Notes Part1.pdf

54
CH 3073: Numerical Methods CH 5500: Numerical Methods I Autumn 2014-15 Instructor : Kishalay Mitra Department of Chemical Engineering Indian Institute of Technology Hyderabad ([email protected] ) Tue / Thu: 11:30 AM 1 PM Room # 132 Indian Institute of Technology Hyderabad

Transcript of Notes Part1.pdf

Page 1: Notes Part1.pdf

CH 3073: Numerical Methods

CH 5500: Numerical Methods I

Autumn 2014-15

Instructor: Kishalay Mitra

Department of Chemical Engineering

Indian Institute of Technology Hyderabad

([email protected])

Tue / Thu: 11:30 AM – 1 PM

Room # 132

Indian Institute of Technology Hyderabad

Page 2: Notes Part1.pdf

Overview

Topics

Linear Algebraic Equations (5 lecs)

Nonlinear Algebraic Equations (3 lecs)

Function Approximation (6 lecs)

Ordinary Differential Equations–Initial Value Problems (ODE-IVPs)

(10 lecs)

Programming in MATLAB (10 classes)

Pre-requisites of the Course

BE / BTech in Chemical Engg / Chem Tech

Programming Skills (MATLAB)

Textbook for the Course

S. K. Gupta, Numerical Methods for Engineers, New Age Intl.

Publishers, New Delhi, 2nd Ed., 2009.

Indian Institute of Technology Hyderabad2

Page 3: Notes Part1.pdf

Examples

Topics

Linear Algebraic Equations

Nonlinear Algebraic Equations

Indian Institute of Technology Hyderabad3

Page 4: Notes Part1.pdf

Examples (contd.)

Topics

ODE - IVPs

ODE - BVPs

Indian Institute of Technology Hyderabad4

Page 5: Notes Part1.pdf

Evaluation

Indian Institute of Technology Hyderabad5

No. Type Final

Weightage

Tentative

Time

Remarks

1. Mid Semester Exam 30 End Sept. Absolute

Grading

2. End Semester Exam 30 End Nov. Absolute

Grading

3. Class Tests, Computer

Programming

15+15 Almost

each

class

Relative

Grading

4. Attendance & Class

Performance

10 85%

attendance

Total = 100

Page 6: Notes Part1.pdf

Programming Practices

Problems

Finding sum of a digit and reverse the order

In an array, store all the Fahrenheit values given Celsius values from -100C

to 100C

Sum the following series

Tabulate values of below function for integer values of k = 0 to 15

Use of subroutines (preferably)

Solution of a quadratic equation

Write program to evaluate any nth order polynomial

Fitting a straight line through number of given points

Write program to generate Fibonacci sequence

Given a sequence of numbers, sort them in ascending and descending order

Write programs to multiply two matrices taking their sizes, values of elements

as inputs

Indian Institute of Technology Hyderabad6

!12

1...!7!5!3

12753

n

xxxxxSum

nn

!/ kaeSum ka

Page 7: Notes Part1.pdf

Programming

Programming Review

EVALUATE S = 1 + 2 + 3 + ………. + n

and COMPARE WITH analytical results

S = n(n + 1)/2

GET FAMILIAR WITH C, FORTRAN,

MATLAB®

PLOT S vs. n

GET FAMILIAR WITH MATLAB®, MS

Excel

Indian Institute of Technology Hyderabad7

Page 8: Notes Part1.pdf

Chapter 1

LINEAR ALGEBRIC EQUATIONS

WHEN DO WE HAVE SOLUTIONS

GAUSS ELIMINATION

THOMAS’ ALGORITHM

LU DECOMP

GAUSS – SEIDEL, SOR, ETC.

Indian Institute of Technology Hyderabad8

Page 9: Notes Part1.pdf

Representing MENU

SET OF M EQUATIONS IN N UNKNOWNS

SIMULTANEOUS LINEAR ALGEBRAIC

EQUATIONS

a11x1 + a12 x2 + …………..+ a1N xN = b1

a21x1 + a22 x2 + …………..+ a2N xN = b2

.

.

.

