Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart...

23
1 Notes on Dynamics by Stephen F. Felszeghy CSULA Prof. Emeritus of ME These notes are a supplement to FE Reference Handbook, 9.4 Version, for Computer- Based Testing, NCEES, June 2016, pp. 72-79. These notes were prepared for the FE/EIT Exam Review Course class meeting held on Oct. 22, 2016, 1:00 p.m. to 4 p.m.

Transcript of Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart...

Page 1: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

1

Notes on Dynamics

by

Stephen F. Felszeghy CSULA Prof. Emeritus of ME

These notes are a supplement to FE Reference Handbook, 9.4 Version, for Computer-Based Testing, NCEES, June 2016, pp. 72-79. These notes were prepared for the FE/EIT Exam Review Course class meeting held on Oct. 22, 2016, 1:00 p.m. to 4 p.m.

Page 2: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

2

Dynamics

Kinematics–dealswithmotionaloneapartfromconsiderationsofforceandmass.Kinetics–relatesunbalancedforceswithchangesinmotion.

KinematicsofParticlesRectilinearMotionofaParticle

Suppose

v = v x( ) ;apply“ChainRule”:

dvdt

= a =dvdx

dxdt

→ a =dvdxv

DeterminationofMotionofaParticleIntegratedifferentialrelations:

Motion

Kinematics

KineticsUnbalancedForces

Positioncoordinate(Rectilineardisplacement):

x = f (t)→ x = x(t)

Velocity:

v =dxdt

= ˙ x

Acceleration:

a =dvdt

=d2xdt 2 = ˙ ̇ x

dx = v dtdv = adtv dv = adx

PO+x

x

Page 3: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

3

AngularMotionofaLine

Differentialrelations:

dθ =ω dtdω =α dtω dω =α dθ

Noteanalogywithrectilinearmotion.

Twocommoncases:

1.Accelerationa=constant,orα=constant2.Acceleration

a = f (t) ,or

α = f (t) Seemotionequationsinthe9.4Handbookonpp.73‐74.

CurvilinearMotionofaParticleVectorswillbedenotedbyuprightboldfaceletters,e.g.,r.Vectorswillbedenotedbyunderlinedlettersinhandwriting,e.g.,r.Scalarcomponentofvectorrwillbedenotedbyitalicr.

ReferenceAxis

Rigidbodymovinginplane

θ

Angularpositioncoordinate(Angulardisplacement):

θ = f (t)

Angularvelocity:

ω =dθdt

= ˙ θ

Angularacceleration:

α =dωdt

=d2θdt 2 = ˙ ̇ θ

Page 4: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

4

RectangularComponentsApplication:Seeprojectilemotioninthe9.4Handbookonp.74.MotionRelativetoTranslatingReferenceAxes

v(tangenttopath)patpath)

a

r

P

y

xO

Path

Positionvector:

r = r(t)(Vectorfunction)

Velocity:

v =drdt

= ˙ r

Acceleration:

a =dvdt

=d2rdt 2 = ˙ ̇ r

y

z

x

j

ki

O

Positionvector:

r = x i + y j+ zkVelocity:

v = ˙ x i + ˙ y j+ ˙ z k Acceleration:

a = ˙ ̇ x i + ˙ ̇ y j+ ˙ ̇ z k

Wewrite:

vx = ˙ x , etc.ax = ˙ ̇ x , etc.

y

O

B

A

rA

rA /B

x

y’

x’

rB

“Translating”meansx’–y’axesmovebutremainparalleltox–yaxes.

rA = rB + rA /B

˙ r A = ˙ r B + ˙ r A /B

vA = vB + vA /B

aA = aB + aA /B

Page 5: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

5

TangentialandNormalComponents

v =drdt

=dsdte t = v e t

a =dvdt

=d2rdt 2

=d2sdt 2e t +

v 2

ρen =

dvdte t +

v 2

ρen

= ate t + anen = a t + an RadialandTransverseComponents

a = ˙ v = ˙ ̇ r = ˙ ̇ r − r ˙ θ 2( )er + r ˙ ̇ θ + 2˙ r ˙ θ ( )eθ

vr = ˙ r

vθ = r ˙ θ

ar = ˙ ̇ r − r ˙ θ 2

aθ = r ˙ ̇ θ + 2˙ r ˙ θ

en

r

P

y

xO

Path

s

e t

C

Centerofcurvature

CP = ρ = radius of curvaturee t = unit vector tangent to pathen = unit vector normal to path pointing to Cs = directed distance along path

