Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis...

31
Nuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3, 2011 Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 1/1

Transcript of Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis...

Page 1: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Nuclear AstrophysicsVI: Nucleosynthesis beyond iron

Karlheinz Langanke

GSI & TU Darmstadt & FIAS

Otranto, may 30-june 3, 2011

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 1 / 1

Page 2: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Abundances of heavy nuclei

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

80 100 120 140 160 180 200

Abu

ndan

ces

[Si=

106 ]

A

180Ta

m

138La

s srr

p

152Gd

164Er

115Sn 180

W

Two main processes (s-process, r-process) plus the p-process.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 2 / 1

Page 3: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Why several processes?

double-peak structures which are related to magic neutronnumbers N = 50,82,126the upper peaks occur in accordance with mass numbers of stabledouble-magic nuclei (A=87, 138, 208); they are associated withthe s-processthe lower peaks occur at mass numbers which are shiftedcompared to the stable double-magic nuclei (A=80, 130, 195);they are associated to very neutronrich, magic nuclei which areproduced by the r-processfor some (even-even) mass numbers there exist 2 or even 3 stablenuclides (in principle, only one nucleus per mass number is stable,the others then decay by double-beta decay which has extremelylong half-lives); the neutronrich nuclide is produced by ther-process, the ’middle-one’ in the valley of stability by thes-process. For the neutron-deficient nuclide one needs an extraprocess, which is called p-process.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 3 / 1

Page 4: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Neutron captures vs beta decays

R- and s-process are a sequence of neutron captures, interrupted bybeta decays, which are needed to progress in charge number. Thebeta decays are characterized by lifetimes τβ, which usually do notdepend on the environment. The neutron captures are characterizedby lifetimes τn = 1/(Nn〈σnv〉), which depend on the neutron numberdensities Nn. (We note that τβ and τn can both also depend ontemperature.)Consider the two cases:

1 If τβ < τn, then an unstable nucleus, reached on the path, willbeta-decay before it captures another neutron. The path runsthrough the valley of stability. This is the s-process.

2 If τβ >> τn, several neutron captures will occur, before a nucleusis reached which beta-decays. The path runs through veryneutronrich nuclei. This is the r-process. To achieve the shortneutron capture times one needs very high neutron densities.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 4 / 1

Page 5: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

R- and s-process

Both, r- and s-process contribute to abundances of heavy elements, infact many nuclides are made by both processes. However, somenuclides are only made by r-process (r-process only), while some aremade only by the s-process (s-process only).How does this happen?The r-process path runs through very neutronrich nuclei far away fromstability.These nuclides are unstable and decay to stability once ther-process neutron source is used up. This decay chain stops once astable nucleus is reached. However, if there are two stable nuclei withthe same A number, the decay stops at the neutronrich nucleusA = (Z ,N) and there is no contribution to the other stable nucleusA = (Z + 2,N − 2). The latter, which is in the valley of stability, is onlymade by the s-process, while the first has no s-process contribution.S-only and r-only nuclides play important roles to disentangle the twoprocesses. In general, there are also minor p-process contributionswhich have to be considered.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 5 / 1

Page 6: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

R- and s-process only nuclei

30

40

50

60

70

60 70 80 90 100

No. of Neutrons

No.

of

Proton

s

s-only

r-only

N=Z

r-process pathββ -d

ecays

s-process path

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 6 / 1

Page 7: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

The classical s-process model

The classical model of B2FH is based on the following idea:If a nucleus is β-unstable following a neutron capture in the s-process,it will almost always β-decay to the first available stable isotope beforethe next neutron capture occurs. Then it generally suffices in thes-process to follow only the abundances as function of mass numbers,which only changes by neutron captures:

dNA

dt= −Nn〈σv〉ANA + Nn〈σv〉A−1NA−1

As for neutron capture σ ∼ 1v , one can write 〈σv〉A = σAvT , where vT is

the thermal velocity of neutrons and σA the thermal capture crosssection. Defining a neutron exposure τ =

∫NnvT dt , one has

dNA

dτ= −σANA + σA−1NA−1.

