Nutrient Recovery and Water Saving with the “LooLoop” fileJoachim Behrendt Nutrient Recovery and...

48
Joachim Behrendt Nutrient Recovery and Water Saving with the “LooLoop” Joachim Behrendt, Ulrich Braun, Ulrike Gayh, Mathias Anholz, Torsten Bettendorf, Ralf Otterpohl Sustainable sanitation Pre-conference Workshops (10-12 August 2009, Tampere , Finland)

Transcript of Nutrient Recovery and Water Saving with the “LooLoop” fileJoachim Behrendt Nutrient Recovery and...

Joachim Behrendt

Nutrient Recovery and Water Saving with the “LooLoop”

Joachim Behrendt, Ulrich Braun, Ulrike Gayh, Mathias Anholz,

Torsten Bettendorf, Ralf Otterpohl

Sustainable sanitationPre-conference Workshops

(10-12 August 2009, Tampere , Finland)

Joachim Behrendt

Agenda

➔ Introduction and Motivation➔ Technical Realisation➔ Prozess Variants ➔ Obtained Results➔ Research and Development Needs➔ Conclusion

Joachim Behrendt

Introduction and Motivation

➢ Disposal of faecal contaminated wastewater causes problems

➢ Extraction of freshwater for domestic uses is effected

➢ Objectives:

➔ Water demand for flushing of toilets can be reduced down to zero

➔ Reuse faecal matter, like biogas, mineral fertilizer and soil-conditioner

➔ Eliminating all pathogens and hazardous substances, like pharmaceuticals, hormones and multi-resistance plasmids

Joachim Behrendt

A) Healthy Kidney Cells (B) Diclofenac Caused Damage in kedney cells

Source: Bayerisches Landesamt für Umwelt

A B

Joachim Behrendt

Technical Realisation

airFI

NICNIC QIR

O2,pH,T

PIC QIC

pH

KOH

Ozone Treatment

max

min

max

min

to biosolidtreatment

1.

1. liquid fertiliser overflow

max

Joachim Behrendt

➔ Rechen und Siebe

➢ Rechen sind in der Abwasserreinigung etabliert und können als Komponente erworben werden

➢ Siebung ist problematischer, weil es zu Korrosion kommen kann und die Poren leicht verstopfen, weil Ausfällung bevorzugt an metallischen Oberflächen stattfindet

➔ Sedimentation

➢ Sedimentation birgt das Risiko des Schlammauftriebs, wegen hoher Nitratkonzentration (Denitrifikation)

➔ Screen and Sieves

➢ Screen are established in wastewater treatment and can bought as componente

➢ Screening is more problematic, because corrusion occurs and the pores are easily blocked due to prefered precipitation at metalic surfeces

➔ Sedimentation

➢ Sedimentation holds the risk of flotation of sludge, due to the high nitrate concentration (denitrification)

Technical RealisationSeparation of Solids

Joachim Behrendt

➔ Flotation

➢ Flotation benötigt gleichmäßigen Zulauf

➢ Option für größere Baugrößen➔ Filtersack

➢ Filtersack mit Vertikalsieb funktioniert

➢ Stoßbelastung möglich

➢ ideal für kleiner Baugrößen

➔ Flotation

➢ Flotation need even inflow

➢ Option for bigger scale➔ Filter Bag

➢ Filter bag with vertical sieve works

➢ Peak loads possible

➢ ideal for small units

Technical RealisationSeparation of Solids

Joachim Behrendt

Fotograph of the Solid Separation

Joachim Behrendt

Fotograph of the Solid Separation

Joachim Behrendt

Materialfluss Feststoffabtrennung

from Bettendorf, 2007

Joachim Behrendt

Biological Treatment

➔ Lowering of pH➔ Degradation of organic compounents➔ Elimination of colour➔ Reduction of Pathogenes

✔ Realised as Membran-Bio-Reactor (MBR)

✔ and as Fixed-Bed-Reactor (FBR)

Joachim Behrendt

Biological Treatment

Key reactions:

Nitritation :

NH 4+ +

32O2 + 2HCO3

- NO2- + 2CO2 + 3H 2O

Nitratation :

NO2- +

12O2 NO3

-

Joachim Behrendt

Biological Treatment

but actually:

NH 3 + 32O2 HNO2 + 2H 2O

HNO2 + 12O2 + H2O NO3

- + H 3O+

NH3 + H 3O+ NH 4

+ + H2O

HNO2 + H 2O NO2- + H3O

+

Joachim Behrendt

Kinetic of the Nitrification

Nitritation :

µNS = µNSmax

SNH 3

K S−NH 31

SHNO2

K I−HNO 2

SNH 3

SNH 3

2

KH−NH 3

SO2

K NS−O2 + SO 2

f T f I f pH

Nitratation :

µNB = µNBmax

SHNO2

K S−HNO21

SNH3

K I−NH 3

SHNO2

SHNO2

2

KH−HNO2

SO2

K NB−O2 + SO2

f T f I f pH

Joachim Behrendt

Kinetic Coefficients from Literature

from Tewodros_Lemmu, 2009

Joachim Behrendt

Kinetic Coefficients from Literature

from Tewodros_Lemmu, 2009

Joachim Behrendt

Kinetic Coefficients from Literature

from Tewodros_Lemmu, 2009

Joachim Behrendt

Experimental set up for the determination of the Kinetic of the Oxidation of Nitrogen