PolarcoordinatesofP:

r, θ( )

er = unit vector in r direction

eθ = unit vector perpendicular to r in direction of increasing θ

r = rer

v = ˙ r = ˙ r er + r ˙ θ eθ

y

Ox

er

θ Path

r = rerP

Page 6: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

6

KineticsofParticles:Newton’sSecondLaw(Equationofmotion)where

F = resultant force∑m = mass of particlea = absolute acceleration, measured in a newtonian frame of reference (inertial system)

GraphicalRepresentationofNewton’s2ndLawUnitsQuantitySystem

Length Time Mass Force

SI m s kg

N = kg ⋅ ms2

USCS ft s

slug = lb ⋅ s2

ft lb

v = r ˙ θ eθa = −r ˙ θ 2er + r ˙ ̇ θ eθ

F = ma∑

F2

F1€

F3

ma

P P

Free‐bodydiagram(FBD)

Kineticdiagram(KD)(Mass‐accelerationdiagram)

Ifpathisacircle,thenr=constant,

˙ r = ˙ ̇ r = 0,

Page 7: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

7

Ineithersystem,W=mg,whereW=weightg=accelerationduetogravityAtsurfaceofearth:(SI)g=9.807m/s2(USCS)g=32.174ft/s2AVOID:lbf,lbmEquationsofMotion:RectangularComponents

Fx∑ = max

Fy∑ = may

EquationsofMotion:TangentialandNormalComponents

y y

O Ox x

Fy∑

Fx∑ P P€

ma y

ma x

FBD KD

Ft∑ = mat

Fn∑ = man

FBD KD

y y

x xO O

Fn∑

Ft∑

P P€

man

ma t

Path

Page 8: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

8

EquationsofMotion:RadialandTransverseComponentsKineticsofParticles:EnergyMethodsAboveresultistheprincipleofworkandenergy.Units:(SI)N⋅m=J;(USCS)ft⋅lb

y

O Ox x

r r

θ

θ

Path

y

Fθ∑

Fr∑

P P€

maθ

ma r

Fr∑ = mar

Fθ∑ = maθ

FBD

KD

y

x

Position2

Position1

r2

r

r1

O

P

F

sPath

TheworkdonebyFontheparticleduringafinitemovementoftheparticlealongacurvedpathfromposition1toposition2is

U1→2 :

U1→2 = F ⋅ drr1

r2∫ (Line integral)

Itcanbeshown:

U1→2 = Fts1

s2∫ ds

=12

mv22 −

12

mv12

Let T =12

mv 2 = kinetic energy of particle

Then, U1→2 = T2 −T1

= ΔT or T2 = T1 + U1→2

Position2

Position1

v2

v1€

Ft

Fn

y

xO

P

s

Page 9: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

9

WorkDoneonParticlebyGravitationalForce

Note

U1→2isindependentofpathfrom1to2.Forthisreason

W iscalledaconservativeforce.

WorkDoneonParticlebyaLinearly‐ElasticSpringForce

Note

U1→2isindependentofpathfrom1to2.Forthisreason

Fsiscalledaconservativeforce.

U1→2 = − W dyh1

h2∫ = − Wh2 −Wh1( )

Let Vg = Wy = mgy = gravitational potential energy of particle

Then, U1→2 = − Vg( )2− Vg( )1[ ]

= −ΔVg

Letk=springconstantx=springelongation

Fs = k x = spring force Then,

U1→2 = − Fsx1

x2∫ dx = − kxdxx1

x2∫

= −12kx2

2 −12kx1

2

Let Ve =12

kx 2 = elastic potential energy

of particle

Then, U1→2 = − Ve( )2 − Ve( )1[ ] = −ΔVe

2

P

1

x2

x1

Fs = k x

Undeformedlengthofspring

Path

1

2

h1

h2

P

y

xO

F =W

g

Page 10: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

10

SummaryThework‐energyequationcannowbewrittenas:

U1→2 = ΔT + ΔVg + ΔVe where

U1→2istheworkdoneontheparticlebyforcesotherthangravitationalandspringforces.If

U1→2 aboveiszero,then:

T2 + Vg( )2 + Ve( )2 = T1 + Vg( )1 + Ve( )1Thisisthelawofconservationoftotalmechanicalenergy.

PowerandEfficiency

Poweristhetimerateofdoingworkbyaforceonaparticle.

