OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF...

17
256 © Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru UDC 66.0 OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF THE INSTALLATION L-PENSION POLYMERIZATION OF ETHYLENE ПОЛУЧЕНИЕ ГЕКСАНОВОГО РАСТВОРИТЕЛЯ ИЗ РАФИНАТА УСТАНОВКИ Л-35/6 ДЛЯ ПРОЦЕССА СУСПЕНЗИОННОЙ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА D.K. Saifullin, R.G. Spaschenko, A.M. Kiryukhin, A.Y. Spaschenko FSBEI HPE «Ufa State Petroleum Technological University», Ufa, the Russian Federation JSC «Scientific-technical centre «Salavatneftorgsintez», Salavat, the Russian Federation Сайфуллин Д.К, Спащенко Р.Г, Кирюхин А.М., Спащенко А.Ю. ФГБОУ ВПО «Уфимский государственный нефтяной технический университет», г. Уфа, Российская Федерация ООО «НТЦ Салаватнефтеоргсинтез», г. Салават, Российская Федерация Abstract. Currently polyolefins find wide application in various industries in mind the availability of a wide range and high performance. Among realized on an industrial scale of ways to get polyolefins the suspension polymerization is one of the most popular and traditional. In the process of suspension polymerization of olefins as solvents are used uskoritjsya faction aliphatic hydrocarbons with boiling temperature 65-95 °C. Development of high- modified catalysts has allowed to simplify the technological scheme, increase the output of the resulting polymer, to expand the grade range, but also to toughen requirements to quality of the original solvents. So, the presence of aromatic solvent, diene, acetylene, sulfur compounds leads to increased consumption and deactivation of the catalyst, decrease the rate of polymerization, instability of molecular mass and physical-mechanical

Transcript of OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF...

Page 1: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

256

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

UDC 66.0

OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF THE

INSTALLATION L-PENSION POLYMERIZATION OF ETHYLENE

ПОЛУЧЕНИЕ ГЕКСАНОВОГО РАСТВОРИТЕЛЯ ИЗ РАФИНАТА

УСТАНОВКИ Л-35/6 ДЛЯ ПРОЦЕССА СУСПЕНЗИОННОЙ

ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА

D.K. Saifullin, R.G. Spaschenko, A.M. Kiryukhin, A.Y. Spaschenko

FSBEI HPE «Ufa State Petroleum Technological University»,

Ufa, the Russian Federation

JSC «Scientific-technical centre «Salavatneftorgsintez»,

Salavat, the Russian Federation

Сайфуллин Д.К, Спащенко Р.Г, Кирюхин А.М., Спащенко А.Ю.

ФГБОУ ВПО «Уфимский государственный нефтяной технический

университет», г. Уфа, Российская Федерация

ООО «НТЦ Салаватнефтеоргсинтез», г. Салават, Российская Федерация

Abstract. Currently polyolefins find wide application in various industries in

mind the availability of a wide range and high performance. Among realized on

an industrial scale of ways to get polyolefins the suspension polymerization is

one of the most popular and traditional. In the process of suspension

polymerization of olefins as solvents are used uskoritjsya faction aliphatic

hydrocarbons with boiling temperature 65-95 °C. Development of high-

modified catalysts has allowed to simplify the technological scheme, increase

the output of the resulting polymer, to expand the grade range, but also to

toughen requirements to quality of the original solvents. So, the presence of

aromatic solvent, diene, acetylene, sulfur compounds leads to increased

consumption and deactivation of the catalyst, decrease the rate of

polymerization, instability of molecular mass and physical-mechanical

Page 2: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

257

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

properties of polymer and so on. Therefore, upon receipt of the solvent

polymerization purity of one of the most important tasks is to search for

available raw materials with minimal content of impurities.

As a result of research of raw materials and product flows refinery JSC

“Gazprom neftekhim Salavat” shown that gasoline-raffinate reforming

installation L-35/6 is a promising material for production of hexane fraction of

high purity, satisfying the requirements developed in JSC “Gazprom neftekhim

Salavat” synthesis technology suspension of high-density polyethylene. This

refined oils characterized by low content of aromatic and olefinic connections. It

is established that for allocation hexane solvent polymerization purity

insufficient use only distillation methods. It is shown that for deep purification

from impurities requires the use of additional methods: selective hydrogenation

of unsaturated hydrocarbons and adsorption at the molecular sieves.

