Notes of a CUHK Medic: MEDF 1012 Lecture 1

15
Notes of a CUHK Medic: MEDF 1012 LECTURE 1 Proteins: The Biomolecules of Life Christopher Chan

description

The First Lecture of 2013 Semester 2. All graphics were taken from the course powerpoint.

Transcript of Notes of a CUHK Medic: MEDF 1012 Lecture 1

Page 1: Notes of a CUHK Medic: MEDF 1012 Lecture 1

 

Notes  of  a  CUHK  Medic:  MEDF  1012  LECTURE  1  Proteins:  The  Biomolecules  of  Life  

Christopher  Chan  

 

Page 2: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

LECTURE  1:  Proteins  –  The  Biocatalysts  of  Life    

An  Introduction  to  Proteins  The  Role  of  Proteins  in  Life  • Proteins  are  a  class  of  highly  vital  molecules  for  organic  life  

o They  carry  out  and/or  assist  in  causing  chemical  reactions  that  are  involved  in  processes  of  life,  such  as  respiration  

o Haemoglobin  is  a  protein  that  is  extremely  essential  to  the  process  of  respiration,  as  it  is  the  main  oxygen-­‐carrying  component  in  erythrocytes  

The  Structure  of  Proteins  –  An  Overview  • Proteins  are  chains  of  amino  acids  folded  and  collated  in  stable  conformations  (physical  transformations)  

o The  chains  of  amino  acids  in  a  protein  are  usually  arranged  in  different  levels  of  order  • In  increasing  order  of  size,  they  are:  

o Primary  Structure  § A  basic  amino  acid  sequence  of  the  protein,  always  counted  from  the  N-­‐terminal  to  the  C-­‐

terminal  o Secondary  Structure  

§ Regular,  larger  structures  consisting  of  multiple  primary  structures  held  together  by  hydrogen  bonds  

§ May  form  Alpha-­‐helices  or  Beta-­‐sheets/strands    § Proteins  may  contain  one  type  of  Secondary  Structure  more  than  another  

o Tertiary  Structure  § Groups  of  secondary  structures  (Alpha  or  Beta)  held  together  by  side-­‐chain  interactions  

such  as:  • Hydrophobic  interactions  • Hydrogen  bonds  • Disulphate  bonds  

o Quaternary  Structure  § Bigger  groups  containing  one  or  more  Tertiary  Structures  and  additional  subunits  and  

peptide  sequences  –  the  final  form  of  a  folded  protein  § Allows  for  regulatory  sites  that  modulate  protein  function  by  allosteric  factors  

• E.g.  Oxygen  binding  causes  quaternary  structure  of  haemoglobin  to  change  • This  because  ionic  interaction  between  secondary  structures  are  broken  • Quaternary  structure  allows  oxygen  binding  to  be  regulated  

• The  surface  of  a  protein  is  also  usually  covered  by  polar  amino  acid  molecules;  variations  in  surface  amino  acids  can  sometimes  have  disastrous  effects  

The  Sickle  Cell  Mutation  • The  mutation  of  codon  6  in  the  β-­‐globin  chain  of  a  haemoglobin  molecule  changes  glutamic  acid  into  valine  (hydrophobic  amino  acid)  

o This  substitution  of  a  hydrophobic  amino  acid  molecule  in  the  β2 chain  creates  a  knob  on  the  surface  of  deoxygenated  haemoglobin  

o This  fits  into  a  hydrophobic  binding  site  in  a  β1 chain of  a  different  molecule  o Once  these  different  molecules  interact,  the  haemoglobin  molecules  will  come  together,  forcing  the  

erythrocyte  into  a  sickle  cell  shape  Fitting  Form  to  Function  • The  shape  of  a  protein  is  largely  determined  by  its  function  

o Haemoglobin  has  its  distinctive  shape  with  pockets  to  enable  it  to  carry  Oxygen  more  effectively  o Enzymes  in  the  digestive  tract  have  their  shapes  to  aid  in  catalyzing  decomposition  reactions  of  the  

digestive  system  

Page 3: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

The  Building  Blocks  of  Proteins  –  Amino  Acids  • Amino  acids  are  the  monomer  units  from  which  peptide  sequences  (and  consequently,  proteins)  are  formed  

o Each  protein  contains  different  Amino  Acids  • In  the  human  body,  there  are  up  to  20  different  amino  acids  that  form  various  proteins  • Each  Amino  Acid  Molecule  consists  of:  

o A  chiral  centre  Carbon  o A  basic  Amino  group  o An  acidic  Carboxyl  group  o A  Hydrogen  atom  o An  R  group  side  chain  that  varies  depending  on  the  Amino  Acid  

