Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical...

46
Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3) Maurizio Falcone (La Sapienza) & Hasnaa Zidani (ENSTA) ANOC, 23–27 April 2012 M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 1 / 50

Transcript of Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical...

Page 1: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Numerical method for HJB equations. Optimalcontrol problems and differential games

(lecture 3/3)

Maurizio Falcone (La Sapienza) & Hasnaa Zidani (ENSTA)

ANOC, 23–27 April 2012

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 1 / 50

Page 2: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Outline

1 Introduction

2 Planing Motion, reachability analysis

3 Hamilton-Jacobi approach: level set method

4 Differential games under state-constraints

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 2 / 50

Page 3: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Consider the controlled system:yx (s) = f (yx (s), α(s)), s ∈ (0,+∞),yx (0) = x ,

(1)

α(s) ∈ A, a.e s ∈ (0,+∞).

where A is a convex compact set in Rm, (m ≥ 1).

Admissible trajectories:

S[0,τ ](x) := yx satisfying (1) on(0, τ), yx (0) = x

Under classical assumptions, the set-valued function x S[0,τ ](x) is

Lipschitz continuous,

∃L > 0,S[0,τ ](x) ⊂ S[0,τ ](z) + L|x − z|BW 1,1 ∀x , z ∈ Rd .

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 4 / 50

Page 4: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Now, consider the following control problems:

ä Mayer’s problem:

V (x , t) = infyx∈S[0,t](x)

Φ(yx (t))

ä Time minimum problem (C closed set in Rd ):

T (x) = inf

t ; yx (t) ∈ C, yx ∈ S[0,t](x)

ä Supremum cost:

V∞(x , t) = infyx∈S[0,t](x)

Φ(yx (t))∨

supθ∈[0,t]

g(yx (θ))

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 5 / 50

Page 5: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Assume that g : Rd → R is Lipschitz continuous (+classicalassumptions on f )

If Φ : Rd → R is lsc (resp. Lipschitz), then V and V∞ are lsc (resp.Lipschitz).

When the target C is closed, the minimum time function T is lsc.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 6 / 50

Page 6: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Mayer Problem

V (x , t) = minyx∈S[0,h](x)

V (yx (h), t − h) h ∈ (0, t),

V (x ,0) = Φ(x)

Minimum time problem:

T (x) = minyx∈S[0,h](x)

T (yx (h)) + h h < T (x), x 6∈ C,

T (x) = 0 x ∈ C;

Supremum cost

V∞(x , t) = minyx∈S[0,h](x)

V∞(yx (h), t − h)∨

supθ∈[0,h]

g(yx (θ))

V∞(x ,0) = Φ(x)∨

g(x);

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 7 / 50

Page 7: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

V (x , t) = minyx∈S[0,t](x)

Φ(yx(t))

V (x , t) = minyx∈S[0,h]

V (yx (h), t − h) h ∈ (0, t).

V (x ,0) = Φ(x)

ä Suboptimality:

∀yx ∈ S[0,t](x), s 7−→ V (yx (s), t − s) is increasing,

ä Superoptimality

∃y∗x ∈ S[0,t](x), s 7−→ V (y∗x (s), t − s) is constant

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 8 / 50

Page 8: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Next, we derive the Hamilton-Jacobi-Bellman equation (HJB), which isan infinitesimal version of the DPP.

ä ∂tV (x , t) + H(x ,DxV (x , t)) = 0, x ∈ Rd , t > 0;V (x ,0) = Φ(x) Time-dependent HJB equation

ä H(x ,DT (x)) = 1, x 6∈ C, T (x) < +∞;T (x) = 0 on C Steady HJB equation

ä min(∂tV∞(x , t) + H(x ,DV∞(x , t)),V∞(x , t)− g(x)) = 0,

x ∈ Rd , t > 0;V∞(x ,0) = Φ(x) ∨ g(x) HJB-VI ineqation

where H(x ,q) := maxa∈A(−f (x ,a) · q).

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 9 / 50

Page 9: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ä To each control problem is associated an adequateHamilton-Jacobi equation

ä A very large class of control problems can be considered withinthe HJ framework (state-constrained control problem, infinitehorizon control problems, hybrid systems, impulsive control, ... )

ä The viscosity notion provides a very convenient framework for thetheoretical and numerical studies of the value function

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 10 / 50

Page 10: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ä When the (exact) value function is known, the feed-back controller canbe defined as the minimizer of the DPP.

