Objections to the NCM Occlusion The Process of...

5
1/8/18 1 The Process of Occlusion Jim Steenburgh University of Utah [email protected] Supplemental Reading: Schultz and Mass (1993), Schultz and Vaughan (2011) Objections to the NCM Occlusion Structures resembling an occlusion can be present without a pre-existing warm sector The so-called occluded frontis often drawn from the peak of the warm sector to the low center without evidence that the process of occlusion occurred The occlusion is added as an accretionThere is often little or no temperature gradient across an occlusion at the surface The largest gradients are often aloft Source: Schultz and Mass (1993) Objections to the NCM Occlusion There are few if any well documented cases of cold fronts overtaking warm fronts to form occlusions Occluded fronts often appear to form when the low center separates from the peak of the warm sector and deepens back into the cold air The occluded front is essentially a new front Satellite imagery suggests that occluded-like structures form in non-classical ways Source: Schultz and Mass (1993) The Instant Occlusion Occurs when a comma cloud/PVA aloft approaches and merges with a frontal wave Structure that forms looks like an occlusion, but without the history of catch up Source: Reed (1979), Schultz and Mass (1993), Djuric (1994) Outstanding Questions Do cyclones ever occlude in a classical manner in which the cold front catches up to the warm front? A: Yes! Can occlude structures form from non-classical mechanisms A: Yes! Might there be a better way to conceptualize the occlusion process A: Yes! Evolution of Ideal Occlusion L L L L L Pre-existing warm & cold fronts Warm sector narrows as cold front overtakes warm front Occlusion lengthens as warm & cold fronts zipperSource: Schultz and Mass (1993)

Transcript of Objections to the NCM Occlusion The Process of...

1/8/18

1

TheProcessofOcclusion

JimSteenburghUniversityofUtah

[email protected]

SupplementalReading:SchultzandMass(1993),SchultzandVaughan(2011)

ObjectionstotheNCMOcclusion• Structuresresemblinganocclusioncanbepresent

withoutapre-existingwarmsector

• Theso-called“occludedfront” isoftendrawnfromthepeakofthewarmsectortothelowcenterwithoutevidencethattheprocessofocclusionoccurred

• “Theocclusionisaddedasanaccretion”

• Thereisoftenlittleornotemperaturegradientacrossanocclusionatthesurface

• Thelargestgradientsareoftenaloft

Source:SchultzandMass(1993)

ObjectionstotheNCMOcclusion• Therearefewifanywelldocumentedcasesofcoldfrontsovertakingwarmfrontstoformocclusions

• Occludedfrontsoftenappeartoformwhenthelowcenterseparatesfromthepeakofthewarmsectoranddeepensbackintothecoldair

• Theoccludedfrontisessentiallyanewfront

• Satelliteimagerysuggeststhatoccluded-likestructuresforminnon-classicalways

Source:SchultzandMass(1993)

TheInstantOcclusion

• Occurswhenacommacloud/PVAaloftapproachesandmergeswithafrontalwave

• Structurethatformslookslikeanocclusion,butwithoutthehistoryofcatchup

Source:Reed(1979),SchultzandMass(1993),Djuric (1994)

OutstandingQuestions• Docycloneseveroccludeinaclassicalmannerinwhichthecoldfrontcatchesuptothewarmfront?

• A:Yes!

• Canoccludestructuresformfromnon-classicalmechanisms

• A:Yes!

• Mighttherebeabetterwaytoconceptualizetheocclusionprocess

• A:Yes!

EvolutionofIdealOcclusion

L LL

LL

Pre-existingwarm&coldfronts

Warmsectornarrowsascoldfrontovertakeswarmfront

Occlusionlengthensaswarm&coldfronts“zipper”

Source:SchultzandMass(1993)

1/8/18

2

VerticalStructure

• HR18– Distinctwarmandcoldfronts

– Interveningwarmsector– Cold&upperlevelfrontssomewhatdistinct

• HR24– Warmsectornarrows– Cold&upper-levelfrontsmerge

Source:SchultzandMass(1993)

VerticalStructure

• HR30– Cold&warmfrontsmeet,formingwarm-typeocclusion

• HR33– Upper-levelcoldfrontcontinuestomovedownstream,formingelevatedcoldfrontoftheocclusion

Source:SchultzandMass(1993)

