Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R....

41
Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1

Transcript of Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R....

Page 1: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

1

Notes 18

ECE 5317-6351 Microwave Engineering

Fall 2011

Multistage Transformers

Prof. David R. JacksonDept. of ECE

Page 2: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

2

021S 1- je

011S 0

22S

012S 1- je

L

Single-stage Transformer

0

0

-in

in

Z Z

Z Z

1

1

-LL

L

Z Z

Z Z

0 0 1 011 22

1 0

0 10 0 0021 12 11

1 1 0

--

21

Z ZS S

Z Z

Z ZZS S S

Z Z Z

Step Impedance change

LZ1Z0Z

1=

, inZLZ is real

From previous notes:

Step Z1 line

Load

The transformer length is arbitrary in this analysis.

Page 3: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

3 200 0

21 12 111-S S S

1

1

- 20 00 21 1211 - 20

221 -

jL

jL

S S eS

S e

From the self-loop formula, we have (as derived in previous notes)

Single-stage Transformer (cont.)

2

0 0 0 1 0 121 12 2

1 0 1 0

2 4Z Z Z ZS S

Z Z Z Z

22 2 2 22 22 1 0 1 0 0 10 1 01 0 1 0 0 1

11 2 2 21 0 1 0 1 0 1 0

22 2 2 21 0 0 1 1 0 0 1

2

1 0

0 12

1 0

2- 21 1 1 1

2 2

4

Z Z Z Z Z ZZ ZZ Z Z Z Z ZS

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z

Z Z

Z Z

Z Z

Hence

For the numerator:

Next, consider this calculation:

Page 4: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

4

1

1

- 2011

- 20111

jL

jL

S e

S e

Putting both terms over a common denominator, we have

1 1

1

- 2 - 20 0 2 0 211 11 11

- 2011

1

1

j jL L

jL

S S e S e

S e

or

Single-stage Transformer (cont.)

1

1

- 20 2110

11 - 2022

1

1 -

jL

jL

S eS

S e

We then have

Page 5: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

5

011 1LS Assuming small reflections

1

1

- 2011

- 20111

jL

jL

S e

S e

1- 2011

jLS e

00 11 1, LS Denote

1- 20 1

je

1 0 10 1

1 0 1

- -; L

L

Z Z Z Z

Z Z Z Z

L

1je

1je

00 11S

Single-stage Transformer (cont.)

1- 20 0 011 21 12

jLS S S e

Note: It is also true that

But 0 0 0 221 12 111- 1S S S

Page 6: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

6

Assuming small reflections:

LZ0Z 1Z 2Z 3Z . . . -1NZ NZ

1 2 3 -1N Ni i i

1 2 3 N Assume

je

0 1 2 3 -2N -1N N L

je je je je

je je je je je

Multistage Transformer

Page 7: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

7

- 2 - 4 - 6 - 20 1 2 3

1

1

.....

-

j j j j NN

n nn

n n

e e e e

Z Z

Z Z

Multistage Transformer (cont.)

Hence

LZ0Z 1Z 2Z 3Z . . . -1NZ NZ

1 2 3 -1N Ni i i

1 2 3 N Assume

Note that this is a polynomial in powers of z = exp(-j2).

Page 8: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

8

- 2 - 4 - 6 - 20 1 2 3 .....j j j j N

Ne e e e

0 1 -1 2 -2

- - ( -2) - ( -2)0 1

, , , . . .

. . .

N N N

jN jN jN j N j Ne e e e e

--1

2

2

odd last term

even last term

j jN

N

N e e

N

Multistage Transformer (cont.)

If we assume symmetric reflections of the sections (not a symmetric layout of line impedances), we have

Last term

Page 9: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

9

-0 1

2

-0 1 -1

2

12 cos cos - 2 ... cos - 2 ... ;

2

2 cos cos - 2 ... cos - 2 ... cos ;

even

odd

jNn N

jNn N

e N N N n

e N N N

N

n N

Multistage Transformer (cont.)

Hence, for symmetric reflections we then have

Note that this is a finite Fourier cosine series.

Page 10: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

10

Multistage Transformer (cont.)

Design philosophy:

If we choose a response for ( ) that is in the form of a polynomial (in powers of z = exp (-j2 )) or a Fourier cosine series, we can obtain the needed values of n and hence complete the design.

