Normalshocks AE 3450

24
AE3450 Normal Shocks -1 School of Aerospace Engineering Copyright © 2001 by Jerry M. Seitzman. All rights reserved. Wave propagation is perpendicular to flow direction Shock is nonequilibrium process internally, but – flow before shock (1) in equilibrium – flow after shock (2) in equilibrium 1 2

description

Gas Dynamic

Transcript of Normalshocks AE 3450

  • AE3450Normal Shocks -1

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Wave propagation is perpendicularto flow direction

    Shock is nonequilibrium processinternally, but flow before shock (1) in equilibrium flow after shock (2) in equilibrium

    1 2

  • AE3450Normal Shocks -2

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Start with stationary shock can use steady equations

    v1p11T1

    v2p22T2

    Use control volume analysis only need to consider properties before and after

    shock (equilibrium) Equations first studied by Rankine (~1870) and

    Hugoniot (~1877)

    1 2

  • AE3450Normal Shocks -3

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Conservation and state equations 1d, steady, inviscid except inside shock

    adiabatic, only flow work

    Mass

    Momentum 112221 vmvmApAp =

    v1p11T1h1a1

    v2p22T2h2a2

    AvAvApAp 21122221 =

    2211 vvAm == (VII.1)

    ( )1221 vvAmpp =

    (VII.2a)

    2222

    2111 vpvp +=+

    (VII.2b)Energy o222

    211 h2vh2vh =+=+ (VII.3)

    Perfect GasState Eqns.

    RTp = (a) dTcdh p= (b) RTa2 = (VI.2) 6 equations, 6 unknowns

  • AE3450Normal Shocks -4

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Only functions of p and Solve for density ratio

    Combine energy, momentum, massv1p11T1h1a1

    v2p22T2h2a2

    (VII.3) ( ) ( )( )2121222112 vvvv21vv21hh +==( )1221 vvAm

    pp=

    (VII.2a)

    2121

    vv11Am

    +=

    +

    (VII.1)

    TPG/CPG

    (VII.5)121

    2

    1

    2

    pp

    11

    pp

    111

    +++

    +

    =

    ( ) ( )211212 11pp21hh +=(VII.4) True for all simple comp. substancesShock Hugoniot Eq.

    ( ) ( )112212p12 RpRp1RTTchh

    ==

    (b) (a)

  • AE3450Normal Shocks -5

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    For TPG/CPG, entropy state equation p11s1

    p22s2

    1

    2

    1

    2v12 lnRT

    Tlncss

    =

    ( ) ( )

    =

    =

    1

    1

    2

    11

    221

    1

    2

    1

    2

    v

    12

    ppln

    TTln

    css

    (VII.6)

    =

    1

    2

    1

    2

    v

    12

    ppln

    css

    Entropy change as function of pressure and density ratios across shock

  • AE3450Normal Shocks -6

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Combine with 2/1from (VI.25)

    p11s1

    p22s2

    =

    1

    2

    1

    2

    v

    12

    ppln

    css

    Violates2nd Law

    p2

  • AE3450Normal Shocks -7

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    General problem is to find change in all

    properties across shock Start by find changes based on M1, M2

    then find M2 as function of M1 Velocity ratio, v2/v1

    11

    22

    1

    2

    aMaM

    vv

    =

    v11T1p1M1

    v22T2p2M2

    (VII.7)1

    2

    1

    2

    1

    2

    TT

    MM

    vv

    =

    Density ratio, 2/ 1

    2211 vv =mass2

    1

    2

    1

    2

    1

    1

    2

    TT

    MM

    vv

    ==

    (VII.8)

  • AE3450Normal Shocks -8

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Temperature ratio, T2/T1

    (VII.9)