VerticalStructure

• Keypoints– Surface-basedcoldfrontcatcheswarmfrontinclassicalmanner

– Coldfrontdoesnot“rideup” overwarmfront

– Upper-levelfrontalzoneprovideselevatedcold-frontoftheocclusion

Source:SchultzandMass(1993)

Airflow• Sfc trajectoriesshowconfluenceofairacross

occlusion

• Airwithinwarmtonguealoftoriginatesinwarmsector(40,42,47,56)

• WarmsectorairremovedfromSFC

Source:SchultzandMass(1993)

Non-ClassicalOcclusion

• Deeplyoccludedsystemwithwarm-coreseclusion• Frontformsfrom“occludogenesis” ratherthancatch

up• Windfieldsgeneratethewarmtongue&seclusion

Source:Kuo etal.(1992)

Non-ClassicalOcclusion

• Confluenceoftrajectoriesalongocclusion• “Crossing” ofpost-occlusiontrajectories

– #5startstosouthinwarmerairthan13.#5endsinseclusion.• Seclusionformsfromthe“wrapping” ofcoldairoriginating

inwarm/occludedfrontalzoneSource:Kuo etal.(1992)

1/8/18

3

ANewPerspective

Comparing the 90-yr-old Norwegian cyclone model to recent research results demonstrates that descriptions of the occlusion process in textbooks need to be rewritten.

T he Norwegian cyclone model is the foundation of observational synoptic meteorology. In the early twentieth century, the scientists at the Geophysical

Institute in Bergen, Norway, drew upon previous re-search and a mesoscale observing network to create a conceptual model for the structure and evolution of extratropical cyclones and their attendant fronts (e.g., Bjerknes 1919; Bjerknes and Solberg 1921, 1922). Even 90 yr hence, the success of the Norwegian cyclone

model is a testament to its ingenuity, simplicity, and basic accuracy. Elements of the Norwegian cyclone model continue to be presented in meteorological textbooks, whether for meteorologists (e.g., Palmén and Newton 1969; Wallace and Hobbs 1977, 2006; Carlson 1991; Bluestein 1993; Gordon et al. 1998; Barry and Carleton 2001; Martin 2006), introductory classes (e.g., Gedzelman 1980; Moran and Morgan 1997; Lutgens and Tarbuck 2001; Aguado and Burt 2001; Ackerman and Knox 2007; Ahrens 2008; Barry and Chorley 2010), or the general public (e.g., Kimble 1951; Williams 1997, 2009; Lehr et al. 2001). Figure 1 provides a typical example of how the Norwegian cyclone model is illustrated in one of the most recent books (Williams 2009).

Despite the durability and longevity of conceptual models such as the Norwegian cyclone model, their applicability needs to be continually reassessed. The body of conventional wisdom, or common knowledge shared among the members of the scientific commu-nity, is called a paradigm (Kuhn 1970). Weaknesses, inconsistencies, contradictions of existing theory, and observations that do not fit the paradigm [called anomalies by Kuhn (1970)] are occasionally revealed. As a growing number of such anomalies accumulate, eventually a new conceptual model that explains the anomalies arises. This new conceptual model replaces the old, and a paradigm shift occurs. Science advances.

OCCLUDED FRONTS AND THE OCCLUSION PROCESSA Fresh Look at Conventional Wisdom

BY DAVID M. SCHULTZ AND GERAINT VAUGHAN

AFFILIATIONS: SCHULTZ—Division of Atmospheric Sciences, Department of Physics, University of Helsinki, and Finnish Meteorological Institute, Helsinki, Finland, and Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom; VAUGHAN—National Centre for Atmospheric Science, University of Manchester, Manchester, United KingdomCORRESPONDING AUTHOR: Dr. David M. Schultz, Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL United KingdomE-mail: [email protected]

The abstract for this article can be found in this issue, following the table of contents.DOI:10.1175/2010BAMS3057.1

A supplement to this article is available online (10.1175/2010BAMS3057.2)

In final form 13 November 2010©2011 American Meteorological Society

443APRIL 2011AMERICAN METEOROLOGICAL SOCIETY |

ConventionalWisdom• Theoccludedfrontformsandlengthensasthecoldfront

overtakesthewarmfront

• Theocclusionmaybewarmorcoldtypedependingonthetemperaturesbehindthecoldfrontandaheadofthewarmfront

• Theformationofanocclusionsignifiesanendtothecyclonedeepeningphase

• Theoccludedfrontfeaturesthepre-frontalweatherofawarmfront(widespreadcloudsandprecipitaiton)andthepost-frontalweatherofacoldfront(clearskiesanddrying)

Source:SchultzandVaughan(2011)

Catch-UpProcess

• Question– Isthecatch-upprocessanexplanationofocclusionformationoraconsequenceoftheunderlyingphysicalprocess?