Аннотация. В настоящее время полиолефины находят широкое

применение в различных областях промышленности в виду доступности,

широкого ассортимента и высоких эксплуатационных характеристик.

Среди реализованных в промышленных масштабах способов получения

полиолефинов суспензионная полимеризация является одной из самых

востребованных и традиционных. В процессе суспензионной

полимеризации олефинов в качестве растворителей используются

узкокипящие фракции алифатических углеводородов с температурой

кипения 65-95 °С. Разработка высокоэффективных модифицированных

катализаторов позволила упростить технологические схемы, повысить

выход образующегося полимера, расширить марочный ассортимент, но

одновременно и ужесточить требования к качеству исходных

растворителей. Так, наличие в растворителе ароматических, диеновых,

ацетиленовых, сернистых соединений приводит к увеличению расхода и

дезактивации катализатора, снижению скорости полимеризации, к

нестабильности молекулярно-массовых и физико-механических

характеристик полимера и т. д.

Page 3: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

258

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

Поэтому при получении растворителя полимеризационной чистоты

одной из важнейших задач является поиск доступного сырья, обладающего

минимальным содержанием нежелательных примесей.

В результате проведенных исследований сырьевых и продуктовых

потоков НПЗ ОАО «Газпром нефтехим Салават» показано, что бензин-

рафинат риформинга установки Л-35/6 является перспективным сырьем

для получения гексановой фракции высокой чистоты, удовлетворяющей

требованиям освоенной в ОАО «Газпром нефтехим Салават» технологии

синтеза суспензионного полиэтилена высокой плотности. Этот рафинат

характеризуется низким содержанием ароматических и олефиновых

соединений. Установлено, что для выделения гексанового растворителя

полимеризационной чистоты недостаточно использования только

ректификационных методов. Показано, что для глубокой очистки от

примесей необходимо использование дополнительных методов:

селективное гидрирование непредельных углеводородов и адсорбция на

молекулярных ситах.

Key words: solvent, raffinate, hexane fraction, distillation, hydrogenation,

adsorption.

Ключевые слова: растворитель, рафинат, гексановая фракция,

ректификация, гидрирование, адсорбция.

Introduction

Suspension method of obtaining high-density polyethylene (HDPE) is one of

the major in modern industry. Polymerization of ethylene occurs in aliphatic

environment, using inflicted titanium-magnesium catalysts, which can simplify

instrumentation of technological process, reduce energy consumption and keep

the process under mild conditions: reactor temperature 80-90 °C, the pressure of

0.3-0.5 MPa.

Page 4: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

259

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

As the solvent, used narrow fractions of isomeric hexanes and heptanes

[1c.92-94]. To the solvent purity have very strict requirements on the content of

aromatic, diene, acetylene and heteroatomic compounds. Exceeding norms

allowable concentrations of impurities leads to a decrease of reaction rate of

polymerization, deactivation costly catalyst and change in quality of the final

HDPE [2].

Gasoline fractions and dearomatised gasoline from catalytic reforming

(raffinates) are the feedstock to obtain solvent used in the suspension

polymerization of ethylene. Impractical using thermal and catalytic cracking

gasoline for separation aliphatic hydrocarbon concentrates, due to the high

content of unsaturated hydrocarbons and the difficulty of their separation from

close-boiling saturated hydrocarbons [1 pр.55-58]. Obtaining the target fraction

of aliphatic hydrocarbons by using a simple distillation is difficult, due to the

formation of azeotropes, hexane isomers with naphthenic and aromatic

hydrocarbons [3 pр.1;5].

Therefore, to get polymerization purity solvent by simple distillation,

requires raw materials, which is a concentrate of aliphatic hydrocarbons,

purified from aromatic and unsaturated hydrocarbons C3-C6 and sulfur

compounds. If you have a large number of these impurities should use special

methods of separation and purification of selected fractions [6].

In JSC “Gazprom neftekhim Salavat” successfully implemented Hostalen

technology process for suspension polymerization of ethylene. As a solvent is

used hexane fraction. (Table 1).