Page 11: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

11

-- 2 - - 2 co1 sN Nj j j Nj N j N NAe e e A eA e

2 cosNNA

0

2

02 2

0 1,2, ..., -1

i

n

n

f f

dn N

d

Also, for

1N - 1st derivatives are zero maximally flat

Binomial (Butterworth*) Multistage Transformer

Consider:

*The name comes from the British physicist/engineer Stephen Butterworth, who described the design of filters using the binomial principle in 1930.

Choose all lines to be a quarter wavelength at the center frequency so that

(We have a perfect match at the center frequency.)

Page 12: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

12

- 2 - 2

0

1NNj N j n

nn

A e A C e

We want to use a multistage transformer to realize this type of response.

- 2 - 4 - 6 - 20 1 2 3

- 2 - 2

0

......

1NNj N j

j j

n

j

n

n

j NN

A e A

e e e

C e

e

Use the binomial expansion so we can express the Butterworth response in terms of a polynomial series:

Binomial Multistage Transformer (cont.)

0

!1

- ! !

NN N n N

n nn

Nz C z C

N n n

where

A binomial type of response is obtained if we thus choose

Set equal

(Both are now in the form of polynomials.)

Page 13: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

13

0

0

0 0

-2L N

L

f

Z Z

Z ZA

zero length transmisison linesNote that as

, 1,2,.......,Nn nAC n N

0 0 1, N LZ Z Z Z

Equating responses for each term in the polynomial series gives us:

Binomial Multistage Transformer (cont.)

- 0

0

-2 N L

L

Z ZA

Z Z

Hence

-1 0

1 0

- -2 N Nn n L

nn n L

Z Z Z ZC

Z Z Z Z

Hence

Note: A could be positive or negative.

This gives us a solution for the line impedances.

Page 14: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

14

, 1,2,.......,Nn nAC n N

Note on reflection coefficients

Binomial Multistage Transformer (cont.)

Hence

!

- ! !Nn

NC

N n n

! !

- ( ) ! ( )! ! ( )!N NN n n

N NC C

N N n N n n N n

n N n

Although we did not assume that the reflection coefficients were symmetric in the design process, they actually come out that way.

Note that

Page 15: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

15

Note: The table only shows data for ZL > Z0 since the design can be reversed (Ioad and source switched) for ZL < Z0 .

Binomial Multistage Transformer (cont.)

Page 16: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

16

Example showing a microstrip line

Binomial Multistage Transformer (cont.)

A three-stage transformer is shown.

50 line100 line

1 / 4g2 / 4g

3 / 4g

1Z 2Z 3Z

0Z LZ

Page 17: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

17

Binomial Multistage Transformer (cont.)

Figure 5.15 (p. 250)Reflection coefficient magnitude versus frequency for multisection binomial matching

transformers of Example 5.6. ZL = 50Ω and Z0 = 100Ω.

Note: Increasing the number of lines increases the bandwidth.

Page 18: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

18

Use a series approximation for the ln function:

-1 1ln ; 1

1 2

XX X

X

-1 0

1 0

- -2 N Nn n L

nn n L

Z Z Z ZC

Z Z Z Z

-1

0

1 1ln 2 ln

2 2N Nn L

nn

Z ZC

Z Z

-1

0

ln 2 ln lnN N Ln n n

ZZ C Z

Z

recursive

relationship

Binomial Multistage Transformer (cont.)

Hence

Recall

Page 19: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

19

Bandwidth

1

-1 1cos

2

2 cosN

mm

m

N

NmA

A

1

0 -1

0 0 0

- 4 4 12 2 - 2 2 - 2 2 - 2 - cos

/ 2 2

Nm m m m m

f f ff

f f f A

The bandwidth is then:mf 0f 02 - mf f

m / 2 - m

m

Binomial Multistage Transformer (cont.)

Maximum acceptable reflection

1

-1

0

4 12 - cos

2

Nmf

f A

Hence

/ 2f / 2f

Page 20: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

20

Summary of Design Formulas

Binomial Multistage Transformer (cont.)

1

-1

0

4 12 - cos

2

Nmf

f A

-1

0

ln 2 ln lnN N Ln n n

ZZ C Z

Z

- 0

0

-2 N L

L

Z ZA

Z Z

- 2 - 2

0

1NNj N j n

nn

A e A C e

Reflection coefficient response

A coefficient

Design of line impedances

Bandwidth

0 2

f

f

!

- ! !Nn

NC

N n n

Page 21: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

21

Example: three-stage binomial transformer

0

50 [ ]

100 [ ]

0.05

L

m

Z

Z

-26.0 [dB]dBm -3

1

3-1

0

50 -1003 2 -0.0417

50 100

4 1 0.052 - cos

2 0.0417

0.713

N A

fBW

f

100 50 1Z 2Z 3Z

Example

Given:

71.3%BW

Page 22: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

22

-3 31 0

1

01

50ln ln 2 ln 4.519

10

91.