    +

    +=

    22

    21

    1

    2

    M2

    11

    M2

    11

    TT

    2o1o2o1o TThh ==energy

    +

    +=

    21

    22

    M2

    111

    M2

    111

    1o

    2o

    1o1

    2o2

    1

    2

    TT

    TTTT

    TT

    =

    1

    v11T1p1M1

    v22T2p2M2

  • AE3450Normal Shocks -9

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Pressure ratio, p2/p1momentum

    (VII.2b)

    2222

    2111 vpvp +=+

    2222

    2111 MppMpp +=+

    ( )( )

    2

    2

    2

    222

    Mp

    pM

    RTM

    aMv

    =

    =

    ==

    ( ) ( )222211 M1pM1p +=+

    (VII.10)( )( )22

    21

    1

    2

    M1M1

    pp

    ++

    =

    v11T1p1M1

    v22T2p2M2

  • AE3450Normal Shocks -10

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Mach Number, M2 =f(M1) combine all eqns.

    212

    1

    1222

    2

    2 M2

    11M1

    MM2

    11M1

    M +

    +=

    +

    +

    1

    2

    2

    1

    vv

    =mass(VII.1)

    Expression of M2 as function of M1- solve

    ( )( ) 122122

    pp

    M1M1

    =

    ++mom.

    (VII.9)

    +

    += 222

    11

    2 M2

    11M2

    11TTenergy

    (VII.10)

    2

    1

    22

    11

    vv

    RTMRTM

    =

    M and a

    (VI.2,3) 1122

    1

    2

    RTpRTp

    =

    PG

    (a)

    v11T1p1M1

    v22T2p2M2

  • AE3450Normal Shocks -11

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Remove square roots by squaring both sides and solve resulting quadratic

    ( ) ( )

    +

    +=

    +

    +2122

    1

    212

    2222

    22 M

    211

    M1

    MM2

    11M1

    M

    ( ) ( )[ ] ( ) 0MgMg21MMg2

    1M 11221

    242 =+

    g(M1)

    No shocksolution

    21

    21

    21

    22 Mor

    1M1

    21

    2MM

    +

    =

    (VII.11)

    v11T1p1M1

    v22T2p2M2

  • AE3450Normal Shocks -12

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    M1 M2

    1M1

    21

    2MM

    21

    21

    22

    +

    =

    In reference frame of normal shock, flow aftershock is always subsonic

    M11 Expansion

    Shock=1.4

    0

    1

    2

    3

    4

    5

    6

    7

    0 1 2 3

    M1

    M

    2

  • AE3450Normal Shocks -13

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    11lim

    1

    21pp 12

    +=

    >>

    p increase across normal shock is greatest static property change

    Density ratio and velocity ratio approach limit

    =1.4

    0

    5

    10

    15

    20

    25

    30

    35

    40

    1 2 3 4 5 6 7

    M1

    T

    2

    /

    T

    1

    ,

    p

    2

    /

    p

    1

    ,

    2

    /

    1

    p2/p1

    T2/T1

    2/1,v1/v2

    v11T1p1M1

    v22T2p2M2

    T, p and increase, v decreases

    from(VII.5)

    1

    2

    1

    2

    1

    2

    pp

    11

    pp

    111

    +++

    +

    =

  • AE3450Normal Shocks -14

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Stagnation Temperature, To2=To1 Stagnation Pressure

    M1To1po1o1

    M2To2po2o2

    1

    21

    21

    22

    1

    2

    11o

    22o

    1o

    2opp

    M2

    11

    M2

    11

    pp

    pppp

    pp

    +

    +

    ==

    (VII.12)

    11M

    12

    pp 2

    11

    2

    +

    +

    =

    M2 from (VII.11)( )( )22

    21

    1

    2

    M1M1

    pp

    ++

    =

    from (VII.10)

    +

    +

    +

    +=

    11

    21

    1

    21

    21

    1o

    2o

    11M

    12

    M2

    11

    M2

    1

    pp

    (VII.13)

  • AE3450Normal Shocks -15

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Other Useful Expressions M1To1po1o1