Page 5: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

260

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

Table 1. Requirements for the quality of the solvent by Hostalen technology

Parameter Value

Temperature limits of the distillation,°С:

-the beginning of the boil, not less than 65

-the end of the boil, not more than 70

Saturated hydrocarbons, % wt. not less than 99.97

Aromatic hydrocarbons, % wt. not more than 0.01

n-Hexane, % wt. not less than 44

Cyclohexane, % wt. not more than 2

Bromine index, mg Br2/100 g sample, not more than 50

Benzene, ppm, not more 100

Water, ppm, not more 50

Sulfur, ppm, not more 2

The main purpose is to choose the optimal variant for recovery and

purification hexane fraction, satisfying the requirements of the suspension

Hostalen technology. As a source of raw materials for production of solvent

chosen, dearomatized raffinate from extractive distillation unit L-35/6 in JSC

“Gazprom neftekhim Salavat”. Selection raffinate as a source of raw materials,

due to the fact, that this faction is not currently qualified practical application

and it is available in sufficient quantities in JSC “Gazprom neftekhim Salavat”.

Experimental

Object of laboratory research is gasoline-raffinate from extractive distillation

unit L-35/6.

Individual hydrocarbon composition of raw materials and accumulating

target fractions determined in accordance with GOST R 52714-2007 on a gas

chromatograph "Crystal 5000" with a flame ionization detector on a capillary

column DB-1 100 m x 0,25 mm x 0,5 m. Programmable temperature rise from 0

°C to 250 °C at a rate of 1 to 4 °C/min.

Page 6: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

261

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

Fractional composition of raw materials determined in accordance with

GOST 2177 on an automated analyzer OptiDist HERZOG company. Bromine

index (ASTM D1492) and water content in the samples (ASTM D4928) - on the

coulometric titrator C30X Mettler Toledo company. Sulfur content - by using

X-ray fluorescence analyzer SPECTROSCAN MAX-GV with GOST 52660-

2006.

Accumulation hexane fraction 63-70 °C and 65-70 °C were carried out on

semi-automatic column AUTOMAXX 9400 B/R Instrument company (USA)

with ASTM D 2892-05. The distillation column with Propak packing has an

efficiency of 15 theoretical trays.

Selective hydrogenation of olefins fractions 63-70 °C was carried out using

platinum alumina supported catalyst domestic production at a specialized

laboratory installation R-301 manufactured by Reaction Enginering (South

Korea). Installation represents, automated computer controlled system, including

high-precision piston pump, heated mixer, flow tubular catalytic reactor, furnace

with three heating zones, refrigerator, hydrogen flow and pressure regulators in

the system. Hydrogenation was carried out at a temperature of 250 °C, a

pressure of 1.5 MPa, feed space velocity 2 h-1, volume ratio of hydrogen to raw

material is 1:80.

Studies of adsorption purification method from benzene was carried out on

an installation, comprising three serially connected thermostated adsorber with

dimensions (d = 2 cm, h = 25 cm) loaded zeolite NaX produced by "SkatZ"

(Salavat) with 2.5-3.0 mm diameter extrudate (Figure 1). Purification was

carried out at atmospheric pressure, a temperature of 40 °C, feed rate - 5 ml/min.

Page 7: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

262

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

Figure 1. Schematic diagram of the adsorption dearomatisation hexane fraction:

E-1 – feedstock pump; N-1 - pump; K-1, K-2, K-3 - adsorbers

Results and discussion

In our experiments we used petrol raffinate following composition (Table 2).

Е-1

Н-1

К-1 К-2

Sampling 1 Sampling 2

Sampling 3

К-3

Feed

Page 8: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

263

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

Table 2 .Characteristics of petrol raffinate used to obtain a hexane fraction

As can be seen from Table 2, the content of benzene in the initial raffinate

was 0.24 % wt. According to [3 pр. 3-5.] hexane solvent recovery from the

raffinate by simple distillation method without additional dearomatization

possible only with a low content of benzene 0.05-0.1 % wt. Indeed,

experimental studies on the separation fraction 65-70 °C from gasoline-raffinate

showed excess of allowable standards for content of benzene and olefins. The

hydrocarbon composition of the fractions obtained is shown in Table 3.