.

aM1x1 + aM2 x2 + …………..+ aMN xN = bM

e.g. x1 + x2 = 4

2x1 + 3x2 = 11

PDE ODE NLE SLE

Indian Institute of Technology Hyderabad9

Page 10: Notes Part1.pdf

Cramer’s Rule

Example 1.1

X1 + X2 = 4

2X1 + 3X2 = 11

Indian Institute of Technology Hyderabad10

Unique solution exists in case det(A) is nonsingular

Additionally, if b = 0, |Aj| = 0

all xj = 0 (trivial solution)

In case A is singular

First case: Identical equations

1 equation 2 unknown – Infinite solutions

Second case: Incompatible and no solution exist

Page 11: Notes Part1.pdf

Reviewing Rank r

(AUGMENTED A ≡ Aug A)

Aug A ≡ [ A b]

One highest possible size non zero determinant

∴ r = 2

∴ r = 1

Indian Institute of Technology Hyderabad

1 1 4

2 3 11

1 10

2 3

11

Page 12: Notes Part1.pdf

Solution exists

IF and ONLY IF

RANK A = RANK (Aug A) COMPATABLE EQUATIONS

FOR M = N (FOR CHEMICAL ENGG. PROBLEMS)

IF r (A) = N UNIQUE SOLUTION

IF r (A) < N INFINITE SOLNS Assume N-r variables

Indian Institute of Technology Hyderabad12

Page 13: Notes Part1.pdf

Example

Example 1.3

X1 + X2 = 4

2 X1 + 3 X2 = 11

2 X1 + 3 X2 = 11

4 X1 + 6 X2 = 22

2 X1 + 3 X2 = 11

4 X1 + 6 X2 = 20

Indian Institute of Technology Hyderabad13

Page 14: Notes Part1.pdf

Homogeneous Case

ANxN xNx1 = bNx1

IF

Homogeneous equations

a11x1 + a12x2 = 0

a22x1 + a22x2 = 0; AND r(A) = 2 = N

Unique Solution Trivial solution

NON-TRIVIAL SOLUTIONS IF r(A) < N

Indian Institute of Technology Hyderabad14

4 2

Page 15: Notes Part1.pdf

Homogeneous Case (contd.)

NON-TRIVIAL SOLUTIONS IF r(A) < N

r(A) = 1

N – r = 2 – 1 = 1

ASSUME x1 = 5; THEN x2 = -10

x1 = 10; THEN x2 = -20

Indian Institute of Technology Hyderabad15

Page 16: Notes Part1.pdf

Review

Indian Institute of Technology Hyderabad16

𝐀 𝐱 = 𝐛 : FOCUS ON 𝐀 𝐍 × 𝐍 ONLY

SOLUTIONS ONLY IF RANK 𝐀 = 𝐑𝐀𝐍𝐊 𝐀 ⋮ 𝐛 ≡ 𝐑𝐀𝐍𝐊 𝐀𝐔𝐆 𝐀

IF RANK 𝐀 = 𝐍, UNIQUE SOLUTION

IF RANK 𝐀 < 𝐍, MANY SOLUTIONS

HOMOGENEOUS EQUATIONS (b = 0)

TRIVIAL SOLUTION x = 0, IF RANK 𝐀 = 𝐍

NONTRIVIAL SOLUTION, IF RANK 𝐀 < 𝐍

Page 17: Notes Part1.pdf

Direct Methods

Indian Institute of Technology Hyderabad17

𝐆𝐚𝐮𝐬𝐬 𝐄𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧 (𝟏𝟖𝟎𝟗)

A x = b

RANK 𝐀 = 𝐍

Cramer’s Rule: Excessive Calculations (N2 × N!)

Another route: A-1b

Equally expensive and suffers from additional problem of sensitivity

(round off errors)

0

Page 18: Notes Part1.pdf

G E Example

Indian Institute of Technology Hyderabad18

Example 1.4

0

Page 19: Notes Part1.pdf

Direct Methods

Indian Institute of Technology Hyderabad

PIVOT

19

𝐆𝐚𝐮𝐬𝐬 𝐄𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧 (𝟏𝟖𝟎𝟗)

A x = b

RANK 𝐀 = 𝐍

Cramer’s Rule: Excessive

Calculaitons

Page 20: Notes Part1.pdf

G E (contd.)

Indian Institute of Technology Hyderabad

PIVOT

20

Page 21: Notes Part1.pdf

G E (contd.)