• Because  of  the  chiral  centre,  optical  isomers  exist;  • In  the  human  body,  only  the  L  isomer  exists  Typical  Structure  of  an  Amino  Acid:                          How  Different  Side  Chains  form  Different  Amino  Acids:  

Page 4: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

Polarity  of  Amino  Acids:  

Page 5: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

Identifying  Proteins  and  their  Constituents:  The  Absorbance  Spectra  • All  chemicals  take  in  certain  wavelengths  of  UV  light  • The  amount  of  light  absorbed  by  these  chemicals  is  then  plotted  against  increasing  wavelength  of  UV  light  

o This  is  known  as  the  chemicals’  Absorbance  Spectra  • By  contrasting  the  spectra  of  an  unknown  protein  versus  spectra  of  different  amino  acids,  its  composition  can  be  identified  through  the  identification  of  its  individual  constituents,  as  shown  below:    

                                         • It  can  be  clearly  seen  from  the  above  graph,  that  tryptophan  and  tyrosine  are  both  constituent  amino  acids  of  the  protein  albumin,  because  of  the  similar  peak  at  around  wavelength  270  nm  • Constituents  and  other  proteins  can  be  identified  in  a  similar  manner  

Page 6: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

The  Ionization  of  Amino  Acids  The  Physiological  Significance  of  Amino  Acid  Molecules  • The  ionization  states  of  Amino  Acids  are  significant  because  different  charges  of  amino  acids  will  affect  the  charges  of  the  proteins  they  form  

o This  may  cause  the  function  of  the  protein  to  be  altered  in  varying  ways  • At  different  pH  levels,  the  charge  bearing  states  of  enzymes  and  substrates  will  vary,  affecting  the  effectiveness  of  the  enzymes  

o (Hence,  most  enzymes  will  have  an  optimal  working  pH)  • At  different  levels  of  pH,  there  will  be  different  levels  of  charge  in  the  amino  acids  

o At  low  pH  levels  (0-­‐4),  both  the  amine  group  and  the  carboxyl  group  are  protonated  (in  possession  of  a  H+  ion),  leading  to  a  net  positive  charge  

o At  medium  pH  levels    (4-­‐8),  the  carboxyl  group  loses  its  proton  while  the  amine  group  still  holds  theirs,  putting  the  amino  acid  into  an  amphoteric  state,  in  a  zwitterionic  form,  with  no  net  charge  

§ However,  the  amino  acid  is  still  technically  a  charged  molecule  o At  high  pH  levels  (8-­‐14),  neither  the  amine  group  nor  the  carboxyl  group  have  protons,  leading  to  a  

net  negative  charge  • The  presence  of  charge  at  all  pH  levels  makes  it  necessary  for  proteins  and  amino  acids  to  travel  through  transporters  across  membranes  

                                                 

Page 7: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

The  Ionization  of  Amino  Acids  The  Significance  of  the  pKa  and  pH  Balance  • The  status  of  ionization  of  an  amino  acid  can  generally  be  determined  from  the  relative  magnitudes  of  the  pH  and  pKa  of  the  amino  acid  molecule  

o pH  <  pKa  =  amino  acid  is  protonated  o pH  >  pKa  =  amino  acid  is  deprotonated  

• Titration  curves  can  be  used  to  find  out  the  pKa  and  pH  balance,  and  hence,  find  out  the  charge/ionization  status  of  an  amino  acid,  as  shown  below  

                                         • From  the  above,  it  should  be  noted  that  

o The  first  point  (from  left  to  right)  on  each  graph  shows  the  point  of  ionization  of  the  carboxyl  group,  with  an  overall  positive  charge  

o The  mid  point  (isoionic  point)  on  each  graph  shows  the  point  where  there  is  no  net  charge  o The  last  point  on  the  graph  shows  the  point  from  which  there  will  be  a  net  negative  charge  

• At  different  points  of  ionization  (different  points  of  the  pH  –  pKa  balance),  each  amino  acid  will  have  a  different  dominant  form,  as  shown  below:  

   

Page 8: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

The  Bonding  and  Structure  of  Amino  Acids  and  Proteins  –  An  In-­‐Depth  Analysis  Formation  of  Peptide  Bonds  • The  diagram  below  shows  the  process  by  which  Peptide  Bonds  are  formed:  

