Numerical Shape Optimisation in Blow Moulding

47
1 Numerical Shape Optimisation Numerical Shape Optimisation in Blow Moulding in Blow Moulding Hans Groot Hans Groot

description

Numerical Shape Optimisation in Blow Moulding. Hans Groot. Overview. Blow molding Inverse Problem Optimization Method Application to Glass Blowing Conclusions & future work. Inverse Problem. Glass Blowing. Optimization Method. Conclusions. Blow Molding. Blow Molding. container. - PowerPoint PPT Presentation

Transcript of Numerical Shape Optimisation in Blow Moulding

Page 1: Numerical Shape Optimisation in Blow Moulding

1

Numerical Shape Optimisation Numerical Shape Optimisation in Blow Mouldingin Blow Moulding

Hans GrootHans Groot

Page 2: Numerical Shape Optimisation in Blow Moulding

2

OverviewOverview

1.1. Blow moldingBlow molding

2.2. Inverse ProblemInverse Problem

3.3. Optimization MethodOptimization Method

4.4. Application to Glass BlowingApplication to Glass Blowing

5.5. Conclusions & future workConclusions & future work

Page 3: Numerical Shape Optimisation in Blow Moulding

3

Inverse Problem Glass Blowing ConclusionsBlow Molding Optimization Method

Blow MoldingBlow Molding

glass bottles/jars

plastic/rubber containers

mould

pre-form

container

Page 4: Numerical Shape Optimisation in Blow Moulding

4

Example: JarExample: Jar

Inverse Problem Glass Blowing ConclusionsBlow Molding Optimization Method

Page 5: Numerical Shape Optimisation in Blow Moulding

5

ProblemProblem

Forward problem

Inverse problem

pre-form container

Blow Molding Glass Blowing ConclusionsInverse Problem Optimization Method

Page 6: Numerical Shape Optimisation in Blow Moulding

6

Forward ProblemForward Problem

1

2

i

m

•Surfaces 1 and 2 given•Surface m fixed (mould wall)•Surface i unknown

Forward problem

Blow Molding Glass Blowing ConclusionsInverse Problem Optimization Method

Page 7: Numerical Shape Optimisation in Blow Moulding

7

1

Inverse ProblemInverse Problem

•Surfaces i and m given

•Either 1 or 2 unknown

Inverse problem

2

i

m

Blow Molding Glass Blowing ConclusionsInverse Problem Optimization Method

Page 8: Numerical Shape Optimisation in Blow Moulding

8

Construction of Pre-Form by PressingConstruction of Pre-Form by Pressing

1

2

Blow Molding Glass Blowing ConclusionsInverse Problem Optimization Method

Page 9: Numerical Shape Optimisation in Blow Moulding

9

OptimizationOptimization

Find pre-form for approximate container with minimal distance from model container

mould wallmodel container

approximate container

Optimisation Method Glass BlowingBlow Molding Inverse Problem Conclusions

Page 10: Numerical Shape Optimisation in Blow Moulding

10

OptimizationOptimizationmould wallmodel containerapproximate container

Minimize objective function2

2

2

i

dd d

idOptimisation Method Glass BlowingBlow Molding Inverse Problem Conclusions

Page 11: Numerical Shape Optimisation in Blow Moulding

11

Computation of Objective FunctionComputation of Objective Function Objective Function:

Composite Gaussian quadrature:

• m+1 control points (•) → m intervals•n weights wi per interval (ˣ)

2

i

dd

2 2

i

d ( )m n

i nj ij i

d w d

x

Optimisation Method Glass BlowingBlow Molding Inverse Problem Conclusions

Page 12: Numerical Shape Optimisation in Blow Moulding

12

Parameterization of Pre-FormParameterization of Pre-Form

P1

P5P4

P3

P2

P0

OR,φ1. Describe surface by

parametric curve• e.g. spline, Bezier curve

2. Define parameters as radii of control points:

3. Optimization problem: Find p as to minimize

1 2 5P P P( , ,..., )R R Rp

)(p

Optimisation Method Glass BlowingBlow Molding Inverse Problem Conclusions

Page 13: Numerical Shape Optimisation in Blow Moulding

13

iterative method to minimize objective function

J: Jacobian matrix

: Levenberg-Marquardt parameter

H: Hessian of penalty functions:

iwi /ci , wi : weight, ci >0: geometric

constraint

g: gradient of penalty functions

p: parameter increment

d: distance between containers

Modified Levenberg-Marquardt Method

T T

i i i i i i i i J J I H p J d g

Optimisation Method Glass BlowingBlow Molding Inverse Problem Conclusions

Page 14: Numerical Shape Optimisation in Blow Moulding

14

Function Evaluations per Iteration

Distance function d:o one function evaluation

Jacobian matrix:

1. Finite difference approximation:

o p function evaluations (p: number of parameters)

2. Broyden’s method:o no function evaluations, but less accurate

function evaluation = solve forward problem

Optimisation Method Glass BlowingBlow Molding Inverse Problem Conclusions

Page 15: Numerical Shape Optimisation in Blow Moulding

15

Neglect mass flow in azimuthal direction (uf≈0)

Given R1(f), determine R2(f)

Volume conservation:

•R(f) radius of interface

Approximation for InitialApproximation for Initial GuessGuess

streamlines

3 3 3 32 1 m i( ) ( ) ( ) ( )R R R R

f r

Optimisation Method Glass BlowingBlow Molding Inverse Problem Conclusions

Page 16: Numerical Shape Optimisation in Blow Moulding

16

InitialInitial GuessGuess

approximate inverse problem

initial guess of pre-form

model container

Page 17: Numerical Shape Optimisation in Blow Moulding

17

Glass BlowingGlass Blowing

Blow Molding Inverse Problem ConclusionsGlass BlowingOptimization Method

Page 18: Numerical Shape Optimisation in Blow Moulding

18

Forward ProblemForward Problem

1)Flow of glass and air Stokes flow problem

2)Energy exchange in glass and air Convection diffusion

problem

3)Evolution of glass-air interfaces Convection problem

Blow Molding Inverse Problem ConclusionsGlass BlowingOptimization Method

Page 19: Numerical Shape Optimisation in Blow Moulding

19

Level Set MethodLevel Set Method

glass

airair

θ > 0

θ < 0θ < 0

θ = 0

motivation:

• fixed finite element mesh• topological changes are

naturally dealt with• interfaces implicitly defined• level sets maintained as signed

distances

Blow Molding Inverse Problem ConclusionsGlass BlowingOptimization Method

Page 20: Numerical Shape Optimisation in Blow Moulding

20

Computer Simulation ModelComputer Simulation Model Finite element method One fixed mesh for

entire flow domain 2D axi-symmetric At equipment

boundaries: no-slip of glass air is allowed to “flow

out”

Blow Molding Inverse Problem ConclusionsGlass BlowingOptimization Method

Page 21: Numerical Shape Optimisation in Blow Moulding

21

Comparison Approximation with Comparison Approximation with Simulation ModelSimulation Model

forward problem

pre-form container

simulation

approximation (uf≈0)

Page 22: Numerical Shape Optimisation in Blow Moulding

22

Optimization of Pre-Form

inverse problem

initial guess

Page 23: Numerical Shape Optimisation in Blow Moulding

23

Optimization of Pre-Form

initial guess

inverse problem

Page 24: Numerical Shape Optimisation in Blow Moulding

24

Optimization of Pre-Form

optimal pre-form

inverse problem

Page 25: Numerical Shape Optimisation in Blow Moulding

25

Signed Distance between Approximate and Model Container

Page 26: Numerical Shape Optimisation in Blow Moulding

26

Summary Shape optimization method for pre-

form in blow molding• describe either pre-form surface by

parametric curve• minimize distance from approximate

container to model container• find optimal radii of control points• use approximation for initial guess

Application to glass blowing average distance < 1% of radius

moldBlow Molding Inverse Problem Glass Blowing ConclusionsOptimization Method

Page 27: Numerical Shape Optimisation in Blow Moulding

27

Short Term Plans

Extend simulation model• improve switch free-stress to no-slip

boundary conditions

• one level set problem vs. two level set problems

Well-posedness of inverse problem

Sensitivity analysis of inverse problem

Blow Molding Inverse Problem Glass Blowing ConclusionsOptimization Method

Page 28: Numerical Shape Optimisation in Blow Moulding

28

Parison Optimization for Ellipse

model container optimal containerinitial guess

Page 29: Numerical Shape Optimisation in Blow Moulding

29

Blow MoldingBlow Molding

mould

ring

parison

container

e.g. glass bottles/jars

Page 30: Numerical Shape Optimisation in Blow Moulding

30

ApproximationApproximation

Initial guess

pre-form model container

Page 31: Numerical Shape Optimisation in Blow Moulding

31

Incompressible medium:

•R(f) radius of interface G

Simple example → axial symmetry:

•If R1 is known, R2 is uniquely determined and vice versa

1 12 2

3 3 3 32 1 m i

0 0

( ) ( ) sin( )d ( ) ( ) sin( )d) )( (R R R R

Initial GuessInitial Guess

3 3 3 32 1 m iR R R R

R(f)