Indian Institute of Technology Hyderabad21

Product of diagonal terms gives you the value of determinant

Page 22: Notes Part1.pdf

Computational Complexity

Indian Institute of Technology Hyderabad22

Page 23: Notes Part1.pdf

Pivoting

Indian Institute of Technology Hyderabad

NOTE

23

Which one to prefer – row or column shift? Which row / column to

shift? One that gives you largest absolute value in the pivot position

Process ends when zero cannot be removed from pivot position and

this occurs when set of equations does not have unique solutions

Page 24: Notes Part1.pdf

G E Example (Pivoting)

Indian Institute of Technology Hyderabad24

Example 1.5

Page 25: Notes Part1.pdf

Pivoting Practice

Indian Institute of Technology Hyderabad

25

Get correct result with pivoting and wrong result

without pivoting

Page 26: Notes Part1.pdf

Thomas’ Algorithm

Indian Institute of Technology Hyderabad

𝐛𝟏 𝐜𝟏 𝟎 𝟎 𝟎 𝟎 … 𝟎 𝟎𝐚𝟐 𝐛𝟐 𝐜𝟐 𝟎 𝟎 𝟎 … 𝟎 𝟎𝟎 𝐚𝟑 𝐛𝟑 𝐜𝟑 𝟎 𝟎 … 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 … 𝟎 𝟎⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮𝟎 𝟎 𝟎 𝟎 𝟎 … 𝐚𝐍−𝟏 𝐛𝐍−𝟏 𝐜𝐍−𝟏𝟎 𝟎 𝟎 𝟎 𝟎 … 𝟎 𝐚𝐍 𝐛𝐍

𝐱𝟏𝐱𝟐𝐱𝟑𝐱𝟒⋮𝐱𝐍−𝟏𝐱𝐍

=

𝐝𝟏𝐝𝟐𝐝𝟑𝐝𝟒⋮𝐝𝐍−𝟏𝐝𝐍

26

Finite Difference BVP

Stage operations

Page 27: Notes Part1.pdf

Thomas’ Algorithm (contd.)

Indian Institute of Technology Hyderabad

27

Page 28: Notes Part1.pdf

LU Decomposition (Factorization)

Indian Institute of Technology Hyderabad

( )

( )

( ) ( )

( ) ( )

( )( ),

( ) ( )

,

. .

. .

.

. . . . . . .

. . . . . . .

. . . . . . .

. . . .

1

21

1

11

1 2

31 32

1 2

11 22

N 11N N 1N1

1 N 1

11 N 1 N 1

1 0 0 0 0

a1 0 0 0

a

a a1 0 0 0

a aL

aa1

a a

28

Cases where A does not

change but b changes

Multiplying factors are multiplied with the pivot row and added

with the other rows – we take –ve of multiplying factors

Page 29: Notes Part1.pdf

LU Decomp (contd.)

Indian Institute of Technology Hyderabad

We can show

A = L U; A x = L (U x) = b

L y = b SOLVE BY FORWARD /DOWNWARD SWEEP

• Remember this b is original b, not the modified b as in case of

Gauss Elimination

U x = y THEN SOLVE BY REVERSE SWEEP

29

( )

( )

( ) ( )

( ) ( )

( )( ),

( ) ( )

,

. .

. .

.

. . . . . . .

. . . . . . .

. . . . . . .

. . . .

1

21

1

11

1 2

31 32

1 2

11 22

N 11N N 1N1

1 N 1

11 N 1 N 1

1 0 0 0 0

a1 0 0 0

a

a a1 0 0 0

a aL

aa1

a a

Page 30: Notes Part1.pdf

LU Decomp Example

Indian Institute of Technology Hyderabad30

Example 1.8

Solution: [-11 5 4]

Ly=b

Ux=y

Page 31: Notes Part1.pdf

LU Decomp Example

Indian Institute of Technology Hyderabad31

By R2 – (1/7) R1 &

R3 – (2/7) R1

35

14

15

x

x

x

932

151

217

3

2

1

15)7

2(35

15)7

1(14

15

x

x

x

2)7

2(91)

7

2(37)

7

2(2

2)7

1(11)

7

1(57)

7

1(1

217

3

2

1

7

2157

8315

x

x

x

7

59

7

190

7

5

7

340

217

3

2

1

M21 = (1/7)

M31 = (2/7)

Page 32: Notes Part1.pdf

LU Decomp Example

Indian Institute of Technology Hyderabad32

By R3 – (19/34) R2

7

83

34

19

7

2157

8315

x

x

x

7

5

34

19

7

5900

7

5

7

340

217

3

2

1

7

2157

8315

x

x

x

7

59

7

190

7

5

7

340

217

3

2

1

M21 = (1/7)