If the s-process achieves a steady state, dNAdτ = 0 and σANA = const .

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 7 / 1

Page 8: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Abundance vs cross section

abundance × cross sections indeed constant between magic numbers!

However, two components are required to make medium-mass andheavier s-process nuclei.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 8 / 1

Page 9: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

The main and the weak s-process component

Main component. Produces most of the nuclei in the mass range90 < A < 204. It occurs in AGB (Asymptotic Giant Branch) stars.The main neutron source is 13C(α,n)16O. The temperature is oforder 3× 108 K, the neutron number density of order 108/cm3.Weak component. This component contributes significantly tothe production of s-nuclides in the A ∼ 90 mass range. It operatesin core-helium burning in more massive stars. The main neutronsource is 22Ne(α,n)25Mg.

There might be need for a third component, with τ0 ≈ 7 mb−1 toexplain the abundances around A = 204− 209.The s-process stops at 208Pb, 209B, where the s-process path hits theregion of α-instability.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 9 / 1

Page 10: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Neutron capture cross sections

(n, γ) cross section have minima at magic neutron numbers. As theproduct (abundance × cross sections) is about constant follows that

the s-process abundances have maxima at the neutron magicnumbers, in agreement with observation.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 10 / 1

Page 11: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

S-process branchings

Usually τβ < τn for nuclei on the s-process path. As the neutroncapture rate (r = τ−1

n = Nn〈σv〉) depends on the neutron numberdensity Nn, the inequality τβ < τn gives first constraints on thes-process environment. However, much better constraints can bederived from the s-process branching points, where τβ ≈ τn. Inparticular one can use the facts that the lifetimes depend ontemperature, neutron and mass density.

β-decay rates are temperature sensitive; then branchings allowthe determination of the stellar temperaturesometimes also electron captures are important; these ratesdepend on the mass densitybranchings obviously also allow to determine the neutron numberdensity

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 11 / 1

Page 12: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Branching at 150Sm

Nd150

Pm148 Pm149Pm147 Pm150

Sm148147Sm Sm149 Sm150

Nd147 Nd148146Nd Nd149

r−process

s−process

Branching at 148Pm:

fβ =λβ

λβ + λn=〈σv〉N(148Sm)

〈σv〉N(150Sm)≈ 0.9

The neutron density is estimated to be: (4.1± 0.6)× 108 cm−3

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 12 / 1

Page 13: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Branching at 176Lu

175Lu

Lu176

104.0 10 y

Yb174

Hf177Hf176

Yb176

3.7 h

Hf178

176Lum

r−process

s−process

Branching depends on temperature, resulting in T = (2.5− 3.5)× 108

K.Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 13 / 1

Page 14: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

R-process: the general idea

R-process simulations indicate that, in a good approximation, theprocess proceeds in (n, γ)↔ (γ,n) equilibrium.This will imply that

1 the process runs along a path of approximately constant neutron separation energySn.

2 for a given Z value, the abundance flow resides basically in a single isotope, which isthe one with a neutron separation energy closest to Sn

3 for the mass flow to proceed from Z to Z + 1 requires a β decay4 if β-decays are fast enough, β-flow equilibrium might establish and the abundances

might be indirectly proportional to the halflives5 after the neutron source is exhausted, the r-process freezes out and the unstable

nuclei decay back to stability6 if the r-process reaches nuclei in the uranium region, fission can occur possibly

bringing part of the mass flow back to lighter nuclei (fission cycling)7 if the r-process occurs in strong neutrino fluxes, neutrino-induced reactions can

influence the r-process dynamics and abundances

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 14 / 1

Page 15: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

(n, γ)↔ (γ, n) equilibrium

In equilibriumµn + µ(Z ,A) = µ(Z ,A + 1)

This gives:

Y (Z ,A + 1)

Y (Z ,A)= Nn

(2π~2

mukT

)3/2(A + 1A

)3/2 G(Z ,A + 1)

2G(Z ,A)exp

[Sn(Z ,A + 1)

kT

],

Taking left side ≈ 1:

S̄n = kT ln

[2

Nn

(mukT2π~2

)3/2]

=

(T

109 K

){2.79 + 0.198

[log(

1020 cm−3

Nn

)+

32

log(

T109 K

)]}MeV.

