NPOESS Orbit: Mean Local Time of Ascending Node vs...

14
NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time in Shadow Michael J. Kavaya NASA Langley Research Center Working Group on Space-Based Lidar Winds Wintergreen, VA June 17, 2009 Kavaya-1

Transcript of NPOESS Orbit: Mean Local Time of Ascending Node vs...

Page 1: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time in Shadow

Michael J. KavayaNASA Langley Research Center

Working Group on Space-Based Lidar WindsWintergreen, VA

June 17, 2009

Kavaya-1

Page 2: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

Motivation• Customers for wind mission are NASA, IPO/NPOESS, and DOD

• NPOESS orbit height is 824 km

• NPOESS mean local time of ascending node (MLTAN) (local time when crossing

equator from south to north) either or 1330 (C-1, C-3) (afternoon), or 1730 (C-

2, C-4) (morning) [inclination angle = 97.727 deg]

• Active remote sensors need power, hence sunlight;

hence sun-synchronous orbit

• Can Doppler lidar work with any node time?

• Typical orbit software is very expensive and complicated;

includes rigorous position vs. time

• We only need time in shadow

Kavaya-2

Page 3: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

Simplified Approach in MS Excel• Neglect earth rotation, local time, and local position• Sun always on + y axis• +z axis always points north• Begin with orbit plane normal = +y axis• SS orbit precession keeps orbit plane normal within the yz plane

• For inclination angle i, tilt orbit plane about x axis (top of orbit away from sun by i – 90 deg.

• For seasonal tilt, tilt orbit plane instead of earth, about x axis (top of orbit towards sun in summer)

• For mean local time of ascending node, tilt orbit plane about z axis (6 am = normal within yz plane)

N+z

+y

+x

Kavaya-3

Page 4: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

Earth Orbit Around Sun

polenorth at thesun the towardis tilt Positiveyear into months ofnumber

12/371m2cos5.23Tilt(m)

=

°=

m

π

Kavaya-4

Page 5: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

y = 0 y = Res =1.49597870691 x 1011 m

De = Earth Diameter =1.2756 x 107 m

Ds = Sun Diameter1.392 109 m = 109 x earth diam.

Re = De/2 = 6.378 x 106 mRs = Ds/2 = 6.96 x 108 m

ees

es RyR

RRz +−

=3

ees

es RyR

RRz −+−

=4

ees

es RyR

RRz +−−

=1

ees

es RyR

RRz −+

=2

Sunlight, Penumbra, and Shadow

1. Step through time

2. Calculate (x, 0, z) of normal orbit

3. Rotate orbit about x and z axes

4. Look for positions in penumbra and shadow

x = 0 plane

Kavaya-5

Page 6: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

0.1

= Sh

adow

, 0.5

= P

enum

bra

Time (Minutes)

12 13 14 15 16 17 18 19 20 21 22 23 24

824 km, +0 deg axis tilt (Sept 21)Orbit Period = 101.2 minutes

MLT of ascending node = 12:00, 13:00, etc.Vary MLTAN

full sun

penumbra

shadow

Kavaya-6

Page 7: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

824 km, +0 deg axis tilt (Sept 21)Orbit Period = 101.2 minutes

MLT of ascending node = 12:00, 13:00, etc.Vary MLTAN

NPOESS MLTAN = 1330 or 1730

0

5

10

15

20

25

30

35

40

12 13 14 15 16 17 18 19 20 21 22 23 0

Min

utes

MLTAN

0.00

0.20

0.40

0.60

0.80

1.00

1.20

12 13 14 15 16 17 18 19 20 21 22 23 0

Ave

Sun

light

Fac

tor

MLTAN

Minimum orbit average

sunlight factor = 0.65

1330 ~ 0.665

Kavaya-7

Page 8: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

0.1

= Sh

adow

, 0.5

= P

enum

bra

Time (Minutes)

12 13 14 15 16 17 18 19 20 21 22 23 24

824 km, +23.5 deg axis tilt (June 21)Orbit Period = 101.2 minutes

MLT of ascending node = 12:00, 13:00, etc.Vary MLTAN

full sun

penumbra

shadow

Kavaya-8

Page 9: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

824 km, +23.5 deg axis tilt (June 21)Orbit Period = 101.2 minutes

MLT of ascending node = 12:00, 13:00, etc.Vary MLTAN

NPOESS MLTAN = 1330 or 1730

0

5

10

15

20

25

30

35

40

12 13 14 15 16 17 18 19 20 21 22 23 0

Min

utes

MLTAN

0.00

0.20

0.40

0.60

0.80

1.00

1.20

12 13 14 15 16 17 18 19 20 21 22 23 0

Ave

Sun

light

Fac

tor

MLTAN

Kavaya-9

Page 10: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

0.1

= Sh

adow

, 0.5

= P

enum

bra

Time (Minutes)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

824 kmOrbit Period = 101.2 minutes

MLT of ascending node = 1330 (1:30 pm)Vary Month (21st)

Kavaya-10

Page 11: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

824 kmOrbit Period = 101.2 minutes

MLT of ascending node = 1330 (1:30 pm)Vary Month (21st)

NPOESS MLTAN = 1330 or 1730

33.4

33.5

33.6

33.7

33.8

33.9

34

34.1

34.2

34.3

1 2 3 4 5 6 7 8 9 10 11 12

Min

utes

Month N, 21st Day

0.659

0.660

0.661

0.662

0.663

0.664

0.665

0.666

0.667

0.668

1 2 3 4 5 6 7 8 9 10 11 12

Ave

Sun

light

Fac

tor

Month N, 21 st Day

Kavaya-11

Page 12: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

0.1

= Sh

adow

, 0.5

= P

enum

bra

Time (Minutes)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

824 kmOrbit Period = 101.2 minutes

MLT of ascending node = 1730 (5:30 pm)Vary Month (21st)

Kavaya-12

Page 13: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

824 kmOrbit Period = 101.2 minutes

MLT of ascending node = 1730 (5:30 pm)Vary Month (21st)

NPOESS MLTAN = 1330 or 1730

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 0

Min

utes

Month N, 21st Day

0.800

0.850

0.900

0.950

1.000

1.050

1 2 3 4 5 6 7 8 9 10 11 12 0

Ave

Sun

light

Fac

tor

Month N, 21 st Day

Minimum orbit

average

sunlight factor = 0.87

Kavaya-13

Page 14: NPOESS Orbit: Mean Local Time of Ascending Node vs ...cires1.colorado.edu/.../Papers.jun09/Kavaya2.jun09.pdf · NPOESS Orbit: Mean Local Time of Ascending Node vs. Spacecraft Time

Conclusions

• New excel tool allows quick examination of time in

shadow for different orbit parameters

• Mission trades can include very important parameter of

orbit average sunlight and electrical power

Kavaya-14