M31 = (2/7)

M32 = (19/34)

238

191100

7

5

7

340

217

U

134/197/2

017/1

001

L

Page 33: Notes Part1.pdf

LU Decomp Example

Indian Institute of Technology Hyderabad33

238

57337

8315

x

x

x

238

191100

7

5

7

340

217

3

2

1 By GE, x1 = 1, x2 = 2, x3 = 3

35

14

15

y

y

y

134/197/2

017/1

001

Ly

3

2

1

By Forward Sweep, y1 =

15, y2 = 83/7, y3 = 5733/238

238

57337

8315

x

x

x

238

191100

7

5

7

340

217

Ux

3

2

1

By Backward Sweep, x1 =

1, x2 = 2, x3 = 3

Ly=b

Ux=y

Page 34: Notes Part1.pdf

LU … Different b

Indian Institute of Technology Hyderabad34

77

35

45

y

y

y

134/197/2

017/1

001

Ly

3

2

1

By Forward Sweep, y1 =

45, y2 = 200/7, y3 =

11466/238

238

114667

20045

x

x

x

238

191100

7

5

7

340

217

Ux

3

2

1

By Backward Sweep, x1 =

4, x2 = 5, x3 = 6

Page 35: Notes Part1.pdf

LU Factorization

Indian Institute of Technology Hyderabad35

33

2322

131211

333231

2221

11

U00

UU0

UUU

LLL

0LL

00L

LU

932

151

217

A

7

5U1ULUL

7

34U5ULUL

;7

1L1UL

238

1911U9ULULUL;2U2UL

34

19L3ULUL;1U1UL

7

2L;2UL;7U7UL

1LLL

2323221321

2222221221

211121

33333323321331131311

3222321231121211

311131111111

332211

Dooli

ttle

’s M

eth

od

Row Column

multiplication:

9 equations,

12 unknowns –

3 to be assumed

238/191100

7/57/340

217

134/197/2

017/1

001

A

U – same as GE

Page 36: Notes Part1.pdf

LU Factorization (contd.)

Indian Institute of Technology Hyderabad36

33

2322

131211

333231

2221

11

U00

UU0

UUU

LLL

0LL

00L

LU

932

151

217

A

34

5U1ULUL

7

34L5ULUL

;1L1UL

238

1911L9ULULUL;

7

2U2UL

7

19L3ULUL;

7

1U1UL

2L;2UL;7L7UL

1UUU

2323221321

2222221221

211121

33333323321331131311

3222321231121211

311131111111

332211

Cro

ut’

sM

eth

od

Row Column

Multiplication:

9 equations,

12 unknowns –

3 to be assumed

100

34/510

7/27/11

238/19117/192

07/341

007

A

Page 37: Notes Part1.pdf

LU Factorization (contd.)

Indian Institute of Technology Hyderabad37

T

33

2322

131211

332313

2212

11

UL

U00

UU0

UUU

UUU

0UU

00U

LU

210

121

012

A

Cholesky’s algorithm for symmetric positive definite A:

Take only the +ve roots

Twice as fast as GE

Row Column multiplication: 9 equations, 12 unknowns – 3 to be assumed

3/200

3/22/30

02/12

3/23/20

02/32/1

002

A

Page 38: Notes Part1.pdf

LU Decomp (contd.)

Indian Institute of Technology Hyderabad

Benefit of LU Decomposition:

Solving Ax = b when only b is changing as in Finite difference

technique of ODE-BVP

FOR ONE A AND M bs:

# OF MULTIPLICATIONS/ DIVISIONS =

Substantially lower than GE being solved repetitively

WORKS IF A IS DIAGONALLY DOMINANT

|𝐚𝐢𝐢| ≥

𝐣=𝟏;𝐣≠𝐢

𝐍

|𝐚𝐢𝐣|

OTHER LU DECOMPS: CHOLESKY PROB. 1.10 &

DOOLITTLE/CROUT PROB. 1.9

38

Page 39: Notes Part1.pdf

Gauss Jordon

Indian Institute of Technology Hyderabad

A, b & I (unit diagonal matrix) are written together

ELIMINATE TERMS IN A, BOTH BELOW AND ABOVE THE

DIAGONAL to convert it into I – in turn, I is converted into A-1 & b

is converted into solution i.e. the values of x

Twice as time consuming as GE

39

Page 40: Notes Part1.pdf

GJ Example

Indian Institute of Technology Hyderabad40

Example 1.9

R2-R1, R3-2R1

R2/2

R2+R1

R3/-1

(1/2)R3+R2, (-3/2)R3+R1

Page 41: Notes Part1.pdf

Iterative Techniques

Indian Institute of Technology Hyderabad

GAUSS – JACOBI / GAUSS – SIEDEL (G S) / SOR (SUCCESSIVE OVER

RELAXATION)