For Nn = 1022 cm−3 and T9 = 1.35, S̄n = 3.28But S̄n depends on Nn and T and will change in a dynamical environment.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 15 / 1

Page 16: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

r-process

T ≈ 100 keV n & 1020 cm−3 implies τn � τβ(n, γ)� (γ, n) implies Sn ≈ 2 MeV

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 16 / 1

Page 17: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

The r-process at magic neutron numbers

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 17 / 1

Page 18: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Why are there r-process peaks?Once the path reaches nuclei with magic neutron numbers (Z ,Nmag),the neutron separation energy for the nucleus (Z ,Nmag + 1) decreasesstrongly. Thus, (γ,n) hinders the process to continue and (Z ,Nmag)beta-decays to (Z + 1,Nmag − 1), which is followed immediately byn-capture to (Z + 1,Nmag). This sequence of alternative β-decays andn-captures repeat itself, until n-capture on a magic nucleus cancompete with destruction by (γ,n).Thus, the r-process flow halts at the magic neutron numbers. Due tothe extra binding energy of magic nuclei, the Qβ values of these nucleiare usually smaller than those for other r-process nuclei. This makesthe lifetimes of the magic nuclei longer than lifetimes of other r-processnuclei. Furthermore, the lifetimes of the magic nuclei increasesignificantly with decreasing neutron excess. For example, the halfliveof the r-process nucleus 130Cd has been measured as 195± 35 ms,while typical halflives along the r-process are about 10 ms.Thus, material is enhanced in nuclei with Nmag , which after freeze-out,results in the observed r-process abundance peaks.

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 18 / 1

Page 19: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Which nuclear ingredients are needed?

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 19 / 1

Page 20: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Mass predictions

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 20 / 1

Page 21: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Half-lives for r-process nuclei

40 42 44 46 48 50Charge Number Z

10-3

10-2

10-1

100

T1/

2 (s

)

ETFSIFRDMHFBSMExpt.

N=82

66 67 68 69 70 71 72 73Charge Number Z

10-2

10-1

100

101

T1/

2 (s

)

ETFSIFRDMHFBSM

N=126

40 42 44 46 48 50Charge Number Z

0

20

40

60

80

100

Pβ,

n (%

)

FRDMSM

N=82

65 66 67 68 69 70 71 72 73Charge Number Z

0

20

40

60

80

100

Pβ,

n (%

)

FRDMSM

N=126

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 21 / 1

Page 22: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Abundances observed in metal-poor starslo

g ε

40 50 60 70 80 90

-2.5

-2

-1.5

-1

-.5

0

.5

1

Neutron-Capture Abundances in CS 22892-052

Sr

Y

Zr

Nb

Ru

Rh

Pd

Ag

CdBa

La

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

YbHf

Os

Ir

Pb

Th

Uscaled solar r-process

CS 22892-052 abundances

Atomic Number

δ(lo

g ε)

40 50 60 70 80 90

-1

-.5

0

.5

1

50 60 70 80 90

Atomic Number

−6.50

−5.50

−4.50

−3.50

−2.50

−1.50

−0.50

0.50

Rela

tive log ε

r−Process Abundances in Halo Stars

HD 115444

CS 22892−052

SS r−Process Abundances

BD +173248

Abundances for nuclei Z ≥ 56consistent with normalized solardistribution.U/Th ratio can be used to estimateage of the galaxy.(CS 22892-052, 15.6 ± 4.6 Gyr)

