ODE Lecture 2

69
1 1

Transcript of ODE Lecture 2

Page 1: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 1/69

11

Page 2: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 2/69

2

Page 3: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 3/69

3

Page 4: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 4/69

4

Page 5: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 5/69

5

Solve the differential equation

211

 ydt dy

Example

Page 6: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 6/69

6

The differential equation is

Just separate the variables and integrate

2

11

 ydt 

dy

dt  y

dy2/11

Solution

Page 7: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 7/69

7

C t  y y   )(tan   1

)(tan/1

12   y y

 y1

dy

since

1

11

1/11

1

22

2

2  y y

 y

 yThus,

Page 8: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 8/69

8

Solve the differential equation

Solution:

Since

Therefore we can write as

2 2 2 21dy t y t y

dt 

2 2 2 2 2 2

1 (1 )(1 )t y t y t y

)1)(1(   22  yt dt dy

Example

Page 9: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 9/69

9

dt t 

 y

dy)1(

1

2

2

dt t 

 y

dy)1(

1

2

2

C t 

t  y3

)(tan3

1

3

tan3

t  y t C 

This can be written as

Page 10: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 10/69

10

Solve

1 0 x dy ydx

Example

Page 11: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 11/69

11

The equation

can be written as

Separate the variables and integrate

)(1

1

1 y

 x x

 y

dx

dy

1 0 x dy ydx

 x

dx

 y

dy

1

Solution

Page 12: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 12/69

12

(1 ) y A x

1C 

 y e x

ln ln 1 y x C or 

or 

Page 13: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 13/69

13

Solve

02  324

dye ydx xy  x

Example

Page 14: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 14/69

14

The equation

can be written as

02  324

dye ydx xy  x

4

2

2

dy y x xe

dx y

Solution

Page 15: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 15/69

15

The equation

can be written as

02  324

dye ydx xy  x

4

2

2

dy y x xe

dx y

Solution

23

4

2   x ydy xe dx

 y

Page 16: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 16/69

16

1 13 3 3  3 9

22 4 1 323

 x x x xe dx xe e

 y y dy y y

Taking the integrals

Page 17: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 17/69

17

1

3

3

213

9

13

3

1c y y

 xe

 x xe

223

4

 y x

 xe dx dy y

gives us

3

9 63(3 1)

 xe x c

 y y

Page 18: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 18/69

18

Definition

 A function f defined on some interval I ,which when substituted into a differential

equation reduces the equation to an

identity, is said to be a solut ion of the

equation on the interval.

 A solution does not contain derivatives.

Page 19: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 19/69

19

Remarks

i) A solution of differential equationthat is identically zero on an

interval I  is referred to as a trivial

solution.

ii) Not every differential equation that

we write necessarily has a solution.

Page 20: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 20/69

20

Definition

 A solution of ODE in which the dependent

variable is expressed solely in terms ofindependent variables and constant is said to

be an expl ic i t so lut ion .

 A relation is said to be an impl ic i t so lut ion 

of ODE on an interval I provided it defines

one or more explicit solutions on I .

Page 21: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 21/69

21

Initial Value Problem

We are often interested in solving a DE

 y x  f  dx

dy

,

subject to a (side) condition 00   y x y

where

0 x is a number in an interval I and

0 y is an arbitrary real number.

Page 22: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 22/69

22

00:Subject to

,Solve

 y x y

 y x  f  dxdy

is called an in i t ial-value p rob lem (IVP). The

side condition is known as initial condition.

The problem

Page 23: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 23/69

23

00 , y x

Solutions of

ODE

Geometrically,

00

, y x

we are seeking at least one solution of theODE defined on some interval I such that

the graph of the solution passes the given

point .

Page 24: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 24/69

24

on , y y

0 3 at 0, 3 y x y

Example

 x

ce y As is its solution

0

3 3ce cSubstituting in solution

Now

Consider IVP

subject to 0 3 y

3  x

 y e is the solution of IVP

Page 25: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 25/69

25

 y y

13 3ce c e

So would be the solution.1

3  xe y

 Alternatively, If we say that a solution of 

passes through the point (1,3)

rather than (0,3),

then y(1) = 3 would yield

Page 26: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 26/69

26

Theorem

Let R be a rectangular region in the xy-plane

defined by a  ≤  x  ≤  b, c  ≤  y  ≤  d  that contains

the point ( x0, y0) in its interior. If    f  ( x,y) and

∂ f/∂y are continuous on  R, then there exist

some interval   I 0:(x0-h, x0+h), h>0, contained

in [a,b], and a unique function y( x) defined on I 0, that is the solution of the IVP

Existence of a Unique Solution

Page 27: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 27/69

27

Example

, 0 3 y y y

 xe y 3

1,, y

  f   y y x  f  

,

For

is the only solution.

 As are continuous

throughout the entire xy -plane .