Parameter Value

Density at 15°C, g/cm3 0.670

Fractional composition, °C

- Initial boiling point 38.7

- 10% of the product 51.5

62.5

90.5 - 50% of the product

- 90% of the product

- End of boiling 138.8

Hydrocarbon composition, % wt.:

n-С3 0.01

n-С4 1.18

∑ i-C4 0.66

n-С5 8.46

∑ i-C5 9.47

n-С6 15.71

∑ i-C6 38.80

n-С7 2.71

∑ i-C7 9.59

n-С8 0.29

∑ i-C8 1.39

∑ n-С9-Сn, i-C9-Сn 0.35

∑ aromatics 4.01

including benzene 0.24

∑ cycloparathins 7.29

∑ C5-C6 olefins 0.03

Unidentified components 0.05

Bromine index, mg Br2/100 g sample 165.5

Total sulfur content, ppm 20.0

Water Content, ppm 29.6

Page 9: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

264

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

Table 3. Hydrocarbon composition hexane fractions 65-70 °C

Parameter

Value Hydrocarbon composition,% wt.:

i-Pentane 0.01

n-Pentane 0.01

2,2-dimethylbutane 0.02

2,3-dimethylbutane 0.64

2-methylpentane 7.18

3-methylpentane 15.92

n-Hexane 58.27

2-methylpenten-2 0.02

3-methylcyclopenten-1 0.02

3-methylpenten-2 0.05

Methylcyclopentane 15.16

2,4-dimethylpentane 0.73

2,2,3-trimethylbutane 0.14

Benzene 0.79

3,3-dimethylpentane 0.13

Cyclohexane 0.47

2-methylhexane 0.30

3-methylhexane 0.13

n-Heptane 0.01

Bromine index, mg Br2/100g sample 268.3

Water Content, ppm 54.6

As can be seen from Table 3, high benzene content (0.79% wt.) and

unsaturated hydrocarbons (0.09 % wt.) makes it impossible to involvement of

this solvent in HDPE producing process.

The next stage of research on the production of high purity hexane solvent is

the selective hydrogenation of unsaturated hydrocarbons [12-17]. For the

experiments from gasoline-raffinate was accumulated fraction 63-70 °C

(Table 4).

Page 10: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

265

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

Table 4. The hydrocarbon composition of the target fraction 63-70 °C before

and after hydrogenation

Parameter Hexane fraction 63-70°С before hydrogenation

Hexane fraction

63-70°С after

hydrogenation

Hydrocarbon composition,% wt.: Value

i-Butane 0.05 0.02

n-Butane 0.11 0.05

i-Pentane 5.66 4.06

n-Pentane 6.38 4.99

2,2-dimethylbutane 5.55 5.21

Cyclopentane 2.49 2.20

2,3-dimethylbutane 5.01 5.00

2-methylpentane 23.47 23.66

3-methylpentane 18.23 18.79

n-Hexane 19.41 20.78

Methylcyclopentane 4.92 5.37

2,4-dimethylpentane 0.71 0.78

2,2,3-trimethylbutane 0.11 0.13

Benzene 0.36 0.25

3,3-dimethylpentane 0.42 0.48

Cyclohexane 0.38 0.56

2-methylhexane 2.84 3.27

3-methylhexane 1.98 2.28

3-ethylpentane 0.16 0.19

n-Heptane 0.81 0.93

Toluene 0.44 0.40

Others 0.51 0.60

Bromine index, mg Br2/100g sample 177.7 21.0

Sulfur content, ppm 22.76 2.0

As the analysis of samples in the experiment, the olefins in hexane fraction

were almost completely removed, bromine index fell from 177.7 to 21 mg

Br2/100 g solvent, the total sulfur content was reduced to 2 ppm. However, the

aromatic content is not actually changed, which makes the question of further

purified hexane solvent.

As the most economically reasonable method of adsorption purification

method is chosen adsorption on molecular sieves. The homogeneous crystal

structures of the zeolite, the presence of well-defined input window size allow

Page 11: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

266

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

its use for separations based on differences in the size and shape of the

molecules [18]. To purify a hexane solvent most promising type of zeolites is

NaX, exhibiting high selectivity towards to benzene with a critical molecular

diameter of 0.7 nm [19, 20]. Paraffins, isoparaffins, naphthenic hydrocarbons

penetrate into adsorption cavity through the input window in zeolite NaX, but

not retained therein. According to [21], in a single stage passage of hexane

solvent through a molecular sieve at a temperature of 20-60 °C may reduce the

aromatics content to less than 0.01% wt.

In our studies on the adsorption purification as feedstock taken hydrotreated

hexane fraction 63-70 °C. The hydrocarbon compositions of samples after each

adsorber are shown in Table 5.