Page 9: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

 

The  Planarity  of  Peptide  Bonds  • The  partial  (40%)  double  bond  character  found  in  peptide  bonds  causes  resonance,  which  in  turn  causes  the  planarity  of  the  peptide  bonds  

                             • As  can  be  seen  from  the  diagram  above,  except  for  the  R  group  and  Hydrogen  atom  attached  to  the  chiral  carbon,  all  components  are  in  the  same  plane  

Page 10: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

Further  Bonding  and  Structure  The  Flexibility  of  the  Polypeptide  Chain  

 

• As  seen  from  the  diagram  above,  the  bonds  stemming  from  the  carbon  that  is  NOT  part  of  the  peptide  bond  are  able  to  rotate  

o This  gives  the  chain  a  certain  degree  of  flexibility  to  twist  into  various  shapes,  as  illustrated  below                                                      • However,  over-­‐rotation  may  induce  forces  of  extreme  attraction  or  repulsion  

o Hence,  there  are  conformations  that  are  more  favourable,  as  illustrated  by  the  following  Ramachandran  Diagram  

Page 11: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

Conformations  and  Higher  Order  Structures  The  Ramachandran  Diagram  • This  diagram  is  a  visual  representation  to  illustrate  the  likelihoods  of  different  types  of  conformation  of  amino  acid  chains  and  secondary  structures  

o Conformations  with  a  high  likelihood  of  occurring  exist  within  zones  of  red  o Conformations  with  relatively  lower  likelihood  of  occurring  exist  within  zones  of  green  o Colourless  patches  indicate  likelihoods  close  to  or  equivalent  to  zero  

                                             • As  illustrated,  the  types  of  secondary  structures  in  order  of  increasing  likelihood  are:  

o Beta  (β)  strands  o Right-­‐handed  Alpha  (α)  helix  o Left-­‐handed  Alpha  (α)  helix  (very  rare)  

• Conformations  where  both  bond  rotations  have  a  magnitude  of  +90°  are  disfavored  • Secondary  structures  are  formed  by  conformed,  polypeptide  sequences  of  sufficient  lengths  Secondary  Structures  Beta  Sheets  • Beta  (β)  sheets  are  formed  when  two  Beta  (β)  strands  are  aligned  in  either  manner  shown  below    

Page 12: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

Secondary  Structures  (cont’d)  Alpha  Helices  • Alpha  helices  are  formed  by  highly  convoluted  polypeptide  sequences  • The  CO  group  of  monomer  unit  n  bonds  with  the  NH  group  of  monomer  unit  n+4  in  an  Alpha  (α)  helix,  as  shown  below  

           

                 

             • Refer  to  Page  1  for  information  on  Tertiary  and  Quaternary  Structures  

Page 13: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

Special  Proteins  and  Their  Significance  in  the  Human  Body  • Proteins  have  the  ability  to  carry  small  molecules  including  organic  and  inorganic  compounds,  or  simple  molecules  like  oxygen  

o This  is  particularly  significant  to  the  human  body  as  its  only  form  of  oxygen  transport  relies  on  the  protein  haemoglobin  

Carbohydrate-­‐carrying  Proteins  • These  two  types  of  proteins  bond  to  carbohydrates  in  different  ways,  creating  different  characteristics  •   Only  certain  types  of  amino  acids  can  bond  with  carbohydrates,  as  illustrated  below                                                          Glycoproteins  • These  proteins  hold  oligosaccharide  chains  that  are  attached  to  the  polypeptide  side  chains  as  branches  • They  are  integral  membrane  proteins  that  play  a  role  in  intercellular  interactions  Proteoglycans  • These  proteins  are  heavily  glycosylated,  containing  several  straight  glycosaminoglycan  chains  that  are  directly  covalently  attached  to  a  core  protein  • These  proteins  occur  mainly  in  connective  tissue  like  ligaments  or  cartilage  

Page 14: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

Special  Proteins  and  Their  Significance  in  the  Human  Body  (cont’d)  Protein  Family  of  Myoglobin  and  Haemoglobin  • They  possess  similar  (but  not  identical)  structure;  because  of  this,  they  also  share  similar  (but  not  identical)  functions  

o Myoglobin  stores  Oxygen  in  the  skeletal  and  cardiac  muscles  as  a  storage  protein  o Haemoglobin  transports  Oxygen  around  the  human  body  