ä This feedback can be shown to be an optimal control law

Van der Pol Problem :y1(t) = y2

y2(t) = −y1 + y2(1− y21 ) + a

a(t) ∈ [−1,1]

−2 −1 0 1 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Scheme:ENO2−RK1

Target

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 11 / 50

Page 11: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ä When the (exact) value function is known, the feed-back controllercan be defined as the minimizer of the DPP.

ä This feedback can be shown to be an optimal control law

Van der Pol Problem :y1(t) = y2

y2(t) = −y1 + y2(1− y21 ) + a(t)

a(t) ∈ [−1,1]

x1

x2

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 12 / 50

Page 12: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Open problemIn general, only an approximation of the value function can becomputed.It is not clear how the feedback control behaves with respect to a smallperturbation of the value function.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 13 / 50

Page 13: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Numerical methodsSemi-Lagrangian methods: based on the DPP (Falcone, Ferretti,Jakobsen, Grüne, Kushner-Dupuis, ...)

PROS: no CFL condition for stability (⇒ adaptative schemes)CONS: non-local

Finite difference methods: approximation of the gradient by FD(Crandall/Lions, Barles, Souganidis)

CONS: needs CFL condition for stabilityPROS: local method =⇒ can be parallelizedPROS: non-monotone variants are proposed to get numerically"high-order"

• ε-monotone schemes (R. Abgrall)• ENO, WENO (Osher, Shu, ... )• Discontinuous Galerkin, direct DG (Cockburn, Shu, Cheng&Shu,

Bokanowski’12)• Anti-diffusive schemes, Ultra-Bee (Megdich-Bokanowski-HZ’10,

Bokanowski-Cristiani-HZ’10)M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 14 / 50

Page 14: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Recent developments and ongoing works:

• "Curse of dimentionality free methods" : max-plus algebra(McKeneaney, Akian, Gaubert, Sridharan, ...)

• Sparse grids method (Bokanowski/Klompmaker/Garke/Griebel 12’)

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 15 / 50

Page 15: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ENO2-RK1 scheme (and example of numerical Hnum)void HJB_FD::ENO2_RK1(double t, double deltat, double* vin, double* vout)

int i,j,d;double vi,v1,v2,v3,v4,vv,h;

for(j=0;j<mesh->inn_nbPoints;j++)i = rank[j];vi = vin[i];for(d=0;d<dim;d++)

v1 = vin[i - mesh->out_neighbors[d]];v3 = vin[i - 2*mesh->out_neighbors[d]];v2 = vin[i + mesh->out_neighbors[d]];v4 = vin[i + 2*mesh->out_neighbors[d]];h = mesh->Dx[d];vv = (v2-2.*vi+v1)*divdx[d]*divdx[d];Dvnum[2*d] = (vi-v1)*divdx[d] + h*.5*minmod((vi-2.*v1+v3)*divdx[d]*divdx[d],vv);Dvnum[2*d+1]= (v2-vi)*divdx[d] - h*.5*minmod((vi-2.*v2+v4)*divdx[d]*divdx[d],vv);

vout[i] = vi - deltat * (*this.*Hnum)((mesh->*(mesh->getcoords))(i),Dvnum,t);

inline double Hnum(const double* x, const double* v, double t)

double z=0., p[DIM], amax[DIM];int i;for(i=0;i<DIM;i++)

amax[i]=1.; //- a maximal bound of the dynamicsp[i]=(v[2*i] + v[2*i+1])/2.;z += amax[i]*(v[2*i+1] - v[2*i])/2.;

return H(x,p)-z; //- H(x,Nabla u) is the Hamiltonian

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 16 / 50

Page 16: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

HJ parallel Library (Binope)by O. Bokanowski, A. Désilles, J. Zhao, H. Zidani

http://www.ensta-paristech.fr/~zidani/BiNoPe_HJ/presentation.html

Finite Differences solver (ENO, UltraBee)

C++, parallel (MPI/OpenMP)works in any dimension (limited to machine’s capacity)

Semi-Lagrangian solverC++ (OpenMP)works in any dimension (limited to machine’s capacity)

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 17 / 50

Page 17: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Reachable (or Attainable) set

ä The reachable set Rf (x ; t) from x at time t is the set of all pointsof the form yx (τ), where yx ∈ S[0,t](x):

Rf (x ; t) := yx (τ) | yx ∈ S[0,t](x), τ ∈ [0, t ].

ä The reachable set from X is defined by:

RfX (t) := ∪x∈XRf (x ; t).