Table 5. Hydrocarbon composition of the target fraction 63-70°C after

adsorption purification on zeolites of NaX

Parameter After first adsorber After second

adsorber After third adsorber

Hydrocarbon composition, % wt. Value

i-Butane 0.14 0.06 0.03

n-Butane 0.22 0.11 0.06

i-Pentane 6.41 5.29 4.49

n-Pentane 6.37 5.61 4.99

2,2-dimethylbutane 6.40 6.45 6.18

Cyclopentane 2.19 2.03 1.91

2,3-dimethylbutane 5.23 5.34 5.35

2-methylpentane 23.68 24.15 24.42

3-methylpentane 18.41 18.93 19.25

n-Hexane 18.21 18.57 19.12

Methylcyclopentane 4.68 4.82 4.99

2,4-dimethylpentane 0.75 0.82 0.86

2,2,3-trimethylbutane 0.13 0.14 0.15

Benzene 0.002 - -

3,3-dimethylpentan 0.47 0.52 0.54

Cyclohexane 0.36 0.37 0.39

2-methylhexane 2.88 3.10 3.33

3-methylhexane 2.02 2.17 2.33

3-ethylpentane 0.18 0.20 0.20

n-Heptane 0.79 0.84 0.89

Others 0.003 0.001 -

Bromine index mgBr2/100g sample 0.48 0.48 0.52

i-Butane 19.7 17.9 11.2

n-Butane 2.1 1.8 1.7

Page 12: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

267

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

Table 5 show that a purification hexane fraction on NaX zeolites occurs

complete adsorption of aromatic compounds. Benzene and toluene are adsorbed

in first adsorber, their content reduced from 0.25 % wt. and 0.40 % wt.

respectively to trace amounts. After the second adsorber are observed absence of

benzene and toluene content of 0.001% wt. The absence of toluene recorded

after the third adsorber.

Conclusion

So as a result of studies found:

1) Gasoline-raffinate of the L-35/6 is a perspective raw material for

producing a hexane solvent satisfying the requirements of Hostalen technology;

2) Technology for producing hexane solvent the required quality must

include the following steps isolation and purification:

a) fractionating the gasoline raffinate from installation L-35/6 to obtain a

narrow fractions 65-70 °C;

b) selective hydrogenation separated fraction 65-70°C to obtain on platinum

alumina supported catalyst hydrogenate with olefinic hydrocarbon content not

more than 50 mg Br2/100 g of solvent;

c) the adsorption treatment hydrogenate in NaX type zeolite to obtain a

hexane solvent with chemical composition given in Table 1.

References

1 Stekolshchikov M.N. Hydrocarbon solvents. Properties, production,

application. M.: Chemistry, 1986. 236 p. [in Russian].

2 Nadutkina S.I. Development of technology for recovery low-boiling

solvents // Thesis of Candidate of Technical Sciences. Ufa, 1988. 265 p.

[in Russian].

3 Recovery hexane-solvent by distillation platforming raffinates /

Nadutkina S.I. [and others]// Chemistry and technology of fuels and oils, 1976.

№7. Page 3-5. [in Russian].

Page 13: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

268

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

4 Distillation the main method of benzene removing from reforming

catalyzate / Lukanov D.A., [and others]// Oil processing and petrochemistry,

2013. №4. Page 3-8. [in Russian].

5 Sushko L.G. , Glozman A.B., Stekolshchikov M.N. Organization of

production hydrocarbon solvents // Oil processing and petrochemistry, 1982.

№10. Page 34-36. [in Russian].

6 Gajle A.A., Somov V.E. Petroleum oil and gas product separation and

cleaning processes. St. Petersburg. Chimizdat, 2012. 376 p. [in Russian].

7 GOST R 52714-2007. Automobile gasoline. Determination of

individual and group hydrocarbon composition by capillary gas chromatography

M.: Publisher IPC Standards, 2007. 23 p. [in Russian].

8 GOST 2177-1999. Petroleum products. Methods for determining the

fractional composition. M.: Interstate Council for Standardization, Metrology

and Certification, 1999. 23 p. [in Russian].

9 ASTM D1492. Standard Test Method for Bromine Index of Aromatic

Hydrocarbons by Coulometric Titration. Developed by Subcommittee:

D16.2004. 6 p. [in English].

10 ASTM D4928. Standard Test Method for Water in Crude Oils by

Coulometric Karl Fischer Titration. Developed by Subcommittee: D02.2002.

6 p. [in English].

11 GOST 52660-2006. Automobile fuel. Method for determination sulfur

content by X-ray fluorescence spectrometry dispersion wavelength. M.:

Publisher IPC Standards, 2006. 7 p. [in Russian].