• Myoglobin  binds  and  releases  oxygen  at  relatively  constant  rates  • Haemoglobin  is  slow  to  bind  initially,  but  causes  a  rapid  increase  in  rate  once  the  first  subunit  is  bound  to  oxygen  

o This  is  because  ionic  interactions  between  secondary  structures  α  and  β  are  broken  by  the  first  oxygen  molecule,  making  it  possible  for  the  haemoglobin  molecule  to  open  up  more,  opening  up  more  spaces  for  other  oxygen  molecules  

o This  initial  “barrier”  allows  for  regulation  of  oxygen  affinity  o Affinity  is  lowered  in  CO2  rich  environments,  releasing  oxygen  to  surrounding  tissue  (Bohr  effect)  

2,3-­‐Biphosphoglycerate  (BPG)  Affinity  • BPG  is  a  chemical  that  prompts  the  release  of  oxygen  from  haemoglobin  by  decreasing  oxygen  affinity  • The  affinity  of  haemoglobin  to  BG  is  dependent  on  spatial  distribution  and  physical  changes  in  form  

o In  oxygen-­‐rich  environments,  when  the  haemoglobin  is  forced  open  by  oxygen,  the  affinity  for  BPG  is  increased  

§ This  eventually  prompts  release  of  oxygen  into  organs  that  require  it  o The  relationship  to  oxygen  concentration  and  BPG  affinity  is  proven  below:  

                                         • Furthermore,  it  should  be  noted  that  Fetal  Haemoglobin  has  lower  affinity  for  BPG  in  comparison  to  that  of  Maternal  Haemoglobin  

o This  is  because  during  pregnancy,  the  red  blood  cells  in  the  maternal  bloodstream  are  needed  to  release  oxygen  to  the  fetal  red  blood  cells  through  diffusion  

o This  can  only  be  done  when  Maternal  red  blood  cells  have  lower  affinity  for  Oxygen  

Page 15: Notes of a CUHK Medic: MEDF 1012 Lecture 1

Creative  Commons  2.0  –  Author:  Christopher  Chan  

Prion  Proteins  Invulnerable  Protinaceous  Infectious  Particles  • Prion  proteins  are  pathogens  that  cannot  be  destroyed  • They  are  known  to  cause  neurodegenerative  diseases  that  are  almost  always  lethal,  and  do  not  have  cures  • They  are  membrane-­‐anchored  glycoproteins  • They  are  already  present  during  embryogenesis,  and  will  continue  to  exist  in  adult  tissues  • Highest  expression  in  CNS,  and  also  in  cells  of  immune  system  • They  may  have  a  role  in  mediating  cell  adhesion  or  signalling,  but  precise  function  is  unclear  • No  obvious  anatomical  or  developmental  defects  in  prion-­‐deficient  mice,  except  subtle  abnormalities  in  neurotransmission  and  circadian  rhythms  

Nature  of  the  Deformity  • Mutated  prion  proteins  aggregate  as  a  covalent  long  chain  polymer  that  is  insoluble  and  sticky  • This  is  due  to  a  change  of  one  α  helix  into  a  β  sheet  

o This  change  transmits  protein  signals  which  sets  off  an  exponential  chain  reaction,  transforming  healthy  prion  proteins  into  the  mutated  state  

• The  misfolded/mutated  prion  protein  may  also  set  off  a  toxic  signal  that  causes  neurodegeneration  • Aggregation  of  these  misfolded  proteins  will  create  “holes”  amongst  clusters  of  neurons,  found  in  the  brain,  spinal  cord,  and  other  areas  of  the  CNS  

o This  structural  and  physical  damage  is  what  causes  the  neurodegeneration,  causing  degradation  of  physical  and  mental  abilities  

§ This  ultimately  results  in  death  • The  picture  below  shows  the  mutation  caused  by  infectious  prion  proteins:                                                Transmission  of  Disease  • Because  proteins  cannot  be  “killed”,  no  conventional  treatment  will  render  the  proteins  non-­‐infectious  • Prion  proteins  can  be  transferred  via  tissue  contact,  and  even  through  eating  the  infected  tissue  

o This  is  how  bovine  spongiform  encephalopathy  was  transmitted  from  sheep  to  cows  in  the  UK  • The  highest  risk  of  infection  is  created  when  infected  proteins  come  into  contact  with  areas  with  high  prion  protein  expression  (CNS  and  other  areas  with  high  neuron  concentration)