Figure: Reachable set

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 19 / 50

Page 18: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Let C be a closed target set (in our examples, C is safe)

Capture Basin (or Backward reachable set)

ä The Capture Basin CaptCt , at time t , is the set of all initial positionsx from which a trajectory yx ∈ S[0,t](x) can reach the target C.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 20 / 50

Page 19: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ä Does there exist a trajectory leading from a state in initial setX to a state in the target C, during some finite time horizon?

ä Once an obstacle has been detected by suitable sensors(e.g. radar, pursuer), can a collision be avoided?

ä Sometimes we have no control over input signal (noise,actions of other agents, unknown system parameters, ...): itis safest to consider the worst-case.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 21 / 50

Page 20: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Different approaches for computing the reachable sets

ä set-valued integration schemes [Saint-Pierre’91, Baier’95], optimalcontrol techniques [Varaiya’00, Baier et al.’07]

ä external and inner ellipsoidal techniques [Kurzhanski andVaraiya’00,’01,’02]

ä discretization methods for nonlinear problems with stateconstraints [Chahma’03, Beyn an Rieger’07]

ä Optimal controller design: level set method [Osher-Sethian’91,Falcone-et-al.’05, Mitchell’07, Bokanowski-HZ’07,Bokanowski-Forcadel-HZ’10]

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 22 / 50

Page 21: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Optimization-based controller designMinimum-time control problem:

T (x) = inf

t ; yx (t) ∈ C, yx ∈ S[0,t](x).

The sublevels of the minimum function T correspond to theCapture Basins of the target C:

CaptCt = x ∈ Rd | T (x) = t.

When the minimum time function T is continuous, it can becharacterized as the unique viscosity solution of the HJBequation:

H(x ,DT (x)) = 1, x 6∈ C, T (x) < +∞;

T (x) = 0 in C,

where H(x ,q) := maxa∈A(−f (x ,a).q).M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 23 / 50

Page 22: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Unfortunately ...ä The continuity of T is equivalent to small controllability of the

system around the target: let ηx be the normal to C,

minα∈A

f (x , α) · ηx < 0, ∀x ∈ ∂C.

ä This (restrictive) controllability property is not satisfied inseveral examples (e.g. Zermelo problem).

ä In the general case, the minimum time function is only lsc. Inthis case, the approximation of the minimum value functionbecomes more difficult.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 24 / 50

Page 23: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Zermelo problem

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 25 / 50

Page 24: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Optimal control problem. Level set approach

Define the signed distance function Φ(x) = dC(x),and consider the following control problem:

V (x , t) = infyx∈S[0,t](x)

Φ(yx(t))

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 27 / 50

Page 25: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ä V is Lipschitz continuous and satisfies (Crandall-Lions’84):

∂tV (x , t) + H(x ,DV (x , t)) = 0,V (x ,0) = Φ(x),

where H(x ,q) := supa∈A(−f (x ,a) · q)

ä For every t ≥ 0, CaptCt = x ∈ Rd ; V (x , t) ≤ 0;

ä The minimum time function T : Rd → R+ ∪ +∞ is lsc.Moreover, we have:

T (x) = inft ≥ 0; x ∈ CaptCt = mint ≥ 0; V (x , t) ≤ 0.

ã Φ can be any function satisfying

Φ(x) ≤ 0⇐⇒ x ∈ C.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 28 / 50

Page 26: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ä The level set approach can be used even whenthe minimum time function is discontinuous!

The value function V is Lipschitz continuous!

ä The level set approach can be extended to moregeneral situations: differential games, avoidanceof obstacles, moving target and/or obstacles, ...

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 29 / 50

Page 27: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

General setting: differential games under stateconstraintsLet α ∈ A be a controlled input, and β ∈ B an uncontrolled input(perturbance). Consider the trajectory:

yx (s) = f (yx (s), α(s), β(s)), s ∈ (0,1),yx (0) = x ,

Let (Kθ)θ≥0 be a family of closed set (of constraints). Consider agame involving two players.

I The first player wants to steer the system from the initial position atpoint x to the target C and by staying in K (and using his/her inputα(t) ∈ A)

I while the second player tries to steer the system away from C orfrom K (with his/her input β(t) ∈ B).

Assume θ 7−→ Kθ is usc.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 31 / 50

Page 28: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Non anticipative strategies

We define the set of non-anticipative strategies for the first player, asfollows:

Γ :=

a : B→ A, ∀(β, β) ∈ B and ∀s ∈ [0,∞),(β(θ) = β(θ) a.e. θ ∈ [0, s]

)⇒(

a[β](θ) = a[β](θ) a.e. θ ∈ [0, s])

.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 32 / 50

Page 29: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ä For τ ≥ 0,

CaptK(τ) := x ∈ Rd | ∃α,∀β, ya[β],βx (s) ∈ Ks,and ya[β],β

x (τ) ∈ C

ä Again, let Φ(x) = dC(x) and consider the control problem:

ϑ(x , τ) := mina[β]

maxβ|ya[β],β

x (t)∈Kt

Φ(y(τ)).