Power = F ⋅ v Units:

SI( ) N ⋅m s = J s = W; USCS( ) hp = 550 ft ⋅ lbs

η =power outputpower input

= mechanical efficiency

KineticsofParticles:MomentumMethods

Defineangularmomentum

HO ofparticleaboutO:

HO = r ×mv

y

x

v

t1

t2

O

F

P

Path

r

RecallNewton’s2ndlaw:

F = ma =ddt

mv( )

where

F = resultant force

mv = linear momentum of particle

Page 11: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

11

Then,

˙ H O = r ×ma = r ×F = MO

or

MO = ˙ H O

where MO = sum of the moments about O of all forces acting on particle

EquationsofImpulseandMomentum

Whatisthecumulativeeffectofintegrating

F and

MO withrespecttotimeoveranintervalfrom

t1 to

t2?

Fdtt1

t2∫ = d mv( ) = mv2mv1

mv 2∫ −mv1

or

mv1 + Fdtt1

t2∫ = mv2

Graphicalinterpretation:

or

mvx( )1 + Fxt1

t2∫ dt = mvx( )2

mvy( )1 + Fyt1

t2∫ dt = mvy( )2

Units:

SI( ) kg ⋅ ms

= N ⋅ s; USCS( ) lb ⋅ s

Recall

MO =dHO

dt

MOt1

t2∫ dt = dHO = HO( )2HO( )1

HO( )2∫ − HO( )1

y

xO €

mv1

Fdtt1

t2∫

mv2

Initiallinear

momentum

Linearimpulse

Finallinear

momentum

Page 12: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

12

or

HO( )1 + MOt1

t2∫ dt = HO( )2

Units:

SI( ) kg ⋅ m2

s= N ⋅m ⋅ s; USCS( ) lb ⋅ ft ⋅ s

ExtensiontoSystemofnParticles

Let

mv∑ = mii=1

n

∑ vi

mv1∑ + Fdtt1

t2∫∑ = mv2∑

Note:Linearimpulsesfrominternalforcesofactionandreactioncancel.Ifnoexternalforcesactfromtime

t1to

t2,then

mv1 = mv2∑∑

andthetotallinearmomentumoftheparticlesisconserved.

Let

HO∑ = rii=1

n

∑ ×mivi

HO( )1∑ + MO dtt1

t2∫∑ = HO( )2∑

Sumofallinitiallinear

momenta

Sumofallfinallinear

momenta

Sumofalllinear

impulsesfromexternal

forces

Sumofallinitialangularmomenta

Sumofallfinal

angularmomenta

Sumofallangularimpulses

fromexternalforces

Initialangular

momentum

Angularimpulse

Finalangular

momentum

Page 13: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

13

Note:Angularimpulsesfrominternalforcesofactionandreactioncancel.Ifnoexternalforcesactfromtime

t1to

t2,then

HO( )1 = HO( )2∑∑

andthetotalangularmomentumoftheparticlesisconserved.Graphicalinterpretation:

DirectCentralImpactBeforeImpactAfter

Totallinearmomentumisconservedduringimpact:

m1v1 + m2v2 = m1 ′ v 1 + m2 ′ v 2

O O Ox x x

y y y

m1v1( )1

m2v2( )1

m3v3( )1

m1v1( )2

m2v2( )2

m3v3( )2

Fdtt1

t2∫∑

MO dtt1

t2∫∑

m1

m1

m1

m2

m2

m2

v1

v2

′ v 1

′ v 2

′ v 1 < ′ v 2

′ v 1 < ′ v 2

v1 > v2

u

Page 14: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

14

Coefficient of restitution : e =velocity of separationvelocity of approach

=′ v 2 − ′ v 1

v1 − v2

Iftotalkineticenergyisconserved,impactissaidtobeperfectlyelasticand

e =1.Ifparticlessticktogetherafterimpact,

′ v 1 = ′ v 2,impactissaidtobeperfectlyplastic,and

e = 0.Forallotherimpactcases,

0 ≤ e ≤1.Aspecialcaseoccurswhen

m1 = m2,collisioniselastic,

v1 > 0 ,and

v2 = 0.Then,

′ v 1 = 0 and

′ v 2 = v1.KinematicsofRigidBodies

Typesofplanemotion:Rectilineartranslation

CurvilineartranslationFixed‐axisrotation

A1

B1

A2

B2

A1

B1

A2

B2

A1

A2

θ

Page 15: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

15

GeneralplanemotionCombinationoftranslationandrotationTranslation

Recallanalysisof“MotionRelativetoTranslatingReferenceAxes”:

rA = rB + rA B

NowAandBareanytwoparticlesinthetranslatingrigidbody.Therefore,

rA B = constant vector ,and

vA = vBaA = aB

RotationAboutaFixedAxis

Recallanalysisof“AngularMotionofaLine”:

Then,thevelocityofparticlePisv = ω × r and the acceleration is a = α × r + ω × (ω × r ) = α × r - ω2r

A1

B1€

A2

B2

P

r

y

x

Fixedaxis€

θ €

ω =dθdt

= ˙ θ

α =dωdt

=d2θdt 2 = ˙ ̇ θ

Defineangularvelocityvectorω and angular acceleration vector α as follows: ω = ωk α = αk

Page 16: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

16

Note:Inr­θcoordinates,

vr = 0

vθ =ωr

ar = −ω 2r

aθ =α r Int­naxes,

v =ωr

an =ω 2r

at =α r

General Plane Motion – Absolute and Relative Velocity and Acceleration

Graphicalinterpretation:

PlaneMotionTranslationwith

vB RotationaboutBwithω PlaneMotionTranslationwith

aB RotationaboutBwithω andα

Axesx–ytranslatewiththeiroriginattachedtoparticleB.rA = rB + rrel vA = vB + ω × rrel

aA = aB + α × rrel + ω × (ω × rrel )= aB + α × rrel − ω2rrel

Y

X€

rA

O

y

xB

A

rB €

rrel

α ω

ω × rrel

ω × rrel

vA

vA

vB

vB €

vB

vB

A A A

B B B

aA

aB

aB €

aB

aA

aB

α × rrel

α × rrel−ω2rrel

B B B

A A A

Page 17: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

17

InstantaneousCenterofRotationinPlaneMotion

Suppose

vB = 0 inthepreviousanalysis.Then,

vA=ω ×rrel.

ThisresultimpliesthebodyisrotatingforaninstantaboutpointB.Suchapointiscalledaninstantaneouscenterofrotation(I.C.R.).Suchapointcanbedetermined,asfollows,ifthevelocitiesoftwodifferentparticlesinabodyareknown.

Note:ThelocationoftheI.C.R.changeswithtimeingeneral.Hence,

a ICR ≠ 0 ingeneral!

PlaneMotionofaParticleRelativetoaRotatingFrame

Y

XO

x

y

B

A

rA

rB€

rrel

ω α Axesx–yarebody‐fixedaxes,whichhaveangularvelocityω andangularaccelerationα .ParticleAmovesrelativetothebody‐fixedaxesx–y.TherelativepositionvectorofAreferencedtothex–yaxesis

rrel = xi + yj

A€

vA

vB BI.C.R €

vA

vB

A

B I.C.R€

vA A

vB B

I.C.R

Page 18: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

18

TherelativevelocityofAwithrespecttothex–yaxesis:

vrel = ˙ x i + ˙ y jTherelativeaccelerationofAwithrespecttothex–yaxesis:

a rel = ˙ ̇ x i + ˙ ̇ y j

TheabsolutepositionvectorofAintheX–Yinertialaxesisgivenby:

rA = rB + rrel

TheabsolutevelocityofAintheX–Yinertialaxesisgivenby:

vA = vB + ω × rrel + vrelTheabsoluteaccelerationofAintheX–Yinertialaxesisgivenby:

aA = aB + α × rrel + ω × (ω × rrel ) + 2ω × vrel + arelTheterm2ω × vrel is known as Coriolis acceleration.

KineticsofRigidBodies:ForcesandAccelerationsEquationsofMotionforBodyinPlaneMotionFBDKD

F = ma c∑

Mc∑ = Icα or

M p∑ = Icα + ρ pc ×ma c

y y

x xO O

c c

p p€

F1

F2

F3

ma c

ρpcIcα

Page 19: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

19

where:m=totalmassc=centerofmassIc=massmomentofinertiaaboutaxisthroughcparalleltoz­axisp=anymomentcenterinx–yplane

Incomponentform:

Fx∑ = macx

Fy∑ = macy

Mc∑ = Icα NoncentroidalRotationFBDKD

Mq∑ = Icα + ρqc ×ma ct

= Iqα where

Iq =massmomentofinertiaaboutaxisthroughqparalleltoz­axis.LawsofFriction

N F

P

Wg

BlockisinitiallyatrestwhenforcePisappliedanditsmagnitudeisprogressivelyincreasedfromzero.Aslongas

P = F < µsN ,theblockwillnotslide.