0

[

:

7 ]

Z Z C

Z

Z

-3 32 1

2

12

50ln ln 2 ln 4.259

10

70.

0

[

:

7 ]

Z Z C

Z

Z

-3 33 2

3

23

50ln ln 2 ln 3.999

10

54.

0

[

:

5 ]

Z Z C

Z

Z

30

31

32

3

C = 1

C = 3

C = 3

C = 13

Example (cont.)

!

- ! !Nn

NC

N n n

-1

0

ln ln 2 lnN N Ln n n

ZZ Z C

Z

Page 23: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

23

1 91.685 [ ]Z

2 70.711 [ ]Z

3 54.585 [ ]Z

Example (cont.)

Using the table in Pozar we have:

0 1 2 3 0/ 2 : , , / 1.0907, 1.4142,1.8337LZ Z Z Z Z Z

(The above normalized load impedance is the reciprocal of what we actually have.)

1 2 3 0 0, , / 1.8337, 1.4142, 1.0907; 50[ ]Z Z Z Z Z

Therefore

Hence, switching the load and the source ends, we have

Page 24: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

24Response from Ansoft Designer

Example (cont.)

-26

3.29 GHz 6.74 GHz

69.0%BW

50 line100 line

1 / 4g2 / 4g

3 / 4g

1Z 2Z 3Z

0Z LZ

11 1020logdB

S f

0 5.0GHzf

Page 25: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

25

Chebyshev Multistage Matching Transformer

1

22

33

-1 -2

2 1

4 -3

2 -n n n

T x x

T x x

T x x x

T x xT x T x

-1 1: 1

1: 1

n

n

x T x

x T x

For

For

1

1

cos cos , 1

cosh cosh , 1n

n x xT x

n x x

Chebyshev polynomials of the first kind:

We choose the response to be in the form of a Chebyshev polynomial.

Page 26: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

26

Chebyshev Multistage Transformer (cont.)

Figure 5.16 (p. 251)The first four Chebyshev polynomials Tn(x).

Page 27: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

27

m

0f0 -2

ff

0 2

ff

f

m - m

n increasing

/ 2

n=2

A B

n=1

-1 1

2

1

n=3

n=2

nT x

x

B A

Chebyshev Multistage Transformer (cont.)A Chebyshev response will have equal ripple within the bandwidth.

- sec cosjNN mAe T

m A

This can be put into a form involving the terms cos (n ) (i.e., a finite Fourier cosine series).

Note: As frequency decreases, x increases.

Page 28: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

28

1

22

33

-1 -2

sec cos sec cos

sec cos sec 1 cos2 -1

sec cos sec cos3 3cos - 3sec cos

sec cos 2 sec cos sec cos - sec cos

m m

m m

m m m

n m m n m n m

T

T

T

T T T

Chebyshev Multistage Transformer (cont.)

We have that, after some algebra,

1

22

33

-1 -2

2 1

4 -3

2 -n n n

T x x

T x x

T x x x

T x xT x T x

Hence, the term TN (sec, cos) can be cast into a finite cosine Fourier series expansion.

Page 29: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

29

-

-0 12 cos cos - 2 .... cos - 2 .....

sec cosjNm

jNn

N

e N

Ae

N N n

T

0

0

0

0

-

- 1

0 0

0

sec

secN mL

L

L

L N m

Z Z

Z Z

Z ZA

Z Z T

f

AT

As

Transformer design

Chebyshev Multistage Transformer (cont.)

From the above formula we can extract the coefficients n (no general formula is given here).

Page 30: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

30

sec cos 1

m

m m N m m

m

NA T A T

A

A

At

Chebyshev Multistage Transformer (cont.)

0sgn -L mA Z Z

Hence

0

0

0

0 :

-0 sec

sec 0 sec 1

-

LN m

L

N m m

L

Z ZAT

Z Z

T

A Z Z

At

has the same sign as

Page 31: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

31

Chebyshev Multistage Transformer (cont.)

Note: The table only shows data for ZL > Z0 since the design can be reversed (Ioad and source switched) for ZL < Z0 .