    M2To2po2o2

    1

    21

    21

    22

    1o

    2opp

    M2

    11

    M2

    11

    pp

    +

    +

    =

    1

    2

    2

    2o

    1

    2opp

    pp

    pp

    =

    1

    21

    2

    1

    1o

    2opp

    TT

    pp

    =

    (VII.14)

    1

    2122

    1

    2oppM

    211

    pp

    += (VII.15)

  • AE3450Normal Shocks -16

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Stagnation Density, o2/o1

    (VII.16)1o2o

    1o

    2o

    pp

    =

    1

    Sonic Area Ratio, A2/A1* *

    1o

    2o

    1o

    2o

    1o

    2oRTRT

    pp

    =

    P.G.

    M1To1po1o1A1*

    M2To2po2o2 A2*

    from(VI.19)

    ( )( )

    =

    ff

    RTpRTp

    AA

    mm

    1o1o

    2o2o*1

    *2

    1

    2

    1 1 1

    (VII.17)2o

    1o*1

    *2

    pp

    AA

    =

  • AE3450Normal Shocks -17

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    po , o across normal shock drop (alot)

    Entropy increases

    M1po1o1A1*

    M2po2o2 A2*

    =1.4

    0

    1

    2

    3

    4

    1 2 3 4 5 6 7

    M1

    p

    o

    2

    /

    p

    0

    1

    ,

    (

    s

    2

    -

    s

    1

    )

    /

    R

    0

    10

    20

    30

    40

    50

    60

    A*2 /A

    *1

    po2/po1=o2/o1

    (s2-s1)/R

    2/A*1 Sonic area ratio

    increaseslarger throat required after shockto reach sonic flow (same mass flowrate, less po) o

    *pAm

  • AE3450Normal Shocks -18

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Given: Air flowing through constant area duct encounters stationary shock

    1 2v1=500 m/sp1=50 kPaT1=250 K oncoming air 500 m/s,

    50 kPa, 250K

    Find:M2, T2, p2, v2po2 , To2 (relative to shock/duct)

    Assume: Air is TPG, CPG, =1.4

  • AE3450Normal Shocks -19

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Analysis:

    1 2v1=500 m/sp1=50 kPaT1=250 K58.1

    sm25020sm500

    RTvM 11 ==

    =

    can either use equations or tables (e.g., Table B.1 for =1.4)M1 M2 p2/p1 T2/T1 po2/po1 2222 ////1111 A*2/A*1 po2/p1

    1.50 0.7011 2.458 1.320 0.9298 1.862 1.076 3.4131.51 0.6976 2.493 1.327 0.9266 1.879 1.079 3.4511.52 0.6941 2.529 1.334 0.9233 1.896 1.083 3.4891.53 0.6907 2.564 1.340 0.9200 1.913 1.087 3.5281.54 0.6874 2.600 1.347 0.9166 1.930 1.091 3.5671.55 0.6841 2.636 1.354 0.9132 1.947 1.095 3.6061.56 0.6809 2.673 1.361 0.9097 1.964 1.099 3.6451.57 0.6777 2.709 1.367 0.9062 1.981 1.104 3.6851.58 0.6746 2.746 1.374 0.9026 1.998 1.108 3.7241.59 0.6715 2.783 1.381 0.8989 2.015 1.112 3.765

    first calculate M1

  • AE3450Normal Shocks -20

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Analysis (cont):1 2

    v1=500 m/sp1=50 kPaT1=250 K

    58.1M1 =

    += 158.114.1)4.1(2

    14.1258.1M 2222 M2: B.1/VII.11

    T2: B.1/VII.9 374.1675.0214.1158.1

    214.11

    TT 22

    1

    2=

    +

    +=

    p2: B.1/VII.12 ( )[ ] ( )[ ] 746.214.14.058.14.04.12pp 212 =+=

    v2: B.1/VII.7 ( ) 998.1374.11675.058.1vv 1221 ===

    To2: A.1/VI.6 ( )K667.025058.1214.11K250TT 21o2o =

    +==

    po2: A.1/VII.15 ( ) 724.3746.2675.01pp 5.322 14.112o =+=

    M2=0.675

    T2=344 K

    p2=137 kPa

    v2=250 m/s

    To2=375 K

    po2=186 kPa

  • AE3450Normal Shocks -21

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Given: Expanding nozzle with exit/inlet area ratio of 4.0 normal shock stands at entrance