• AlternativeAnswer– Lengtheningandnarrowingofwarmtongue,andcatch-upofcoldandwarmfrontsbetterexplainedbydifferentialdeformationandrotationaroundlowcenter

Source:SchultzandVaughan(2011)

DeformationandRotation

Advantage:Explains“occludogenesis”,strengtheningofinstantocclusion,lengtheningofocclusionaslowdeepensintocoldair,catchup process,etc.

Source:Schultzetal.(1998),SchultzandVaughan(2011)

Reconcilingconceptualmodels• Keyphysicalprocessoperatingintraditionalocclusion

andShapiro-Keysermodelis“wrap-up”ofthethermalwavebydifferentialrotationanddeformation

• IntheNCM,thenarrowingofthewarmsectorand“catch-up”ofthecoldfronttothewarmfrontisaconsequenceofthisprocess

• IntheS-Kmodel,theseparationofthelowcenterfromthewarmsector,developmentoftheinterveningwarmfront,andformationofbent-backfrontareaconsequenceofthisprocess

Source:SchultzandVaughan(2011)

AlternativeS-KModel

Source:SchultzandVaughan(2011)

Eliminatespeskyuseof“warmfront”and”bent-backwarmfront”

1/8/18

4

WarmandColdTypeOcclusion• Temperature“rule”forocclusionformationdoesn’tworkbecausefrontsarenotzeroorderdiscontinuitiesintemperature

• Staticstabilityisabetterdiscriminatorforocclusiontype(lowstaticstabilitygoesoverhigh)– Explainswhywarm-typeismorecommon

• Coldfrontisusuallylessstable– Suggeststhatcold-typeocclusionsmaybemorecommoninareaswherewarmfrontstendtobeweak(e.g.,California)

Source:Stoelinga etal.(2002),SchultzandVaughan(2011)

OcclusionEndsCycloneDeepening

• NorwegianModel– Occlusionindicatesendofdeepeningphasebecausecyclonenolongerhasaccesstopotentialenergystoredinwarmsector• “Aftertheocclusion,thecyclonesoonbeginstofillup”(Bjerknes andSolberg1922)

• Reality– Cyclonesoftendeepenafterocclusionformation– Cyclogenesis betterviewedfromQGorPVperspective

Source:SchultzandVaughan(2011)

OcclusionWeatherandPrecip

• NorwegianModel/CW– Occlusionsareassociatedwithwidespreadclouds/precip followedbyclearingaftersurfacefrontalpassage

• Reality– Occlusionsareassociatedwithavarietyofcloud/precip patterns,includingdryslotsandbandedprecipitation

Source:SchultzandVaughan(2011)

OcclusionWeatherandPrecip

Source:SchultzandVaughan(2011)

TheDryAirstreamGradientsin“weather”notnecessarilycollocatedwithsurfacefront

Don’tusebackedgeofcirrostratustolocatesurfacefront!

OcclusionWeatherandPrecip

Source:MassandSchultz(1993),SchultzandVaughan(2011)

Summary• OcclusionsformasdescribedbyNorwegianCycloneModel(i.e.,Catchup)

• Thealsoformthroughnon-classicalprocesses

• Formationandlengtheningofwarmtongueandcatch-upprocessbetterexplainedbythewrap-upofthebaroclinic zonebydifferentialdeformationandrotation

• Paradigmcanalsoexplain“occludogenesis”andS-Kmodel

• Moveintothe21st century– Warm/coldtypedeterminedbystaticstability– ThinkQG/PVtounderstandcyclonedevelopment– Recognizecloud/precip patternswithocclusionsarevaried

1/8/18

5

ClassActivity• UsetheReal-Time-Wx ->Analyses->Global-10daybundleandfindaNCMandaS-Kmodelcyclone

• Evaluatetheapplicabilityofdifferentialrotationanddeformationasaparadigmforexplainingthethermalwavewrapup ineachcyclone

• AnalyzetheS-Kcycloneusingthealternativemodelpresentedherein