11

k

NN1

k

313

k

21211k

1a

xaxaxabx

)()()()( .........

22

)k(

NN124

)k(

323

)1k(

1212)1k(

2a

xa.........axaxabx

NN

k

NNN

k

N

k

NNk

Na

xaxaxabx

)1(

11

)1(

22

)1(

11)1(.........

GUESS x1(1), x2

(1), …, xN(1)

A x = b: a11x1 + a12x2 + a13x3 + --- + a1NxN = b1

41

For G-Jacobi, k

For G-Siedel,

k+1

Page 42: Notes Part1.pdf

Iterative Techniques (contd.)

Indian Institute of Technology Hyderabad

i.e., IF A IS DIAGONALLY DOMINANT (DD), WILL CONVERGE (IF A IS NOT

DD, MAY OR MAY NOT CONVERGE) – sufficient, not necessary condition

# MULTIPLICATIONS + DIVISIONS = MN2 (M = # OF ITERATIONS)

CONVERGENCE CRITERION:

MOST COMMON:

TOL: USER SPECIFIED

42

Page 43: Notes Part1.pdf

GS Example

Indian Institute of Technology Hyderabad43

Example 1.10

Page 44: Notes Part1.pdf

Iterative Techniques (contd.)

Indian Institute of Technology Hyderabad

Solved Example: 1.11 – Read

Reference: Press, Teukolsky, Vettering & Flannery - NUMERICAL RECIPES

Assignment: 1, 2, 3, 4, 6, 8, 10

Lab Assignment: Write a general program for G-Jacobi, G-Siedel, SOR to solve 13,

15, 18 (Keep a copy of your programs – we will use them later in the course)

0 xi(k) xi,GS

(k+1) xi,SOR(k+1)

a a/2

SCHEMATICALLY

( ) ( ); , ,...., ( )

,k k 1

X X i 1 2 N ALLi i GS

( ) ( ) ( ) ( )

, , ; , ,....,k 1 k k 1 k

i SOR i i GS ix x w x x i 1 2 N

44

w > 1 over relaxation,

w < 1 under relaxation,

w = 1 same as GS;

w typically in between 1 & 2, but no rule

Purpose is to speed up the process,

hence we generally go for w > 1

Page 45: Notes Part1.pdf

SOR Example

Indian Institute of Technology Hyderabad45

Example 1.11

[1 2 1]

Page 46: Notes Part1.pdf

Comparison Iterative schemes

Indian Institute of Technology Hyderabad46

k

2

k

3

1k

3

k

1k

2

1k

2k

1

x4x

2

xx2x

2

x1x

1k

2

k

3

1k

3

1k

1k

2

1k

2k

1

x4x

2

xx2x

2

x1x

1k

3

k

GS,3

1k

3

k

3

1k

2

k

GS,2

1k

2

k

2

1k

1

k

GS,1

1k

1

k

1

k

GS,2

k

GS,3

1k

3

k

GS,1k

GS,2

1k

2k

GS,1

xx5.1xx

xx5.1xx

xx5.1xx

x4x

2

xx2x

2

x1x

GJ GS SOR

Page 47: Notes Part1.pdf

MATLAB Exercise

Indian Institute of Technology Hyderabad

Gauss Elimination

function x=gauss(a,b)

% A = [2 1 0; 1 2 1; 0 1 1]; B = [1 2 4]’; p = gauss(A,B);

% a - (n x n) matrix; b - column vector of length n

Steps:

% Step 0: get number of rows in matrix a, get length of b & send

message in case they are not same

% Step 1: form (n,n+1) augmented matrix

% Step 2: Start from row 1 and do for all rows that Pivot row

divided by pivot element

% Step 3: For other rows convert all elements below pivot into 0

% Step 4: begin back substitution

Page 48: Notes Part1.pdf

MATLAB Exercise (contd.)

