Numero y Funciones

14
Matemática: Primero de Bachillerato 2014 Unidad Educativa Juan Francisco Yerovi Página 1 BLOQUE NÚMEROS Y FUNCIONES 1. LA FUNCIÓN: En matemáticas, se dice que una magnitud o cantidad es función de otra si el valor de la primera depende exclusivamente del valor de la segunda. Por ejemplo el área A de un círculo es función de su radio r: el valor del área es proporcional al cuadrado del radio, A = π·r2. Del mismo modo, la duración T de un viaje de tren entre dos ciudades separadas por una distancia d de 150 km depende de la velocidad v a la que este se desplace: la duración es inversamente proporcional a la velocidad, T = d / v. Representación de funciones Las funciones se pueden presentar de distintas maneras: Usando una relación matemática descrita mediante una expresión matemática: ecuaciones de la forma. Cuando la relación es funcional, es decir satisface la segunda condición de la definición de función, se puede definir una función que se dice definida por la relación, A menos que se indique lo contrario, se supone en tales casos que el dominio es el mayor posible (respecto a inclusión) y que el codo minio son todos los Reales. El dominio seleccionado se llama el dominio natural, de la función. Ejemplo: y=x+2. Dominio natural es todos los reales. Ejemplo: "Para todo x, número entero, y vale x más dos unidades". Como tabulación: tabla que permite representar algunos valores discretos de la función. Ejemplo:

description

contenido teórico del bloque 1: Numero y funciones

Transcript of Numero y Funciones

Page 1: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 1

BLOQUE

NÚMEROS Y FUNCIONES

1. LA FUNCIÓN:

En matemáticas, se dice que una magnitud o cantidad es función de otra si el valor de la

primera depende exclusivamente del valor de la segunda. Por ejemplo el área A de

un círculo es función de su radio r: el valor del área es proporcional al cuadrado del

radio, A = π·r2. Del mismo modo, la duración T de un viaje de tren entre dos ciudades

separadas por una distancia d de 150 km depende de la velocidad v a la que este se

desplace: la duración es inversamente proporcional a la velocidad, T = d / v.

Representación de funciones

Las funciones se pueden presentar de distintas maneras:

Usando una relación matemática descrita mediante una expresión matemática:

ecuaciones de la forma.

Cuando la relación es funcional, es decir satisface la segunda condición de la definición

de función, se puede definir una función que se dice definida por la relación, A menos

que se indique lo contrario, se supone en tales casos que el dominio es el mayor posible

(respecto a inclusión) y que el codo minio son todos los Reales. El dominio

seleccionado se llama el dominio natural, de la función.

Ejemplo: y=x+2. Dominio natural es todos los reales.

Ejemplo: "Para todo x, número entero, y vale x más dos unidades".

Como tabulación: tabla que permite representar algunos valores discretos de la función.

Ejemplo:

Page 2: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 2

Como pares ordenados: pares ordenados, muy usados en teoría de grafos.

Ejemplo: A={(-2, 0),(-1, 1),(0, 2),(1, 3),... (x, x+2)}

En matemáticas, una función entre conjuntos ordenados se dice monótona (o isótona) si

conserva el orden dado. Las funciones de tal clase surgieron primeramente en cálculo, y

fueron luego generalizadas al entorno más abstracto de la teoría del orden. Aunque los

conceptos generalmente coinciden, las dos disciplinas han desarrollado una terminología

ligeramente diferente; mientras en cálculo se habla de funciones monótonamente

crecientes y monótonamente decrecientes (o simplemente crecientes y decrecientes), en la

teoría del orden se usan los términos monótona y antítona, o se habla de funciones

que conservan e invierten el orden

Función creciente Función decreciente

Simetría de una función

Una función f es simétrica respecto del eje de ordenadas si ésta es una función par, es decir:

f(-x) = f(x)

Page 3: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 3

Simetría respecto al origen

Una función f es simétrica respecto al origen si ésta es una función impar, es decir:

f(-x) = -f(x)

Page 4: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 4

2. FUNCIÓN LINEAL:

En geometría y el álgebra elemental, una función lineal es una función polinómica de

primer grado; es decir, una función cuya representación en el plano cartesiano es una línea

recta. Esta función se puede escribir como:

Donde m y b son constantes reales y x es una variable real. La constante m es

la pendiente de la recta, y b es el punto de corte de la recta con el eje y. Si se modifica m

entonces se modifica la inclinación de la recta, y si se modifica b, entonces la línea se

desplazará hacia arriba o hacia abajo.

Algunos autores llaman función lineal a aquella con b= 0 de la forma:

mientras que llaman función afín a la que tiene la forma:

cuando b es distinto de cero.

Ecuación explícita de una recta

La ecuación explícita de la recta viene dada por la ya conocida expresión:

Ecuación general o implícita de una recta

La ecuación de la recta también la podemos expresar con todos los términos en lado

izquierdo de la ecuación, igualados a cero. Es lo que se denomina:

Ecuación general o implícita de la recta:

Page 5: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 5

PENDIENTE

En matemáticas y ciencias aplicadas se denomina pendiente a la inclinación de un elemento

ideal, natural o constructivo respecto de la horizontal.