12 Sadrieva F.M. Development technologies for the production solvents for

the polymerization of olefins and diolefins // Thesis of Candidate of Technical

Sciences. Nizhnekamsk, 2005. 24 p. [in Russian].

13 Method of co-production solvent polymerization grade and high-octane

additive to petrol: pat. 2177496 RF: IPC S10G45/00/ Ziyatdinov A.S., [and

others]; appl. 15.06.2000; publ. 27.12.2001. 7 p. [in Russian].

Page 14: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

269

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

14 A method of producing a polymerization purity solvent: pat. 2190660

RF: IPC S10G67/02/ Zayatdinov A.S., [and others].appl. 08.06.2001; publ.

10.10.2002. 6 p. [in Russian].

15 A method for producing hexane solvent: pat. 22092017 RF: IPC

C08J11/00, C08C2/00, C07C5/00/ Ziyatdinov A.S. [and others]; appl.

11.03.2002; publ. 27.07.2003. 8 s. [in Russian]

16 Navalixina M.D., Kry'shov O.V. Heterogeneous hydrogenation catalysts

// Russian chemical reviews, 1998. V. 67 №7. Page 656-685. [in Russian].

17 Aliev R.R., Elshin N.A. Strategy to improvement hydrotreating process

petroleum fractions // Refining and Petrochemicals, 2013. № 4. Page 8-10.

[in Russian].

18 Kel'tcev N.V. Fundamentals of adsorption technology. M.: Chemistry,

1984. 592 p. [in Russian].

19 Canet X., Gilles F., Bao-Lian Su, Guy de Weireld, Frère M., Mougin P.

Adsorption of Alkanes and Aromatic Compounds on Various Faujasites in the

Henry Domain. 2. Composition Effect in X and Y Zeolites // Journal of

Chemical & Engineering Data, 2007, v. 52. № 6. Page 2127-2137. [in English].

20 Faghihian H., Riazi L. Dearomatization of Normal Paraffin by

Synthesized NaX Zeolite // Journal of Chemical Engineering & Process

Technology, 2013, v. 174. №1. Page 408-411. [in English].

21 A method for recovery n-Hexane from hexane content gasoline

fractions.: pat. 2128157 RF: IPC C07C7/08/ Xvorov A.P.; appl. 26.11.1996;

publ. 27.03.1999. 7 p. [in Russian].

Список используемых источников

1 Стекольщиков М.Н. Углеводородные растворители. Свойства,

производство, применение М.: Химия, 1986. 236 с.

2 Надуткина С.И. Разработка технологии получения низкокипящих

растворителей // Дис…. к- та техн. наук. Уфа,1988. 265 с.

Page 15: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

270

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

3 Получение гексана-растворителя ректификацией рафинатов

платформинга / Надуткина С.И. [и др.] // Химия и технология топлив и

масел, 1976. № 7. С. 3-5.

4 Ректификация – основной метод отбензоливания катализата

риформинга / Луканов Д.А. [и др.] // Нефтепереработка и нефтехимия,

2013. № 4. С. 3-8.

5 Сушко Л.Г. Глозман А.Б., Стекольщиков М.Н. Организация

производства углеводородных растворителей // Нефтепереработка и

нефтехимия, 1982. № 10. С. 34-36.

6 Гайле А.А., Сомов В.Е. Процессы разделения и очистки продуктов

переработки нефти и газа. СПб.: Химиздат, 2012. 376 с.

7 ГОСТ Р 52714-2007. Бензины автомобильные. Определение

индивидуального и группового углеводородного состава методом

капиллярной газовой хроматографии. М.: ИПК Изд-во стандартов, 2007.

23 с.

8 ГОСТ 2177-1999. Нефтепродукты. Методы определения

фракционного состава. М.: Межгосударственный совет по стандартизации,

метрологии и сертификации, 1999. 23 с.

9 ASTM D1492. Standard Test Method for Bromine Index of Aromatic

Hydrocarbons by Coulometric Titration. Developed by Subcommittee:

D16.2004. 6 p.

10 ASTM D4928. Standard Test Method for Water in Crude Oils by

Coulometric Karl Fischer Titration. Developed by Subcommittee: D02.2002.

6 р.

11 ГОСТ 52660-2006. Топлива автомобильные. Метод определения

содержания серы рентгенофлуоресцентной спектрометрией с дисперсией

по длине волны. М.: ИПК Издательство стандартов, 2006. 7 с.