Page 28: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 28/69

28

Example

22  y xdx

dy

 y

 y

 f   y x y x f   2,, 22

For 

are continuous throughout the   xy - plane.

Therefore through any point ( x0, y0) therepasses one and only one solution of the IVP.

Page 29: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 29/69

29

),(   y x  f  dx

dy

)()(   y g  xhdx

dy

The differential equation of the form

is called separable if it can be written in the

form

Variable Separable

Page 30: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 30/69

30

Step 1: We solve the equation tofind the constant solutions of the equation.

Step 2: For non-constant solutions we write

the equation in the form.

dx xh y g 

dy

)()(

0)( y g 

Method Of Solution

Page 31: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 31/69

31

C  x H  yG   )()(

to obtain a solution of the form

Step3: We list the entire constant and the

non-constant solutions of the equation.

Step 4: For an IVP, we use the initial

condition to find the particular solution.

1

( )( ) dy h x dx g y

then integrate

E l

Page 32: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 32/69

32

Solve the differential equation

Solution:

1. No constant solutions as the equation

has no real roots.

2. For non-constant solutions, we separatethe variables and integrate

211

 ydt dy

01

12 y

dt 

 y

dy2

/11

Example

Page 33: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 33/69

33

3. Since there exist no constant solution, allsolutions are given by the implicit equation

found in step 2.

C t  y y   )(tan   1

)(tan/1

1

2  y y

 y1

dy

since

1

11

1/11

122

2

2  y y

 y

 yThus,

E l

Page 34: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 34/69

34

Solve the initial value problem

Solution:

Since

Therefore

1. No constant solution because there exist noreal roots of the equation

10 ,1 2222  ) y(  yt  yt dt dy

2 2 2 2 2 21 (1 )(1 )t y t y t y

)1)(1(   22  yt dt 

dy

21 0. y

Example

Page 35: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 35/69

35

dt t  y

dy )1(1

2

2

dt t  y

dy

)1(1

2

2

2. For non-constant solutions we separate the

variables and integrate.

C t 

t  y

3

)(tan3

1

3

tan

3

t  y t C 

This can be written as

Page 36: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 36/69

36

3. Since there exist no constant solutions, all

solutions are given by the implicit or explicit

equation.4. Using initial condition y(0) = 1, we obtain

The solution to the initial value problem is4

)1(tan  1

43)(tan

31   t 

t  y

43

tan3

t t  y

E l

Page 37: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 37/69

37

Solve

Solution: The equation can be written as

1. The only constant solution is y = 0.

2. For non-constant solution we separate thevariables and integrate

)(1

1

1  y x x

 y

dx

dy

01   ydxdy x

 x

dx

 y

dy

1

Example

Page 38: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 38/69

38

 y

 xc y

1

1 ,

c

 y c x C e

3. All the solutions to the given equation are

1ln ln 1 y x cor 

or 

Example

Page 39: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 39/69

39

Solve

Solution:The given DE can be written as

Since . Therefore, the only

constant solution is .

02324

dye ydx xy  x

2 3

2

4

 y

 y x xedx

dy

0

22

4

 y

 y

 y

0 y

Example

Page 40: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 40/69

40

1)0( ,12

 y ydx

dy

01.1)0( ,12

 y ydx

dy

Example

Solve the initial value problems

(a)

(b)

and compare the solutions to observe: how a

very small change in the data changes the

solution.

Solution

Page 41: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 41/69

41

 12

dxdy y   c x y   1

1

2. For non-constant solutions, we separate the

variables and integrate

or 

3. All the solutions of the equation are

Solution

1, 1

1 x c y

 y

1.Since .

Therefore, the only constant solution is  y = 1

2( 1) 0 1 y y

4 A l i diti t fi d ti l

Page 42: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 42/69

42

4. Applying conditions to find particularsolutions of both the problems

(a) For

Thus

So that the solution of problem (a) is y1 = 1,

which is same as constant solution

0 1 1 when 0. y y x

1 10

1 1 0c c c

11

1 y y

and

Page 43: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 43/69

43

(b) For0 when01.101.10   x y y

1000101.1

1cc

 x y x

 y 100

11100

1

1

2

11

100 y

 x

Thus

and

So the solution of the problem (b) is

Page 44: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 44/69

44

5. Comparison:We can see

as

Therefore, there can be a radical change in thesolution corresponding to a very small change

in the initial conditions.