Indian Institute of Technology Hyderabad

Gauss Elimination

function x=gauss(a,b)

m=size(a,1); % get number of rows in matrix a

n=length(b); % get length of b

if (m ~= n)

error('a and b do not have the same number of rows')

end

% Step 1: form (n,n+1) augmented matrix

a(:,n+1)=b;

Page 49: Notes Part1.pdf

MATLAB Exercise (contd.)

Indian Institute of Technology Hyderabad

for i=1:n

%Step 2: Start from row 1 and do for all rows

% Pivot row divided by pivot element

a(i, i:n+1) = a(i, i:n+1) / a(i, i);

%Step 3: For other rows convert all elements below pivot into 0

for j=i+1:n

a(j, i:n+1) = a(j, i:n+1) - a(j, i)*a(i, i:n+1);

end

end

Page 50: Notes Part1.pdf

MATLAB Exercise (contd.)

Indian Institute of Technology Hyderabad

%Step 4: begin back substitution

for j=n-1:-1:1

a(j,n+1) = a(j,n+1) - a(j,j+1:n)*a(j+1:n,n+1);

end

%return solution

x=a(:,n+1)

Page 51: Notes Part1.pdf

MATLAB Exercise (contd.)

Indian Institute of Technology Hyderabad

for i=1:n

a(i, i:n+1)=a(i, i:n+1)/a(i, i);

for j=i+1:n

a(j, i:n+1) = a(j, i:n+1)

- a(j, i)*a(i, i:n+1);

end

end

for j=n-1:-1:1

a(j,n+1) = a(j,n+1) –

a(j,j+1:n)*a(j+1:n,n+1);

end

a(1,1:4)=a(1, 1:4)/a(1,1);

a(2, 1:4) = a(2, 1:4)- a(2, 1)*a(1,1:4);

a(3, 1:4) = a(3, 1:4)- a(3, 1)*a(1,1:4);

i = 1

j = 2

j = 3

a(2,2:4)=a(2, 2:4)/a(2,2);

a(3, 2:4) = a(3, 2:4)- a(3, 2)*a(2,2:4);

i = 2

j = 3

a(2,4) = a(2,4) – a(2,3:3)*a(3:3,4);j = 2

j = 1 a(1,4) = a(1,4) – a(1,2:3)*a(2:3,4);

a(3,3:4)=a(3, 3:4)/a(3,3);i = 3

Page 52: Notes Part1.pdf

MATLAB Exercise (contd.)

Indian Institute of Technology Hyderabad

a(1,1:4)=a(1, 1:4)/a(1,1);

a(2, 1:4) = a(2, 1:4)- a(2, 1)*a(1,1:4);

a(3, 1:4) = a(3, 1:4)- a(3, 1)*a(1,1:4);

i = 1

j = 2

j = 3

a(2,2:4)=a(2, 2:4)/a(2,2);

a(3, 2:4) = a(3, 2:4)- a(3, 2)*a(2,2:4);

i = 2

j = 3

4110

2121

1012

4110

5.115.10

5.005.01

333.000

167.010

5.005.01

9100

167.010

5.005.01

a(3,3:4)=a(3, 3:4)/a(3,3);i = 3

Page 53: Notes Part1.pdf

MATLAB Exercise (contd.)

Indian Institute of Technology Hyderabad

a(2,4) = a(2,4) – a(2,3:3)*a(3:3,4);j = 2

j = 1 a(1,4) = a(1,4) – a(1,2:3)*a(2:3,4);

9100

167.010

5.005.01

x3 = 9

x2 + 0.67x3 = 1

x1+ 0.5x2 + 0x3 = 0.5

x3 = 9 = a(3,4)

x2 + 0.67 a(3,4) = 1

x2 = 1 - 0.67 a(3,4) = a(2,4)

x1+ 0.5 a(2,4) + 0 a(3,4) = 0.5

x1 = 0.5 - 0.5 a(2,4) - 0 a(3,4) = a(1,4)

9100

567.010

5.005.01

9100

567.010

305.01

Page 54: Notes Part1.pdf

G E Example using MATLAB

Indian Institute of Technology Hyderabad54

4110

2121

1012

4110

5.115.10

5.005.01

333.000

167.010

5.005.01

9100

167.010

5.005.01

9100

567.010

5.005.01

9100

567.010

305.01