Then

CaptK(τ) = x ∈ Rd , ϑ(x , τ) ≤ 0

T (x) = minτ ≥ 0, ϑ(x , τ) ≤ 0.

ä For controlled systems lacking controllability assumptions, thecharacterization of ϑ by means of HJB equations is not an easytask !!! (Ref: Soner’86, Ishii-Koike’91, Frankowska’91,Altarovici-Bokanowski-HZ’12)

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 33 / 50

Page 30: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

An other formulation: exact penalisation

ä Let g(x , θ) = dKθ(x) for any θ ≥ 0 and x ∈ Rd . Then, consider :

ϑg(x , τ) := infa[.]∈Γ

maxβ

Φ(yx (τ))∨

maxθ∈[0,τ ]

g(ya[β],βx (θ), θ).

ä ϑg is the unique continuous viscosity solution

min(∂ϑg(x , τ) + H(x ,Dxϑ

g(x , τ)), ϑg(x , τ)− g(x , τ)))

= 0,

ϑg(x ,0) = max(Φ(x),g(x ,0)).

where H(x ,q) := supa∈A minb∈B(−f (x ,a,b) · q)

ä And

Captt = x ∈ Rd , ϑg(x , τ) ≤ 0, T (x) = minτ ≥ 0, ϑg(x , τ) ≤ 0.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 34 / 50

Page 31: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Example1: One player, fixed obstacles

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 35 / 50

Page 32: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Example2: Zermelo problem with obstacles

x ′ = Vboat cos(θ) + Vcurrent − ay2

y ′ = Vboat sin(θ)

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 36 / 50

Page 33: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Zermelo problem with obstacles: feedback control law

x ′ = Vboat cos(θ) + Vcurrent − ay2

y ′ = Vboat sin(θ)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Scheme:ENO2−RK1 Obstacle Target

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 37 / 50

Page 34: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

Exemple: Ariane V

ObjectifMinimize the ergol consumption tosteer the (given) payload MCU tothe GTO (or GEO).

Collaboration with Cnes (projet OPALE 2007-2010)

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 38 / 50

Page 35: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

The physical model involves 7 state variables, the position−−→OG of

the rocket in the 3D space, its velocity −→v and its mass m.

O

L

eJ

`

G

eK

eI

e`

−→v

er

G

χ

γ

eL

Projection of −→v on the frame (er , eL, e`)

The forces acting on the rocket are: Gravity−→P , Drag

−→FD, Thrust−→

FT , and Coriolis−→Ω .

Newton Law:

md−→vdt

=−→P +

−→FD +

−→FT − 2m

−→Ω ∧ −→v −m

−→Ω ∧ (

−→Ω ∧−−→OG),

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 39 / 50

Page 36: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

GTO

m2

m1

m3

m2m1

m3

PHASE B

PHASE C (HJB)

GEO

PHASE A(HJB)

(transport)

Figure: mission Kourou-GEO.M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 40 / 50

Page 37: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

The related equation

State variables:r=altitudev=modulus of the velocityγ=angle between the direction earth-rocket and the direction of therocket’s velocity.L= latitude`= longitudeχ= azimuthm= masse of the engine

Control:α=angle between the thrust direction and the direction of the rocket’svelocity.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 41 / 50

Page 38: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

r = v cos γ

v = −g(r) cos γ − FD(r , v)

m+

FT (r , v ,a)

mcosα

Ω2r cos `(cos γ cos `− sin γ sin ` sinχ)

γ = sin γ(

g(r)

v− v

r

)− FT (r , v ,a)

vmsinα

−2Ω cos ` cosχ− Ω2 rv cos `(sin γ cos `− cos γ sin ` sinχ)

L =vr

sin γ cosχcos `

˙ =vr

sin γ sinχ

χ = −vr

sin γ tan ` cosχ− 2Ω(sin `− cotanγ cos ` sinχ)+

Ω2 rv

sin ` cos ` cosχsin γ

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 42 / 50

Page 39: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

â The plane of motion is the equatorial plane ` ≡ 0, and χ ≡ 0.