Page 32: Numerical Shape Optimisation in Blow Moulding

32

Inverse ProblemInverse Problem

1 given (e.g. plunger)

m, i given

•determine 2 2

1

•Optimization:•Find pre-form for container with minimal difference in glass distribution with respect to desired container

Page 33: Numerical Shape Optimisation in Blow Moulding

33

Inverse Problem

1

2i

m

i and m given

1 and 2 unknown

Inverse problem

Page 34: Numerical Shape Optimisation in Blow Moulding

34

1 12 2

3 3 3 32 1 m i

0 0

( ) ( ) sin( )d ( ) ( ) sin( )d) )( (R R R R

Volume Conservation (incompressibility)

R1

R2Ri

Rm

Page 35: Numerical Shape Optimisation in Blow Moulding

35

1 12 2

3 3 3 32 1 m i

0 0

( ) ( ) sin( )d ( ) ( ) sin( )d) )( (R R R R

Volume Conservation (incompressibility)

•Rm fixed

•Ri variable

with R1 and R2

•R1, R2??

Ri

Rm

R1

R2

Page 36: Numerical Shape Optimisation in Blow Moulding

36

Blow Moulding

preform container

Forward problem

Inverse problem

Page 37: Numerical Shape Optimisation in Blow Moulding

37

Hybrid Broyden Method

Optimisation ResultsIntroduction Simulation Model Conclusions

iii

ii

ii

iii

iiii

iii

ii

ii

ii

ii

iiii

rrr

JJ

JJ

pJr

rpJr

pJr

rr

pp

pp

pp

ppJr

1

1

111

with

otherwise ,

:method bad sBroyden'

if ,

:method good sBroyden'

[Martinez, Ochi]

Page 38: Numerical Shape Optimisation in Blow Moulding

38

Example (p = 13)

Optimisation ResultsIntroduction Simulation Model Conclusions

Method # function evaluations

# iterations

Hybrid Broyden 32 8 1.75

Finite Differences 98 9 1.36

Conclusions:

• similar number of iterations

• similar objective function value

• Finite Differences takes approx. 3 times longer

than Hybrid Broyden

Page 39: Numerical Shape Optimisation in Blow Moulding

39

Optimal preform

Preform Optimisation for Jar

Model jar Initial guess

ResultsLevel Set MethodIntroduction Simulation Model Conclusions

Page 40: Numerical Shape Optimisation in Blow Moulding

40

Preform Optimisation for Jar

Model jar

ResultsLevel Set MethodIntroduction Simulation Model Conclusions

Approximate jar

Radius: 1.0

Mean distance: 0.019Max. distance: 0.104

Page 41: Numerical Shape Optimisation in Blow Moulding

41

Conclusions

ConclusionsOptimisationIntroduction Simulation Model Results

Glass Blow Simulation Model• finite element method• level set techniques for interface tracking• 2D axi-symmetric problems

Optimisation method for preform in glass blowing• preform described by parametric curves• control points optimised by nonlinear least

squares Application to blowing of jar

mean distance < 2% of radius jar

Page 42: Numerical Shape Optimisation in Blow Moulding

42

Thank you for your attention

Page 43: Numerical Shape Optimisation in Blow Moulding

43

ComparisonComparisonInverse problem Forward problem

two unknown intefaces one unknown interface

Inverse problem

Forward problem1

2

i

m

Inverse problem under-determined or forward problem over-determined?

Page 44: Numerical Shape Optimisation in Blow Moulding

44

Inverse Problem

Optimisation ResultsIntroduction Simulation Model Conclusions

preform container

Unknown surfaces

Page 45: Numerical Shape Optimisation in Blow Moulding

45

Forward Problem

Optimisation ResultsIntroduction Simulation Model Conclusions

preform container

Rm knownRi unknown

Page 46: Numerical Shape Optimisation in Blow Moulding

46

Incompressible medium:

•R(f) radius of interface G

Simple example → axial symmetry:

•If R1 is known, R2 is uniquely determined and vice versa

1 12 2

3 3 3 32 1 m i

0 0

( ) ( ) sin( )d ( ) ( ) sin( )d) )( (R R R R

Volume ConservationVolume Conservation

3 3 3 32 1 m iR R R R

R(f)

Page 47: Numerical Shape Optimisation in Blow Moulding

47

Incompressible medium:

•R(f) radius of interface G

Simple example → axial symmetry:

•If R1 is known, R2 is uniquely determined and vice versa

1 12 2

3 3 3 32 1 m i

0 0

( ) ( ) sin( )d ( ) ( ) sin( )d) )( (R R R R

Volume ConservationVolume Conservation

3 3 3 32 1 m iR R R R

R(f)