En geometría, puede referirse a la pendiente de la ecuación de una recta como caso

particular de la tangente a una curva, en cuyo caso representa la derivada de la función en el

punto considerado, y es un parámetro relevante, por ejemplo, en el trazado altimétrico

de carreteras, vías férreas o canales.

Pendiente de una recta

La pendiente de una recta en un sistema de representación rectangular (de un plano

cartesiano), suele estar representada por la letra , y está definida como la diferencia en el

eje Y dividido por la diferencia en el eje X para dos puntos distintos en una recta. En la

siguiente ecuación se describe:

Ceros de una función

Los ceros de una función son los puntos en los que la gráfica corta al eje x. Así, en la

siguiente gráfica, podemos ver que la función tiene tres ceros o raíces:

Page 6: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 6

Entonces, encontrar los ceros o raíces de una función f: A B / y = f(x), implica resolver

la ecuación f(x) = 0. Así, por ejemplo:

la función y = x2 + 1 no tiene ceros,

la función y = x3 tiene un cero en x0 = 0, y

la función y = sen(x) tiene infinitos ceros en los valores de la forma xk = k., con k entero.

Intersecciones de Rectas

La intersección de una recta son los puntos donde la recta intersecta, o cruza, los ejes

horizontal y vertical.

La recta mostrada en la gráfica intersecta a los dos ejes de coordenadas. El punto donde la

recta cruza el eje x se llama [intersección en x]. El punto [intersección en y] es donde la

recta cruza el eje y.

Page 7: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 7

Calculando Intersecciones

Podemos usar las características de las intersecciones para calcularlas rápidamente a partir

de la ecuación de una recta. Puedes notar que es fácil, cuando encontramos las x- y y-

intersecciones para la recta .

Para encontrar la intersección en y, sustituimos 0 por x en la ecuación, porque sabemos que

cada punto en el eje y tiene un valor de 0 en la coordenada x. Una vez hecha la sustitución,

podemos resolver la ecuación para encontrar el valor de y. Cuando hacemos x = 0, la

ecuación se convierte en

, de donde se obtiene y = 2. Por lo que, cuando x = 0, y = 2. Las coordenadas de la

intersección en y son (0, 2).

Ejemplo

Problema 3y + 2x = 6

3y + 2(0) = 6

3y = 6

Solución y = 2

Seguiremos ahora los mismos pasos para encontrar la intersección en x. Sea y = 0 en la

ecuación, y resolvamos para x. Cuando y = 0, la ecuación se convierte en

Page 8: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 8

, de donde se obtiene x = 3. Cuando y = 0, x = 3. Las coordenadas de la intersección

en x son (3, 0).

Ejemplo

Problema 3y + 2x = 6

3(0) + 2x = 6

2x = 6

Solución x = 3

SISTEMAS DE DOS ECUACIONES

Hay varios métodos para resolver este tipo de sistemas:

Método de sustitución:

Primero se despeja una incógnita en una ecuación, y después se sustituye el resultado en la

otra ecuación. Se puede despejar cualquier incógnita (o la x o la y) en cualquier ecuación

(la primera o la segunda), pero siempre hay que sustituir en “la otra”, es decir, si

despejamos en la primera ecuación, sustituimos en la segunda, y si despejamos en la

segunda, sustituimos en la primera.

Por ejemplo, en el sistema:

3x + y = 5

4x-2y = 1

Despejamos la “y” en la primera ecuación:

y = 5 -3x

y sustituimos el resultado en “la otra” ecuación, es decir, en la segunda:

4x – 2(5 – 3x) = 1

Page 9: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 9

obteniendo una ecuación con una incógnita, que ya podemos resolver.

Método de igualación:

Primero se despeja la misma incógnita en las dos ecuaciones (o las dos x o las dos y) y

después se igualan los resultados, obteniendo una sola ecuación con una sola incógnita. En

el ejemplo anterior, si despejamos las dos y:

y = 5 – 3x

y = (4x – 1)/2

Igualando los resultados, obtenemos la ecuación con una incógnita:

5 – 3x = (4x – 1)/2

que ya podemos resolver.

Método de reducción:

Primero tenemos que conseguir que una incógnita tenga el mismo coeficiente en

las dos ecuaciones, pero cambiado de signo. Una vez conseguido, se suman

las dos ecuaciones y así obtenemos una ecuación con una incógnita.