M

QIR

O2, pH

SIC

TIC

Pressluft

Joachim Behrendt

Impact of the concentration of the dissolved oxygen

from Tewodros_Lemmu, 2009

Joachim Behrendt

Impact of the concentration of the dissolved oxygen

from Tewodros_Lemmu, 2009

Joachim Behrendt

Kinetic of the NH4-Degradation

from Antholz, 2009

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000

NH4+-N/NH3-N [mg]

Res

pir

atio

n r

ate

[mg

/(g

*h)]

Black water cycle

WWTP Seevetal

Joachim Behrendt

Kinetic of the NO2-Degradation

0

2

4

6

8

10

0 500 1000 1500 2000 2500 3000 3500

NO2--N [mg]

Res

pir

ati

on

rate

[m

g/(

g*h

)]

Black water cycle

WWTP Seevetal

from Antholz, 2009

Joachim Behrendt

Temperature impact to NH4-Oxidation

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50Temperature [°C]

Re

sp

irati

on

ra

te [

mg

/(g

*h)]

Balck water cycleWWTP Seevetal

from Antholz, 2009

Joachim Behrendt

Temperature Impact to the NO2-Oxidation

0

5

10

15

20

25

0 10 20 30 40 50Temperature [°C]

Re

sp

ira

tio

n r

ate

[m

g/(

g*h

)] Black water cycleWWTP Seevetal

from Antholz, 2009

Joachim Behrendt

Fotograph of the MBR of the “Looloop”

Joachim Behrendt

Fotograph and Scheme of the FBR

Joachim Behrendt

Fixed-bed-reactor (FBR)

Joachim Behrendt

Trials of Treatment with Ozone

➔ Colour removal

➔ Elimination of refraktory Substances (Pharmaceutical residues)

➔ Hygienisation

Joachim Behrendt

Experimental Set-up for Ozonisation

Joachim Behrendt

Results of Ozonisation of biological pre-treated Urine

0 10 20 30 40 50 600

5

10

15

20

25

30

35

D O3 0,34 g/lD O3 0,26 g/lD O3 0,35 g/lKinetik

Zeit t [min]

Far

bza

hl

CU

[1/

m]

from Gahy, 2007

Joachim Behrendt

Ozonisation in a tube reactor

from Gahy, 2007

Joachim Behrendt

Results Ozonisation

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,400

5

10

15

20

25

30

35

Konti: behandeltes Volumen 1 Liter

Konti: behandeltes Volumen 2 Liter

Batch: behandeltes Volumen 0,9 Liter

Ozondosis [g/l]

Far

bza

hl c

u [

1/m

]

from Gahy, 2007

Joachim Behrendt

0

1.000

2.000

3.000

4.000

5.000

0

24

48

72

96

120

NH4-N [mg/l]TOC [mg/l]FZ [1/m]

Ko

nze

ntr

atio

n S

_NH

4, S

_TO

C [

mg

/l]

Far

bza

hl

CU

[1/

m]

Zulauf Bioreaktor nach UF Ozonierung Biologische Nachbehandlung

Progress of Colour Reduction During Blackwater Treatment

from Gahy, 2007

Joachim Behrendt

Ozone Reactor Pilot-scale-plant

From Ozone Generator

Joachim Behrendt

Ozone Reactor Pilot-scale-plant

Ozomat SBApel Ozon-Wassertechnik GmbH

Joachim Behrendt

Bobble Swarm in the Ozone Reactor

Joachim Behrendt

Energy Demand

the production of 1 kg Ozone requires 10 kWh electricity

the demand of ozone consists from 0,5 m3 urine and an equivalent amount of colourand from faeces and of the elimination of recolouring

250 g ozone per m3 urine

20 g ozone per m3 flushing water

annual demand 1 m3 urine (equivalent)/(cap. a) plus 15 m3 flushing water /(cap. a)550 g O3/(cap. a) 5,5 kWh/(cap. a)

Nitrite oxidation with ozone:4 kg/(cap. a) 2 kg O3/kg NO2 = 8 kg/(cap. a) Ozon 80 kWh/(cap. a)

Joachim Behrendt

Nano-filtration of biological treated Blackwater

➔ Concentration of the nutrients and pollutants

➔ Colour removal

➔ Hygienisation

Joachim Behrendt

Nano-filtration

NF

inflow Permeate

Retentate

(TOC, ions) TOC < 300-500 Damonovalent ions

TOC > 300-500 Dapolyvalent ions (PO4

3+ , SO42- )

and monovalent ions (K+, Na+) for charge compensation

Joachim Behrendt

scheme of the Membrane Test Plant

Joachim Behrendt

Fotograph of the Membrane and Filter

Joachim Behrendt

Fotograph of the Membrane Plant

Joachim Behrendt

Separation of Ions

from Bettendorf, 2008

Joachim Behrendt

Specific Flux

from Bettendorf, 2008

Joachim Behrendt

Membrane Fouling

from Bettendorf, 2008

time t [d]

Joachim Behrendt

Process Integration of the Nano Filtration

from Bettendorf, 2008

Joachim Behrendt

Dry Residue/Fertiliser

originialoriginial

200 °C300 °C

400 °C

500 °C

© Bettendorf

Joachim Behrendt

Conlusion

Thank You very muchfor your Attention!