RA

TIO

N (

g)

G55

Team SA

Team SC

Team SE

Team SF

Team SG

Team SI

Team SK

Team SL

Team SP

Team SR

6. Phase I results

32

Subtask 1.1.2. Soil column analyses:

NCOE Mainshock MODULUS REDUCTION G/G0 - MAINSHOCK in Y DIR.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

G/G0

DE

PT

H (

m)

Team SA

Team SC

TYeam SE

Team SF

Team SG

Team SI

Team SL

Team SP

Team SR

DAMPING RATIO - MAINSHOCK in Y DIR.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Damping (%)

DE

PT

H (

m)

Team SA

Team SC

TYeam SE

Team SF

Team SG

Team SI

Team SL

Team SP

Team SR

MAX. SHEAR STRAIN - MAINSHOCK in Y DIR.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Max. Shear Strain (%)

DE

PT

H (

m)

Team SA

Team SC

TYeam SE

Team SF

Team SG

Team SI

Team SL

Team SP

6. Phase I results

33

1.1.3. Analysis of the complete model

in X in Y in Z in X in Y in Z

1 TEAM SA 4.43 4.45 14.21

2 TEAM SB 4.58 5.08 8.00

3 TEAM SC 4.24 4.63 8.86

4 TEAM SD 4.88 4.85 8.35

5 TEAM SE 4.04 4.43 8.31

6 TEAM SF 4.08 4.54 9.41

7 TEAM SG 4.40 5.10 11.00 2.55 2.60 3.77

8 TEAM SH 3.93 4.33 2.11 2.08 3.46

9 TEAM SI 4.84 5.24 13.85 2.27 2.33 3.03

10 TEAM SJ 4.29 4.59 9.01 1.97 3.55 2.46

11 TEAM SK 5.21 5.62 7.70

12 TEAM SL 4.48 4.77 8.55 1.91 1.96 2.80

13 TEAM SM 4.42 4.87 11.05 1.74 1.79 2.93

14 TEAM SN 5.31 5.63 12.73

15 TEAM SO 3.50 4.07 5.10

16 TEAM SP 4.70 5.42 10.59 2.35 2.96 3.64

17 TEAM SR 4.85 5.64 7.48

4.48 4.90 9.64 2.13 2.47 3.16

0.46 0.49 2.45 0.28 0.62 0.48

0.10 0.10 0.25 0.13 0.25 0.15

Standard deviation

Coefficient of variation

Complete Model

Natural Frequency

(Hz) No Participant Organization

Fixed base Model

Natural Frequency

(Hz)

Mean

6. Phase I results

7. Some conclusions from Phase I

• Structure

• Available data is enough for structural model construction and fixed

base behaviour is coherently represented by teams.

• COV of fixed base frequencies is low, comparable to that of the

simple test structure CAMUS (IAEA CRP)

• Soil behaviour and modelling

• The top soft layers (about 30m thickness) have a non-linear

behaviour even for low level aftershock. The remaining part of the

soil has a linear behaviour under aftershocks and NCOE.

• Two control points have been used (5G-1 at the free surface and

G55 at -300 m.) for the aftershocks. COVs are significantly lower

(< 16%) for 5G-1 than G55 (< 55%).

Part 1 Structure Task 1.1. Construction and

validation of the soil and structure models

34

• For the main shock, COVs of maximum acceleration in the

borehole are less than 50%. On the other hand, calculated values

are slightly different than measured one

• Variability of response spectra among the teams seems not so

large.

• Soil structure interaction

• This effect is significant. Mean fundamental frequency of SSI is

about half of the fixed base one (from 4.9 Hz. To 2.5 Hz. in Y

direction).

• COV of the coupled frequencies is reasonably low (0.13 in X

direction and 0.25 in Y direction).

As a general result of Phase I for structure, it seems that

models developed by teams are suitable for further phases.

7. Some conclusions from Phase I

35

8. Perspectives (Phase II)

Phase II Analyses of NCOE mainshock • Simulation of NCOE with standard soil

properties and control point

• Best estimate analysis

• Optional task to determine structure

characteristics directly from recorded signals

36

9. Activities to be continued (Phases II and III)

Phase II

• Result templates will be available in October 2010

• Results templates will be uploaded in January 2011

• Second Review Meeting will be held in 1stQ of 2011

Phase III

• Margin evaluation

• Final Review Meeting will be held in 4th Q of 2011

37

38

International Atomic Energy Agency

Thank you for your attention