Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä...

27
Numerical Integration

Transcript of Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä...

Page 1: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Numerical Integration

Page 2: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

Definite Integrals

f t

k( ) Δxk

k=1

n

∑ D→ 0⏐ →⏐ ⏐ ⏐

f x( )dx

a

b

Page 3: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

Riemann Sum S

D= f t

k( ) Δxk.

k=1

n

NUMERICAL INTEGRATION

Use decompositions of the type

D = a, a +

b −an

, a + 2b −a

n,K , a + n

b −an

⎝⎜⎞

⎠⎟.

General kth subinterval:

a + k −1( ) Δx, a + kΔx⎡

⎣⎤⎦, Δx =Δx

k=

b −an

.

Page 4: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

Riemann Sum S

D= f t

k( ) Δx.k=1

n

RULES TO SELECT POINTS

Left Rule t

k=a + k −1( ) Δx

Δx =

b −an

Page 5: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

Riemann Sum S

D= f t

k( ) Δx.k=1

n

RULES TO SELECT POINTS

Right Rule tk=a + kΔx

Δx =

b −an

Page 6: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

Riemann Sum S

D= f t

k( ) Δx.k=1

n

RULES TO SELECT POINTS

Midpoint Rule t

k=a + k −

12

⎝⎜⎞

⎠⎟Δx

Δx =

b −an

Page 7: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

RULES TO SELECT POINTS

Right Approximation

Left Approximation

f a + kΔx( ) Δx

k=1

n

∑RIGHT(n) =

f a + k −1( ) Δx( ) Δx

k=1

n

∑LEFT(n) =

Page 8: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

RULES TO SELECT POINTS

Midpoint Approximation

MID(n) =

Page 9: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

PROPERTIES

LEFT(n) ≤ f x( )dx ≤

a

b

If f is increasing,Property

RIGHT(n)

Page 10: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

PROPERTIES

LEFT(n) = f(a + (k −1)Δx)Δxk=1

n

=Δx f a( ) + f a + Δx( ) +L + f a + n −1( )Δx( )( )

RIGHT(n) = f(a + kΔx)Δxk=1

n

=Δx f a + Δx( ) +L + f a + n −1( )Δx( ) + f b( )( ).

Page 11: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

PROPERTIES

RIGHT(n) −LEFT(n)

=Δx f b( ) −f a( )( ) =b −a

nf b( ) −f a( )( ).

For any function, Property

Page 12: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

PROPERTIES

If f is increasing,

RIGHT(n) − f x( )dx

a

b

∫ ≤b −a

nf b( ) −f a( )

Hence

Property

Page 13: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

PROPERTIES

RIGHT(n) − f x( )dx

a

b

∫ ≤b −a

nf b( ) −f a( )

Property If f is increasing or decreasing:

LEFT(n) − f x( )dx

a

b

∫ ≤b −a

nf b( ) −f a( )

Page 14: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

CONCAVITY

Recall

The graph of a function f is concave

up, if the graph lies above any of its

tangent line.

Page 15: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

MIDPOINT APPROXIMATIONS

Midpoint Approximation

MID(n) =

Page 16: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

MIDPOINT APPROXIMATIONS

The two blue areas on the left are the same.

The blue polygon in the middle is contained in the domain under the concave-up curve.

MID(n) ≤ f x( )dx

a

b

Page 17: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

MIDPOINT APPROXIMATIONS

If the function f takes positive values, and if the

graph of f is concave-up

MID(n) ≤ f x( )dx

a

b

Page 18: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

MIDPOINT APPROXIMATIONS

If the function f takes positive values, and if the

graph of f is concave-down

MID(n) ≥ f x( )dx

a

b

Page 19: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

TRAPEZOIDAL APPROXIMATIONS

LEFT(n) rectangle

RIGHT(n) rectangle

TRAP(n) polygon

Page 20: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

TRAPEZOIDAL APPROXIMATIONS

TRAP(n) polygon

If the function f takes positive values and is concave-up

f x( )dx

a

b

∫ ≤TRAP n( ).

Page 21: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

COMPARING APPROXIMATIONS

Example

a b

fThe graph of a function f is increasing and concave up.

f x( )dx

a

b

Arrange the various numerical

approximations of the integral

into an increasing order.

Page 22: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

COMPARING APPROXIMATIONS

Example

a b

fBecause f is increasing,

Because f is positive and concave-up,

Page 23: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

COMPARING APPROXIMATIONS

Example

a b

f

LEFT n( ) ≤MID n( ) ≤TRAP n( ) ≤RIGHT n( )

Because f is increasing and concave-up,

Page 24: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

COMPARING APPROXIMATIONS

Example

a b

f

LEFT n( ) ≤MID n( ) ≤ f x( )dxa

b

∫≤TRAP n( ) ≤RIGHT n( )

Because f is increasing and concave-up,

Page 25: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

SUMMARY

Right Approximation

Left Approximation

f a + kΔx( ) Δx

k=1

n

∑RIGHT(n) =

f a + k −1( ) Δx( ) Δx

k=1

n

∑LEFT(n) =

Page 26: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

SUMMARY

Midpoint Approximation

MID(n) =

Trapezoidal Approximation

TRAP n( ) =

LEFT n( ) +RIGHT n( )

2.

Page 27: Numerical Integration. Integration/Integration Techniques/Numerical Integration by M. Seppälä Definite Integrals.

Integration/Integration Techniques/Numerical Integration by M. Seppälä

SIMPSON’S APPROXIMATION

In many cases, Simpson’s Approximation gives best results.

SIMPSON n( ) =

2MID n( ) + TRAP n( )

3.