r = v cos γ

v = −g(r) cos γ − FD(r , v)

m+

FT (r , v ,a)

mcosα + Ω2r cos γ

γ = sin γ(

g(r)

v− v

r

)− FT (r , v ,a)

vmsinα− 2Ω− Ω2 r

vsin γ

L =vr

sin γ

m = −b(m(t))

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 43 / 50

Page 40: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

The rocket’s mass

ä The evolution of the mass can be summarized as follows

Phase 0 & 1 Phase 2 Phase 3m1(t) = −βEAP m1(t) = 0 m1(t) = 0m2(t) = −βE1 m2(t) = −βE1 m2(t) = 0m3(t) = 0 m3(t) = 0 m3(t) = −βE2

where βEAP , βE1 and βE2 are the mass flow rates for the boosters,the first and the second stage.

ä At the changes of phases, we have a (not negligible) discontinuityin the rocket’s mass.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 44 / 50

Page 41: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

The control problem can be formulated as (for a fixed payload)

Minimize tf

(r , v , γ,m, α) satisfy the state equation

α(t) ∈ [0, π/2] a.e. t ∈ (0, tf ),

(r(tf ), v(tf ), γ(tf )) ∈ C,

Q(r(t), v(t))α(t)) ≤ Cs for t ∈ (0, tf ),

m(tf ) = Mp.

where the target C corresponds to the GTO orbit, and the function Q isthe dynamic pressure.

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 45 / 50

Page 42: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

ã The Capture Basin is wide+ We introduce "physical" state constraints to define the

computational domain

ã Due to the CFL condition, the time step is very small+ Adaptative time discretization

ã "Different scales" for the state variables:

+ Change of variable:

r = r0(ex − 1) + rTv = v0(ey − 1) + vT

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 46 / 50

Page 43: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

GTO target

0 500 10000

200

400

time (sec)

altitu

de

(km

)

0 500 1000

2000

4000

6000

8000

10000

time (sec)

sp

ee

d (

m/s

)

0 500 10000

0.5

1

1.5

time (sec)

ga

mm

a (

rad

)

0 500 1000

200

400

600

time (sec)

ma

ss (

ton

)

Figure: Full trajectory using the HJB minimal time value function

Reference trajectory, final mass: mT = 21.57 (t)HJB trajectory, final mass (after reconstruction): mT = 22.50 (t)

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 47 / 50

Page 44: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

GTO target

0 500 10000

200

400

time (sec)

altitu

de

(km

)

0 500 1000

2000

4000

6000

8000

10000

time (sec)

sp

ee

d (

m/s

)

0 500 10000

0.5

1

1.5

time (sec)

ga

mm

a (

rad

)

0 500 1000

200

400

600

time (sec)

ma

ss (

ton

)

Figure: Full trajectory using the HJB minimal time value function

Reference trajectory, final mass: mT = 21.57 (t)HJB trajectory, final mass (after reconstruction): mT = 22.50 (t)

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 48 / 50

Page 45: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

"Collision analysis for an UAV".E. Crück, A. Desilles, HZ.AIAA Guidance, Navigation, and Control, 2012

"A general Hamilton-Jacobi framework for nonlinear state-constrained control problems".A. Altarovici, O. Bokanowski and HZESAIM:COCV, 2012

"Minimal time problems with moving targets and obstacles". O. Bokanowski and HZ.18th IFAC World Congress, Milan, 2011

"Deterministic state constrained optimal control problems without controllability assumptions". O. Bokanowski, N.Forcadel and HZESAIM: COCV, 17(04), pp. 975–994, 2011

"An efficient data structure and accurate scheme to solve front propagation problems". O. Bokanowski, E. Cristiani andHZJ. of Scientific Computing, 42(2), pp. 251–273, 2010

"Reachability and minimal times for state constrained nonlinear problems without any controllability assumption". O.Bokanowski, N. Forcadel and HZSIAM J. Control and Optimization, vol. 48(7), pp. 4292-4316, 2010

"Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data".O. Bokanowski, N. Megdich and HZ.Numerische Mathematik, 115(1), pp. 1–44, 2010

"An anti-diffusive scheme for viability problems"O. Bokanowski, S. Martin, R. Munos and HZ.Applied Num. Methematics, 56(9), pp. 1147–1162, 2006

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 49 / 50

Page 46: Numerical method for HJB equations. Optimal control problems … · 2012. 5. 11. · Numerical method for HJB equations. Optimal control problems and differential games (lecture 3/3)

... many thanks for your attention!

M. Falcone & H. Zidani () HJB approach for optimal control problems ANOC, 23–27 April 2012 50 / 50