12 Садриева Ф.М. Разработка технологий производства растворителей

для полимеризации олефинов и диолефинов // Дис…. канд. техн. наук.

Нижнекамск, 2005. 24 с.

Page 16: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

271

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

13 Способ совместного получения растворителей полимеризационной

чистоты и высокооктановой добавки к топливам: пат. 2177496 РФ: МПК

С10G45/00/ Зиятдинов А.Ш., [и др]; заявл. 15.06.2000; опубл. 27.12.2001.

7 с.

14 Способ получения растворителя полимеризационной чистоты: пат.

2190660 РФ: МПК С10G67/02/ Заятдинов А.Ш., [и др]; заявл. 08.06.2001;

опубл. 10.10.2002. 6 с.

15 Способ получения гексанового растворителя: пат. 22092017 РФ:

МПК C08J11/00, C08C2/00, C07C5/00/ Зиятдинов А.Ш.[и др]; заявл.

11.03.2002; опубл. 27.07.2003. 8 с.

16 Навалихина М.Д., Крышов О.В. Гетерогенные катализаторы

гидрирования // Успехи химии, 1998. Т. 67 № 7. С. 656-685.

17 Алиев Р.Р., Елшин Н.А. Стратегия усовершенствования процесса

гидроочистки нефтяных фракций // Нефтепереработка и нефтехимия, 2013.

№ 4. С. 8-10.

18 Кельцев Н.В. Основы адсорбционной техники. 2-е изд., перераб. и

доп. М.: Химия, 1984. 592 с.

19 Canet X., Gilles F., Bao-Lian Su, Guy de Weireld, Frère M., Mougin P.

Adsorption of Alkanes and Aromatic Compounds on Various Faujasites in the

Henry Domain. 2. Composition Effect in X and Y Zeolites // Journal of

Chemical & Engineering Data, 2007, v. 52. № 6. pp. 2127-2137.

20 Faghihian H., Riazi L. Dearomatization of Normal Paraffin by

Synthesized NaX Zeolite // Journal of Chemical Engineering & Process

Technology, 2013, v. 174. №1. pp. 408-411.

21 Способ выделения н-гексана из гексансодержащих бензиновых

фракций: пат. 2128157 РФ: МПК C07C7/08/ Хворов А.П.; заявл.

26.11.1996; опубл. 27.03.1999. 7 с.

Page 17: OBTAINING HEXANE SOLVENT FROM THE RAFFINATE OF …ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p256-272_SaifullinDK_en.pdf256 © Electronic scientific journal "Oil and Gas Business".

272

© Electronic scientific journal "Oil and Gas Business". 2014. №3 http://www.ogbus.ru

About the authors

Сведения об авторах

D.K. Saifullin, Master of MPT 21-12-02 Group, of the Chair «Technology of

Oil and Gas», FSBEI HPE USPTU, Ufa, the Russian Federation

Сайфуллин Д.К., магистрант гр. МТП21-12-02, кафедра «Технологии

нефти и газа», ФГБОУ ВПО УГНТУ, г. Уфа, Российская Федерация

e-mail: [email protected]

R.G. Spaschenko, Candidate of Chemical Science, Lead Specialist of

Laboratory of Physico-Chemical Studies of Polymers, JSC «Scientific-Technical

Centre «Salavatneftorgsintez», Salavat, the Russian Federation

Спащенко Р.Г., канд. хим. наук, ведущий специалист, ООО «НТЦ

Салаватнефтеоргсинтез», г. Салават, Российская Федерация

A.M. Kiryukhin, Candidate of Chemical Science, Head of laboratory of

Physico-Chemical Studies of Polymers, JSC «Scientific-technical Centre

«Salavatneftorgsintez», Salavat, the Russian Federation

Кирюхин А.М., канд. хим. наук, начальник лаборатории физико-

химических исследований полимеров, ООО «НТЦ

Салаватнефтеоргсинтез», г. Салават, Российская Федерация

A.Y. Spaschenko, Candidate of Engineering Science, Head of Refining

Processes laboratory, JSC «Scientific-Technical Centre «Salavatneftorgsintez»,

Salavat, the Russian Federation

Спащенко А.Ю., канд. техн. наук, начальник лаборатории процессов

нефтепереработки, ООО «НТЦ Салаватнефтеоргсинтез», г. Салават,

Российская Федерация