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 22 / 1

Page 23: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

R-process simulations and needs

neutrino-driven wind model (trajectories from supernovasimulation)coupled to nuclear networkneutron separation energieshalflives, β-delayed neutron emission probabilitiesneutron-capture ratesvarious fission processes (neutron-induced, β-induced,spontaneous)neutrino-induced processes

G. Martinez-Pinedo, D. Mocelj, F.-K. Thielemann, A. Kelic, K.-H.Schmidt

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 23 / 1

Page 24: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

R-process network

20 40 60 80 100 120 140 160 180 200 220N

20

40

60

80

100

Z

-24

-20

-16

-12

-8

-4

0

log Y

40 80 120 160 200 240 280 320A

-12

-10

-8

-6

-4

-2

log

Y(A

)

T9=0.35, nn=4.146e+22, t = 0.9531 s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T

16

17

18

19

20

21

22

23

24

25

26

27

log nn

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 24 / 1

Page 25: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Where does the r-process occur in nature?

This has been named one of the 11 fundamental questions in science.Recent observational evidence in metal-poor (very old) stars point totwo distinct r-process sites. One site appears to produce the r-processnuclides above A ∼ 130; another one has to add to the abundance ofr-process nuclides below A = 130.The two favorite sites are:

1 neutrino-driven wind above the proto-neutron star in acore-collapse supernova

2 neutron star mergers

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 25 / 1

Page 26: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Sites: neutron-star mergers

Problem: the frequency of neutron star mergers is too low to producethe entire solar r-process matter

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 26 / 1

Page 27: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Sites: neutrino-driven wind scenario

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 27 / 1

Page 28: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Sites: neutrino-driven wind scenario

Neutrino-driven wind

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������

n,α

−processα

Proto−NeutronStar n,p n,Seed

NSE

r−process

Shock frontT (

keV

)

500

200

< 10

> 1 MeV

ν−e⟨ ⟩ ≈E 16 MeV

νeE 11 MeV⟨ ⟩ ≈

R (km)10 10103 4

Neutrino-wind from (cooling) NSνe + n→ e− + pν̄e + p → e+ + nα-process (formation seed nuclei)α+ α+ n→ 9Be + γα+ 9Be→ 12C + n

(S. Woosley et al)

Mass Number

Ab

un

da

nce

Expansion adiabatic (Entropyconstant) and r ∼ et/τ .Main parameter determining thenucleosynthesis is the neutron toseed ratio

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 28 / 1

Page 29: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Supernova trajectories

Wind velocities become supersonic in the frame of the slow-movingejecta→ reverse shock formscourtesy: Almudena Arcones

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 29 / 1

Page 30: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

Galactical evolution of r- and s-process

The r-process is a primary process, while the s-process is asecondary. Hence, r-process material should have been made alreadyin the first galactical supernovae, while s-process nuclides had to waituntil sufficient seed nuclei were available. This can be seen in studyingthe time-dependence of abundances of characteristic r- and s-processnuclides.Typical examples are Ba for the s-process and Eu for the r-process. Instars the abundances of these nuclides are observed relative to theratio of iron to hydrogen. As Fe has to be produced in stars during theage of the galaxy, the ratio [Fe/H] increases with time and can be usedas an indicator for the age of the star. (The symbol [A/B] measures thelog of the ratio, normalized to the solar ratio, [A/B]=0 is the solar ratio.)

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 30 / 1

Page 31: Nuclear Astrophysics - VI: Nucleosynthesis beyond iron fileNuclear Astrophysics VI: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt & FIAS Otranto, may 30-june 3,

The Ba-Eu ratio during the galactical history

If the r-process is a primary and the s-process a secondary process,then the abundance ratio of s-process (Ba) to r-process (Eu) nuclidesand the Ba-Fe abundance ratio must have increased with time:

Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Otranto, may 30-june 3, 2011 31 / 1