211

100 y

 x

100 x

R k

Page 45: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 45/69

45

Remark An equation of the form

,0,   bcbyax  f  dx

dy

can be reduced to a separable equation by

means of the substitution .

u ax by c

Page 46: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 46/69

46

Example

Solve2

2 y xdx

dy

Solution: substitute

2

1

u x y

du dy

dx dx

Therefore differential equation becomes

Page 47: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 47/69

47

2

2

1

1

1

tan

tan( )

2 tan( )

duu

dx

dudx

u

u x c

u x c

 x y x c

which is the required solution

Integrating

Page 48: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 48/69

4848

Differential Equations with

Boundary Value Problems

by

Dennis G. Zill

7th Edition

Page 49: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 49/69

4949

 A function f is said to be

homogenous if for some real

number n it satisfies the following

property

 y x f t tytx f    n,,

Page 50: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 50/69

5050

Example

 y x  f  t 

 y xy xt 

 yt  xyt  xt tytx  f  

 y xy x y x  f  

,

53

53,

53,

2

222

22222

22

This function is homogeneous

of degree 2

Page 51: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 51/69

5151

Example

 y x f  t 

 yt  xt tytx f  

 y x y x f  

,

,

,

3/2

3 2222

3 22

Homogeneous of degree 2/3

Page 52: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 52/69

5252

 y x  f  t 

ty

txtytx  f  

 y

 x

 y x  f  

,

42

,

42,

0

Example

Homogeneous of degree 0

Page 53: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 53/69

5353

Remarks:

i) Homogeneous functions can berecognized by examining the total

degree of each term.

e.g.

Not homogeneous

,,  2

 y x y x  f  

Page 54: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 54/69

5454

ii) If  f is homogeneous function of degree

n then we can write

1,,and

,1,

 y

 x  f   y y x  f  

 x

 y  f   x y x  f  

n

n

1,,1 y x  f  and 

 x y  f  Where are

homogeneous of degree 0.

Page 55: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 55/69

5555

Example

 x

 y  f   x

 x

 y

 x

 y x

 y xy x y x  f  

,1

31

3,

2

2

22

22

f(1,y/x)  is homogeneous of degree 0.

Page 56: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 56/69

5656

 A homogeneous differential equation

can be solved by means of an algebraic

manipulation specifically, either substitution

, where u and v

are dependent variables, will reduce the

equation to a separable first order ODE.

0,,   dy y x N dx y x M 

vy xux y or 

Example:

Page 57: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 57/69

5757

Solve:

0222 dy xy xdx y x

Solution:

 xduudxdyux y

Example:

Both M and N are homogeneous of

degree two. If we let

Page 58: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 58/69

5858

2 2 2 2 20 x u x dx x ux udx xdu

Page 59: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 59/69

5959

2 2 2 2 2

2 2 2 2 2 2 3 3

0

0

 x u x dx x ux udx xdu

 x u x dx x u u x dx x ux du

2 2 2 2 2

Page 60: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 60/69

6060

2 2 2 2 2

2 2 2 2 2 2 3 3

2 2 3 3

0

0

0

 x u x dx x ux udx xdu

 x u x dx x u u x dx x ux du

 x x u dx x ux du

2 2 2 2 2

Page 61: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 61/69

6161

2 2 2 2 2

2 2 2 2 2 2 3 3

2 2 3 3

2 3

0

0

0

1 1 0

1 1 0

 x u x dx x ux udx xdu

 x u x dx x u u x dx x ux du

 x x u dx x ux du

 x u dx x u du

u dx x u du

Which is a separable equation

d1

Page 62: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 62/69

6262

C  x x y

 x y

 x yuux y

C  xuu

 x

dxdu

u

 x

dxdu

u

u

lnln1ln2

,/

lnln1ln2

01

21

01

1

so

as

Page 63: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 63/69

6363

Using the logarithmic properties

 x

 y

Cx

 y x   2

ln

On simplification we get

 x

 y

Cxe y x2

is the solution

E l

Page 64: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 64/69

6464

Coefficients are homogeneous of degreetwo, we could choose

but the relative simplicity of the term

suggests that we put

022 dy y x xydx

vx y

 ydvvdydxvy x

Example:

Solve

Solution:

Page 65: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 65/69

6565

2 2 2 2

3 2 2 2 2 2

3 2 2 2

0

0

1 0

vy vdy ydv v y y dy

vy dv v y y v y dy

vy dv y v v dy

Page 66: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 66/69

6666

2 2 2 2

3 2 2 2 2 2

3 2 2 2

2

2

2

0

0

1 0

2 1 0

1 40

4 2 1

1ln 2 1 ln ln

4

vy vdy ydv v y y dy

vy dv v y y v y dy

vy dv y v v dy

vydv v

vdv dy

v y

v y C 

Page 67: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 67/69

6767

C  y x y

C v y

C  yv

222

24

2

2

or 

12

lnln412ln

Therefore ,

Which is the desired result

General Solution

Page 68: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 68/69

6868

0,1,

,1

0,1,1,1

0,1,1

0,,

0,,

uuN ui M duu N 

 xdx

duu xN dxuuN u M 

 xduudxu xdxu M  x

 xduudxux x N dxux x M 

 xduudxdyux y

dy y x N dx y x M 

nn

putso

Separating the variables

Page 69: ODE Lecture 2

7/25/2019 ODE Lecture 2

http://slidepdf.com/reader/full/ode-lecture-2 69/69