µs = coefficientofstaticfriction.

c c

F1

Q

F2

Icα

ρqc

(bearingforce)

Centerof

rotation

y

xO

y

xO

q q€

ma ct

ma cn

Page 20: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

20

When

P = F = µsN ,theblockstartstoslide,andFbecomes:

F = µk N where

µk = coefficientofkineticfriction,

µk < µs .KineticsofRigidBodies:EnergyMethods

Forabodyinplanemotion,theworkdoneonthebodybyallexternalforces

Fiis

U1→2 = Firi( )1

ri( )2∫∑ ⋅ dri

whenthebodyisdisplacedfromposition1toposition2.Forabodyinplanemotion,thekineticenergyis

T =12mvc

2 +12Icω

2

Forabodyinplanemotion,theworkdoneonthebodybyacoupleMis

U1→2 = Mdθθ1

θ 2∫

whenthebodyisdisplacedfromposition1toposition2.

Ingeneral,

U1→2 =12m vc( )2

2+12Icω2

2 −12m vc( )1

2+12Icω1

2

= T2 −T1= ΔT

or

T2 = T1 +U1→2 IfagravitationalforceWactsonthebody,and/oralinearly‐elasticspringforce,thenthework‐energyequationcanbewrittenas:

U1→2 = ΔT + ΔVg + ΔVe

where

U1→2nowexcludesgravitationalandspringforces.If

U1→2 aboveiszero,totalmechanicalenergyisconserved.

Page 21: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

21

NoncentroidalRotation

T =12Iqω

2 whereqisthecenterofrotation.

PowerdevelopedbyacoupleM

Power = Mω

KineticsofRigidBodies:MomentumMethods

Forabodyinplanemotion,theequationsofimpulseandmomentumare;

m vc( )1 + Fit1

t2∫∑ dt = m vc( )2

Icω1 + Mct1

t2∫∑ dt = Icω 2

Graphicalinterpretation

If

Fit1

t2∫∑ dt = 0 ,then

m vc( )1 = m vc( )2 andwesaylinearmomentumisconserved.If

M pt1

t2∫∑ dt = 0 aboutsomepointp,then

Icω1 + ρ pc ×m vc( )1 = Icω 2 + ρ pc ×m vc( )2

andwesaytotalangularmomentumaboutpointpisconserved.

c c c€

m vc( )1

m vc( )2

F1dtt1

t2∫

F2dtt1

t2∫

F3dtt1

t2∫

Icω 2

Icω1

Initiallinearandangularmomenta

Sumofalllinearandangularimpulses(aboutc)fromexternalforces

Finallinearandangularmomenta

Page 22: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

22

Vibrations

Whenamassmovesbackandforthaboutanequilibriumposition,themotionisdescribedasvibration.Asimpleexampleofvibrationisthemotionofamassmconnectedtoamasslessspringwithspringconstantk.

MassmdisplacedfromitsequilibriumpositionFBDKD

Fx∑ = m ˙ ̇ x

m ˙ ̇ x + k x = 0 (1)(Equationofmotion)

Let

ωn2 =

km,thenEq.(1)becomes:

˙ ̇ x +ωn2x = 0(2)

g k

m

δst

x

Unstretchedpositionofspring

Staticequilibriumpositionofmass

Note:

kδst = mg

m ˙ ̇ x

mg

k x + δst( )

−k x + δst( ) + mg = m ˙ ̇ x

Page 23: Notes on Dynamics - Cal State LA | We Are LA...Kinetics Kinematics – deals with motion alone apart from considerations of force and mass. Kinetics – relates unbalanced forces with

23

ThesolutionofEq.(2)is

x = x 0( )cos ωnt( ) +˙ x 0( )ωn

sin ωnt( )

where

x 0( )and

˙ x 0( )areinitialconditions.

Themotioniscalledsimpleharmonicmotion,and

ωn =km

=gδst

isknown

asthenatural(circular)frequency(rad/s).Sincenoforcingfunctionappearsintheequationofmotion(1),thevibrationaboveiscalledfreevibration.Foranexampleoftorsionalvibration,seep.78inthe9.4Handbook.

x

O t

τ n =2πωn

,calledperiod

scycle