Page 32: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

32

0 0 0

0 0 0

-

0

0

1

-1

0

- - -1 10 : sec sec

cosh co

-1 1sec cos

42 -

sh sec

h cosh L

L L LN m N m

L L m L

mL

m

m

m

Z Z Z Z Z Zf AT T

Z Z A Z Z Z

Z Z

N Z Z

fW

f

N

B

Z

At

Chebyshev Multistage Transformer (cont.)Bandwidth

-1

0

1 1sec cosh cosh ln

2L

mm

Z

N Z

Hence -1 1

ln ; 11 2

XX X

X

Page 33: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

33

Summary of Design Formulas

0

42 - m

f

f

Reflection coefficient response

A coefficient

Design of line impedances

Bandwidth

Chebyshev Multistage Transformer (cont.)

0sgn -L mA Z Z

- sec cosjNN mAe T

No formula given for the line impedances. Use the Table from Pozar or generate (“by hand”) the solution by expanding ( ) into a polynomial with terms cos (n ).

-1

0

1 1sec cosh cosh ln

2L

mm

Z

N Z

m term

0 2

f

f

Page 34: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

34

0

100[ ]

50[ ]

0.05

L

m

Z

Z

3 0 2 1Γ = Γ , Γ = ΓAssumed symmetry :

- 3 3

- 3

- 3

0 1

0

3

sec cos

sgn - 0.05

3 sec co

3 3cos - 3sec cos

2 cos3 s

s

co

j

L

m

j

j

m

m

m

A Z Z

N e

e

A

Ae

A

T

50[ ] 1Z 2Z 3Z 100[ ]

Given

Equate(finite Fourier cosine series form)

Example: three-stage Chebyshev transformer

Example

Page 35: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

35

30

31

3

0 0 3

3

1

1

o

1

2

-

44.7 0.780[rad

2 sec

2 3 sec -3 se

] 1.00

1 1 100sec cosh

7 100.7

c

10.05 1.408 0.0698

2

13 0.05 1.408 -3 0.05 1.408

20.1

cosh ln3 2 0.05 50

1

037

.40 %8

m

m

m m

m

A

A

B

A

W

Also,

Example: 3-Section Chebyshev TransformerEquating coefficients from the previous equation on the last slide, we have

0

42 - m

fBW

f

Page 36: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

36

1

3

4

11

1

2

1 0.069850 57.5

1- 0.0698

1 0.103757.5 70.8

1- 0.1037

1 0.103770.8 87.2

1- 0.1037

1 0.069887.2 100.3

1- 0.

1

1-

9

-

06 8

n nn

n

nn n

n

L

n

Z Z

Z Z

Z

Z

Z

Z Z

Z Z

Checkin

N

g con

ext, use

sistency :

1

2

3

57.5

70.8

87.2

Z

Z

Z

Example: 3-Section Chebyshev Transformer

Page 37: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

37

1 1

1

1

1

0 0

2 1 1

3

1

2

3

2

2

ln ln 2

ln 50 2 0.069

57.49

8

4.051

ln ln 2

4.259

ln l

70.74

87.0

n

5

2

- 1ln

2ln n

4

l 2

.466

nn n n

nn

nn

nn

Z Z

Z Z

Z Z

Z

Z

Z

Z

Z

Z ZZ Z

Z

Z

Alternative method:

Example: 3-Section Chebyshev Transformer

Page 38: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

38

1

2

3

0 0

1.147 50 57.4

0.05

5

1.4142

1.

50 70.7

50 8742

, 3, / 2,

9 7.1

50m L

Z

Z

N Z Z Z

Z

TablFrom e

Example: 3-Section Chebyshev Transformer

Page 39: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

39

Example: 3-Section Chebyshev Transformer

-26

99.8%BW

2.51 GHz 7.5 GHz

11 1020logdB

S f

Response from Ansoft Designer

50 line100 line

1 / 4g2 / 4g

3 / 4g

1Z 2Z 3Z

0Z LZ

0 5.0GHzf

Page 40: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

40

Example: 3-Section Chebyshev Transformer

Comparison of Binomial (Butterworth) and Chebyshev

The Chebyshev design has a higher bandwidth (100% vs. 69%).

The increased bandwidth comes with a price: ripple in the passband.

Note: It can be shown that the Chebyshev design gives the highest possible bandwidth for a given N and m.

Page 41: Notes 18 ECE 5317-6351 Microwave Engineering Fall 2011 Multistage Transformers Prof. David R. Jackson Dept. of ECE 1.

41

Tapered Transformer

The Pozar book also talks about using continuously tapered lines to match between an input line Z0 and an output load ZL. (pp. 255-261). Please read this.