Numerical analysis of Regge Calculus · I De nition of curvature in Regge calculus seems plausible,...

15
Numerical analysis of Regge Calculus Snorre H. Christiansen Department of Mathematics, University of Oslo Minneapolis, 24. October 2014

Transcript of Numerical analysis of Regge Calculus · I De nition of curvature in Regge calculus seems plausible,...

Numerical analysis of Regge Calculus

Snorre H. Christiansen

Department of Mathematics, University of Oslo

Minneapolis, 24. October 2014

Inspiration I

I D. N. Arnold: Differential complexes and numericalstability; Proceedings of the International Congress ofMathematicians, Vol. I, p. 137–157, (Beijing, 2002).

Inspiration II

I D. N. Arnold, R. Winther: Notes on linearized Einsteinequations; Unpublished notes.

Outline

I Crash course on Einstein equations and Regge calculus.

I Linearized Regge calculus in 3D.

I Non-linear Regge calculus in 2D.

Einstein equations

I Unknown is a metric with Lorentzian signature.

I Curvature is a non-linear expression of the metricinvolving second order derivatives.

I Vacuum: Einstein curvature is zero.

I Diffeomorphism invariance. Gauge freedom and constraints.

I Einstein-Hilbert action:

A(g) =

∫κ(g)µ(g). (1)

I 2D: all metrics are solutions,3D: only flat space (up to diffeomorphism),4D: interesting.

Regge calculus

I Regge, T.: General relativity without coordinates; NuovoCimento (10), Vol. 19, p. 558–571,1961.

I Manifold represented by simplicial complex.Metric determined by edge lengths.

I Curvature defined by deficit angle on codimension 2 simplices.

I Combinatorial action:sum over hinges of deficit angles times area.

I Discrete variational principle:Find critical points of action on space.

2D Regge calculus

I Euler-Poincare characteristic for simplicial complex:

# V − # E + # F = χ. (2)

I Gauss-Bonnet: ∫κ(g)µ(g) = 2πχ. (3)

I Regge: ∑V

(2π −∑

θ) = 2π # V − π # F (4)

= 2π(# V − # E + # F ) (5)

(using 2 # E = 3 # F ).

I Regge calculus defines a local curvature where possible,with right global property.

Elasticity complex

C∞(S ,V)def //

I 0h��

C∞(S ,S)curlt curl //

I 1h��

C∞(S ,S)div //

I 2h��

C∞(S ,V)

I 3h��

X 0h

def // X 1h

curlt curl // X 2h

div // X 3h

(6)

I Arnold, D. N. and Falk, R. S. and Winther, R.:Differential complexes and stability of finite element methods.II. The elasticity complex; Compatible spatial discretizations,IMA Vol. Math. Appl., Vol. 142, p. 47–67, Springer, 2006.

I Good FE spaces X 2h ,X

3h presuppose good FE spaces X 1

h .

I Related to de Rham complex by BGG construction.

Elasticity complex: relativity

C∞(S ,V)def //

I 0h��

C∞(S ,S)curlt curl //

I 1h��

C∞(S ,S)div //

I 2h��

C∞(S ,V)

I 3h��

X 0h

def // X 1h

curlt curl // X 2h

div // X 3h

(7)

I SHC: On the linearization of Regge calculus; Numer. Math.,Vol. 119, No. 4, p. 613–640, Springer, 2011.

I Complex encodes:– 1: linearized diffeomorphism invariance,– 2: linearized Bianchi identity (energy momentum).

Elasticity complex: Regge

C∞(S ,V)def //

I 0h��

C∞(S ,S)curlt curl //

I 1h��

C∞(S ,S)div //

I 2h��

C∞(S ,V)

I 3h��

X 0h

def // X 1h

curlt curl // X 2h

div // X 3h

(8)

I X 0h : Continuous piecewise affine vectorfields.

I X 1h : TT -continuous piecewise constant metrics (Regge).

I X 2h : Dirac deltas on edges: τe ⊗ τeδe .

I X 3h : Dirac deltas on vertices: Vδv .

Is Regge calculus conforming?

I Definition of curvature in Regge calculus seems plausible,but is it the true curvature or merely a consistentapproximation?

I The Einstein-Hilbert action and the Regge actionhave the same second variation (linearization),namely u 7→ 〈curlt curl u, u〉.

I Proof:combinatorial formula for second variation in Regge calculusmatches combinatorial formula for curlt curl(computed in the sense of distributions).

Can Regge calculus be justified for linearized GR?

I Linearized GR is a wave equation with curlt curl in space.But constraints involving trace and divergence.

I Convergent eigenvalue problem for curlt curl in RC.

I Proof inspired by Maxwell eigenvalue problem:– Boffi, D.: Finite element approximation of eigenvalueproblems; Acta Numer., Vol. 19, p. 1–120, 2010.– SHC and Winther, R.: On variational eigenvalueapproximation of semidefinite operators; IMA J. Numer.Anal., Vol. 33, No. 1, p. 164–189, 2013.

I Commuting projections (nice kernel) but:– Non-conforming: L2 metrics with curlt curl in H−1,– Non semi-definite, need for inf-sup.

Is Regge calculus conforming? (bis)

I SHC: Exact formulas for the approximation of connectionsand curvature; arXiv:1307.3376.

I Regularize Regge metric by convolution:

gε = g ∗ φε. (9)

I Then curvatures converge to Regge curvature for ε→ 0:

κ(gε)µ(gε)→ (2π −∑

θ)δ, (10)

in the sense of measures.

Proof

I Claim: Fix ε, then κ(gε)µ(gε) has bounded support and:∫κ(gε)µ(gε) = 2π −

∑θ. (11)

I In orthonormal frame, connection 1-form A:

dA = Rie = Jκµ, J =

[0 1−1 0

]. (12)

Integrate and take exponentials, use Stokes on LHS:

Hol(A, ∂T ) = exp(

∫∂T

A) = exp(J

∫Tκµ). (13)

Determine LHS as rotation matrix by angle −∑θ.

Gives result mod 2π, conclude by a continuity argument.

I gε related to gε′ by pullback and scaling.

Prescribed densitized scalar curvature

I Funny identity:

(κµ)(exp(2u)g0) = (∆0u)µ0. (14)

I Discrete conformal tranformations:

C(u) : gij 7→ exp(ui + uj)gij . (15)

I Given f find u sutch that:

(κµ)(C(u, g0)) =∑

fiδi . (16)

I Linearize around u = 0 gives: Find u such that for all v∫grad u · grad v =

∑fivi . (17)

Laplace equation with P1 elements (for g0).