November 15 th - 18 th , 2004 FAA Fire and Cabin Safety Conference Lisbon, Portugal

21
November 15 th - 18 th , 2004 FAA Fire and Cabin Safety Conference Lisbon, Portugal Auxiliary Tank Testing and In-Flight Facility Development Michael Burns Fire Safety Research Federal Aviation Administration William J. Hughes Technical Center

description

Auxiliary Tank Testing and In-Flight Facility Development. Michael Burns Fire Safety Research Federal Aviation Administration William J. Hughes Technical Center. November 15 th - 18 th , 2004 FAA Fire and Cabin Safety Conference Lisbon, Portugal. - PowerPoint PPT Presentation

Transcript of November 15 th - 18 th , 2004 FAA Fire and Cabin Safety Conference Lisbon, Portugal

Page 1: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

November 15th - 18th, 2004 FAA Fire and Cabin Safety Conference

Lisbon, Portugal

Auxiliary Tank Testing and In-Flight Facility Development

Michael Burns Fire Safety Research

Federal Aviation AdministrationWilliam J. Hughes Technical Center

Page 2: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

2

Background• Three major accidents involving center wing tanks (CWT)

– March 2001, Thai Airways International, Boeing 737-400 – July 1996, TWA flight 800, Boeing 747-100– May 1990, Philippine Airlines, Boeing 737-300

• FAA seeks it’s flammability reduction rule since 1997– Two unsuccessful industry rulemaking advisory committee working groups

• FAA developed a demonstration fuel tank inerting system• Installed and operated on several test transport aircraft

– Uses air separation modules (ASM) and a dual / variable flow methodology• Unique methodology allowed for simple, lightweight, reliable

onboard nitrogen generation

Page 3: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

3

Center Wing Tank Inerting Research

• Recent CWT testing with NASA, Airbus and The Boeing Company– FY01- FY04 testing and validation of CWT inerting methodology– In-flight measurement of fuel tank flammability

• Excellent results but little work has been done to study the affect of auxiliary tank operations on CWT

• New research facility at FAA WJH Technical Center– Construction scheduled for winter, 2005

• Facility being designed to study fuel tank inerting and flammability – Real-time CWT operational simulation, full-scale testing, and

model validation

Page 4: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

4

Center Wing Tank Inerting Facility

Page 5: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

5

Center Wing Tank Inerting Facility – cont.

• Initial use to further study the affect auxiliary fuel transfer has on an inert CWT– Ullage oxygen concentration changes due to fuel transfer– Purge cycle effects once the auxiliary tank is empty– Auxiliary tank refueling effects

• Facility will house a full-scale CWT and auxiliary fuel tank– Simulate altitude as well as engine fuel burn– Thermocouples, pressure transducers and gas sample ports

for gas analysis to allow for testing – Measure nitrogen generating system parameters

Page 6: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

6

Facility Overview

Page 7: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

7

Facility Overview – cont.

• Approximately 26’ x 40’• Interior Communication & Signal Raceways• Pumps (3)

– Vacuum • Hi-capacity pump with closed loop cooling system• Capable of simulating a 40,000 foot altitude (approx. 2 psia)

– Fuel (P1) – Electronically Controlled, Modulating• Engine fuel burn simulator• Variable frequency drive fuel flow controller simulates taxi, take off, climb,

cruise & descent• Fuel flow meter with digital output• Capable of flowing 85 GPM maximum fuel flow.

– Fuel (P2) – Fixed• Used to refuel the CWT / aux. tank when required• Plumbed to a 10K gallon fuel vault

Page 8: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

8

Facility Overview – cont.

• Control Room – Environmentally controlled– Houses all the controls, analyzers, computer and data

acquisition equipment– 8’ x 8’, mounted on a raised concrete slab

• Safety Features– Spill Protection – Containment pit with sump

• Foundation contains curbing that is approx. 14’ x 24 x 18” • Approximately 500 cubic feet of volume to contain any accidental

spillage of fuel– Fire protection– Over pressure relief panel system

Page 9: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

9

Facility Overview – cont.

• Vacuum pump evacuates chamber

• Altitude controller– PID Controller– Modulating Valve– Pressure Transducer

Page 10: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

10

Facility Equipment 737 CWT

• Tank origin– Salvaged from an Air Canada aircraft in March 2003

• Tank Dimensions / volume– Approx 12’ x 14’ x 3’ (or 500 CuFt in volume)

• Reinforcing the CWT– Exterior bracing was applied around the tank structure and

fastened to the tank wherever possible– Columns were installed in each bay internally to offset

compression forces exerted on the tank while applying a vacuum

Page 11: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

11

Facility Equipment – cont. 737 CWT

Page 12: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

12

Facility Equipment – cont.737 CWT

• Vent configuration– Internally the tank is vented in the most forward

bay as well as the aft bay– The left & right vent stringer was modified with a

flange connection– These 2 connections will be joined together with

plumbing and routed to the facility vacuum system• Engine burn simulation – fuel feed tubing

– Facility tubing will be tied into the fuel boost pump feeds on the tank

Page 13: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

13

Facility Equipment – cont.737 CWT

Left Fuel Feed Tubing(Bay 3)

Right Vent Tubing(Bay 2)

Page 14: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

14

Facility Equipment – cont.Auxiliary Fuel Tank

• Tank origin– US Airways surplus auxiliary fuel tank

• Tank Dimensions / volume– Approx. 8’ x 4’ x 3’– Approx. 475 Gallons of fuel

• Single tank configuration – Also known as a “Master Fuel Cell”– Contains a dry bay that houses all the valving associated with the

system• Cabin Tube

– The fuel cell is pressurized during flight using cabin pressure– In facility, shop air used to simulate normal tank operation

Page 15: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

15

Facility Equipment – cont.Auxiliary Fuel Tank

Page 16: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

16

Instrumentation 737 CWT / Auxiliary Tank

• Thermocouples– All thermocouples are “T” type– 25 total installed throughout the CWT– 4 total installed throughout the Auxiliary Fuel Tank

• Gas sample tubes – (FAS, OBOAS)– All sample tubing is made up of PFA material and ¼” in

diameter– 6 total mounted throughout the CWT– 2 total mounted throughout the auxiliary fuel tank

• NEA Inerting Manifold– Single injection nozzle made of PFA tubing

Page 17: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

17

Instrumentation – cont.737 CWT / Auxiliary Fuel Tank

• CWT location of penetration fittings– NEA– Thermocouples– Oxygen / FAS Sample

Return Fitting– Hi Level Float Valves– Auxiliary Fuel Tank

Transfer / Vent Flange– Oxygen / FAS Sample

Fittings (6)

Page 18: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

18

Instrumentation – cont.737 CWT

Page 19: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

19

Instrumentation – cont.Auxiliary Fuel Tank

Page 20: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

20

Future Work

• Facility will be a key tool for continued fuel tank inerting and flammability research– Study the affect varying surface temperatures

have on flammability – Potential industry tool to validate new inerting

systems and methodologies – Use facility to validate a variety of models for

studying fuel tank inerting and flammability

Page 21: November 15 th  - 18 th ,  2004  FAA Fire and Cabin Safety Conference Lisbon, Portugal

21

The Fourth Triennial The Fourth Triennial International Aircraft Fire and Cabin Safety International Aircraft Fire and Cabin Safety Research ConferenceResearch Conference

The Fourth Triennial The Fourth Triennial International Aircraft Fire and Cabin Safety International Aircraft Fire and Cabin Safety Research ConferenceResearch Conference