En el ejemplo anterior, si multiplicamos la primera ecuación por 2, conseguimos tener el

mismo coeficiente (cambiado de signo) en las “y”:

2·(3x + y = 5) -------------> 6x + 2y = 10

4x – 2y = 1 -------------> 4x – 2y = 1

Sumando las dos ecuaciones entre sí:

10x = 11

donde ya podemos despejar la x

Page 10: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 10

Inecuaciones lineales

Anteriormente has usado los símbolos “>” (mayor que), “<” (menor que), “≥” (mayor o

igual que) y “≤” (menor o igual que) para describir como es la relación entre un número y

otro. Por ejemplo: 4 > -1 para señalar que 4 es mayor que -1, -2 < 3 para señalar que -2 es

menor que 3 y -3 < -1 para señalar que -3 es menor que -1. Estos ejemplos se conocen

como desigualdades.

Podemos usar la recta numérica para visualizar estas desigualdades.

Observa que:

4 > -1, porque 4 está a la derecha de -1 en la recta numérica.

-2 < 3, porque -2 está a la izquierda de 3 en la recta numérica

-3 < -1, porque -3 está a la izquierda de -1 en la recta numérica

0 > -4, porque 4 está a la derecha de 0 en la recta numérica

na inecuación lineal es una expresión matemática que describe cómo se

relacionan entre sí dos expresiones lineales. Por ejemplo: 3 + 5x ≥ 18; -2(x + 3) <

-9.

La solución de una inecuación lineal se puede representar haciendo uso de intervalos en la

recta numérica, la cual contiene infinito números reales.

Para resolver inecuaciones lineales hacemos uso de las siguientes propiedades:

Para todo número real a, b y c, si a < b entonces: a + c < b + c y a – c < b – c.

Para todo número real a, b y c, donde c > 0 y a < b, entonces:

3. Para todo número real a, b y c, donde c < 0, si a < b, entonces:

Page 11: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 11

Función valor absoluto

Las funciones en valor absoluto se transforman en funciones a trozos, siguiendo los

siguientes pasos:

1) Se iguala a cero la función, sin el valor absoluto, y se calculan sus raíces.

2) Se forman intervalos con las raíces y se evalúa el signo de cada intervalo.

3) Definimos la función a trozos, teniendo en cuenta que en los intervalos donde la x es

negativa se cambia el signo de la función.

4) Representamos la función resultante.

D=

Page 12: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 12

Ecuación de una recta, pendiente, ceros de la función, intersecciones de rectas, sistemas de

dos ecuaciones e inecuaciones lineales, función valor absoluto, modelos.

3. FUNCIÓN CUADRÁTICA:

Función cuadrática

Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.

f(x) = ax² + bx +c

Representación gráfica de la parábola

Podemos construir una parábola a partir de estos puntos:

1. Vértice

Por el vértice pasa el eje de simetría de la parábola.

Page 13: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 13

La ecuación del eje de simetría es:

2. Puntos de corte con el eje OX

En el eje de abscisas la segunda coordenada es cero, por lo que tendremos:

ax² + bx +c = 0

Resolviendo la ecuación podemos obtener:

Dos puntos de corte: (x1, 0) y (x2, 0) si b² − 4ac > 0

Un punto de corte: (x1, 0) si b² − 4ac = 0

Ningún punto de corte si b² − 4ac < 0

2. Punto de corte con el eje OY

En el eje de ordenadas la primera coordenada es cero, por lo que tendremos:

f(0) = a · 0² + b · 0 + c = c (0,c)

Representar la función f(x) = x² − 4x + 3.

Page 14: Numero y Funciones

Matemática: Primero de Bachillerato 2014

U n i d a d E d u c a t i v a “ J u a n F r a n c i s c o Y e r o v i ”

Página 14

MÁXIMOS Y MÍNIMOS

Extremos

Toda función cuadrática posee un máximo o un mínimo, que es el vértice de la parábola. Si

la parábola tiene concavidad hacia arriba, el vértice corresponde a un mínimo de la función;

mientras que si la parábola tiene concavidad hacia abajo, el vértice será un máximo.

Ecuación cuadrática (ceros de la función)

Primer forma para sacar la raíz:

1) se iguala la ecuación a cero.

2) se factoriza la ecuación.

3) Cada factor se iguala a cero.

Inecuaciones cuadráticas

x2 + 2x < 15 y 4x2 ≥ 12x -9

1) Escribe la inecuación en su forma general, es decir comparada con cero.

2) Halla los ceros de la ecuación cuadrática ax2 + bx + c = 0 (Por Descomposición en

factores o por la fórmula del discriminante). Si el Discriminante es menor que cero la

solución es todos los reales o no tiene solución, dependiendo de la desigualdad y del

signo de ¨a¨.

3) Representa esos ceros en una Recta numérica.

4) Analiza el signo de ese Trinomio en los Intervalos determinados por los

ceros, evaluando el Polinomio en valores cómodos de esos intervalos o ubicando los

signos de derecha a izquierda (Si a>0 comienza con el signo más y alternando menos y

luego más, si a < 0 comienza con menos y de igual forma alterna, el siguiente gráfico

hace referencia en caso de ¨ a ¨ positivo).

5) Escribe la solución en notación de intervalo, teniendo en cuenta que si la desigualdad es

estricta los ceros no se incluyen y en caso contrario se incluyen en la solución.