    Find:1. Mach number at nozzle exit2. (static) pressure at exit

    1 2M=2.2po=101.3 kPa

    ieAe/Ai=4.0

    just before entranceHe, Mach 2.2 withstagnation pressure of 101.3 kPa

    Assume: He is TPG/CPG with =5/3

    Mepe

  • AE3450Normal Shocks -22

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Analysis:

    pe:

    1 2M=2.2po=101.3 kPa

    ie

    Ae/Ai =4.0

    Mepe

    but need M2M1=Mi =2.2

    ( )( ) 0.4AA

    AA

    AA

    2

    e

    M*

    i

    M*

    e

    i

    e==

    80.420.14 ==

    ( ) 988.0kPa3.101686.0pe = pe=68.7 kPa118.0Mo

    1o1o

    2o

    oe

    eoee

    eppp

    pp

    pppp

    =

    ==

    VII.13/B.3 VI.7/A.3

    581.0*i

    M*e

    AA4

    AA

    e

    =

    Me: get Me from area ratio

    isentropic2e

    VI.17,7M A/A* p/po

    0.118 4.799 0.98840.581 1.198 0.09063.732 4.799 0.0132VI.17/A.3

    VII.11/B.3

    M1 M2 po2/po12.20 0.5813 0.6860

    Spreadsheet of VII.11,13

    M2=0.581

    =73.3118.0

    Me

  • AE3450Normal Shocks -23

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Given: Two engine inlets, one astraight tube, the other a converging-diverging diffuser.

    both with M=2.0 at their inlets, Ti=300.K, pi=0.50 atm

    Compare performance of diffusers: Me, Te, pe, poe/poi

    both slow flow down to same MeCD diffuser: isentropicallystraight diffuser: with shock

    Assumptions: air is cpg/tpg with =1.4adiabatic diffusersisentropic except at shock

    MeTepe

    poe/poi

    1 2Mi=2.0

    pi=0.50 atmTi=300 K

    i e

    i e

  • AE3450Normal Shocks -24

    School of Aerospace Engineering

    Copyright 2001 by Jerry M. Seitzman. All rights reserved.

    Analysis: Shock Diffuser =1.4, VII.8-11, 13, 17 or

    Me=M2=0.577 Te=T2= (T2/T1)T1=(1.688)300K= 506 K pe=p2= (p2/p1)p1=(4.50)0.5atm=2.25 atm; poe/poi = po2/po1= 0.721

    CD Diffuser - isentropic (VI.6, 7, 17 or..)

    MeTepe

    poe/poi

    1 2Mi=2.0

    pi=0.50 atmTi=300 K

    i e

    i e

    Me=0.577

    pe= (Te/Ti)/-1pi=(506/300)3.50.5atm=3.12 atm poe/poi = 1

    Te= = 506 K( )( ) K300556.0

    938.0TTT

    TTi

    0.2oi

    577.0oe =

    same (M, To const)

    higher p

    no po loss higher mass flowrate or smaller area

    (spreadsheet like B.1)

    M1 M2 p2/p1 T2/T1 2/1 po2/po1 A*2/A*12.00 0.5774 4.500 1.688 2.667 0.7209 1.387

    (spreadsheet like A.1)M A/A* T/To p/po

    0.577 1.217 0.9376 0.79802.000 1.688 0.5556 0.1278