Nonlinearity-Tolerant Modulation Formats for Coherent ...© MERL MITSUBISHI ELECTRIC RESEARCH...

45
© MERL MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts Keisuke Kojima [email protected] Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA 02/23/2017 1 Nonlinearity-Tolerant Modulation Formats for Coherent Optical Fiber Communications

Transcript of Nonlinearity-Tolerant Modulation Formats for Coherent ...© MERL MITSUBISHI ELECTRIC RESEARCH...

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIESCambridge, Massachusetts

Keisuke [email protected]

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

02/23/2017 1

Nonlinearity-Tolerant Modulation Formats for Coherent Optical Fiber Communications

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Collaborators• MERL

– Toshiaki Koike-Akino (Seminar on Jan 16)– David S. Millar (Seminar on Jan 15)– Kieran Parsons– Milutin Pajovic– Valeria Arlunno (Currently with Acacia Communications)

• Mitsubishi Electric Corp. (Ofuna, Japan)– Takashi Sugihara– Tsuyoshi Yoshida– Keisuke Matsuda– Hiroshi Miura– Keisuke Dohi

02/23/2017 2

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

References1. K. Kojima, T. Yoshida, T. Koike-Akino, D. S. Millar, K. Parsons, M. Pajovic, and V. Arlunno, “Nonlinearity-

tolerant four-dimensional 2A8PSK family for 5-7 bits/symbol spectral efficiency,” to be published in IEEE J. Lightwave Technol., 2017 (Invited Paper). DOI:10.1109/JLT.2017.2662942 (available in IEEE Xplore).

Main part of this talk

2. K. Kojima, T. Yoshida, K. Parsons, T. Koike-Akino, D. S. Millar, and K. Matsuda, “Nonlinearity-tolerant time domain hybrid modulation for 4-8 bits/symbol based on 2A8PSK,” to be presented at OFC, paper W4A.5, 2017.

Time-domain hybrid modulation

3. T. Yoshida, K. Matsuda, K. Kojima, H. Miura, K. Dohi, M. Pajovic, T. Koike-Akino, D. S. Millar, K. Parsons, and T. Sugiura, “Hardware-efficient Precise and Flexible Soft-demapping for Multi-Dimensional Complementary APSK Signals,” ECOC, paper Th.2.P2.SC3.27, 2016.

Hardware-efficient LLR calculation and experimental results

4. T. Koike-Akino, K. Kojima, D. S. Millar, K. Parsons, T. Yoshida, and T. Sugihara, “Pareto optimization of adaptive modulation and coding set in nonlinear fiber-optic systems,” to be published in IEEE J. Lightwave Technol., Vol.35, No.3, 2016 (Invited Paper).

Comparison of multiple modulation formats with multiple FEC code rates

5. D. S. Millar, T. Koike-Akino, S. Ö. Arik, K. Kojima, K. Parsons, T. Yoshida, and T. Sugihara, “High-dimensional modulation for coherent optical communications systems,” Optics Express, Vol.22, No.7, pp.8798-8812, 2014.

High-dimensional modulation

02/23/2017 3

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline• MERL Overview• Introduction

– Fiber Nonlinearity– Granularity vs Efficiency– GMI (Generalized Mutual Information)

• Modulation Format– 4D-2A8PSK Family (5, 6, and 7 bits/symbol)

• Nonlinear Transmission– Simulation Procedure and Results– Hardware-Efficient Soft-Demapping and Experiment

• Time Domain Hybrid– Using 4D-2A8PSK Family (for 4.5, 5.5, 6.5, 7.5 … bits/symbol)– Simulation Results

• Summary

02/23/2017 4

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

MERL Overview

02/23/2017 5

• 60 leading researchers, including 4 IEEE Fellows and 2 OSA Fellowsà http://www.merl.com/peopleà http://www.merl.com/research

• Open corporate research lab, many publications in leading conferences and journals (~150 publications/year)à http://www.merl.com/publications

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

MERL’s Technology FociElectronics & Communications

Empowering the future connected society and industry

MultimediaEnabling rich user experiences through

multimedia processing

Data AnalyticsIntegrated information and computation technology for optimal decision making

Computer VisionProcessing data from across space and time to

represent and understand objects and events

MechatronicsIf it moves, then we control it

…all augmented by fundamental algorithm research

Wireless Communications & Signal ProcessingOptical Communications and DevicesPower & RF

Digital VideoSpeech & Audio Information SecurityCompressive Sensing

Predictive ModelingDecision Optimization

Computer VisionMachine Learning / Deep LearningComputational GeometryComputational Photography

Control AlgorithmsSystem-Level Modeling and SimulationNonlinear Dynamical Systems

02/23/2017 6

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline• MERL Overview• Introduction

– Fiber Nonlinearity– Granularity vs Efficiency– GMI (Generalized Mutual Information)

• Modulation Format– 4D-2A8PSK Family (5, 6, and 7 bits/symbol)

• Nonlinear Transmission– Simulation Procedure and Results– Hardware-Efficient Soft-Demapping and Experiment

• Time Domain Hybrid– Using 4D-2A8PSK Family (4.5, 5.5, 6.5, 7.5 bits/symbol)

• Simulation Results• Summary

02/23/2017 7

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Optical Fiber Nonlinearity• Self Phase Modulation (SPM)

– Single channel effect• Cross Phase Modulation (XPM)

– Multi-channel effect• Cross Polarization Modulation (XPolM)

– Multi-channel effect

• 2D Constant modulus property is effective to suppress all the above three components

• 4D constant modulus property (constant power for X+Y polarizations) is effective to suppress SPM and XPM

• Legacy fiber plants (including submarine cables) use dispersion managed links (low chromatic dispersion), and they are susceptable to fiber nonlinearity.

02/23/2017 8

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Reducing Fiber Nonlinearity• Polarization managed 8D modulation (2 bit/symbol)

– Shiner et al., Opt. Exp. 22 20366 (2014)• 2D constant modulus + zero DOP over 2 time slots• Coding gain due to block coding• Very effective for 3 bits/symbol and below• Not very effective beyond 3 bit/symbol

• 4D Constant modulus 4D-2A8PSK (6 bit/symbol)– Kojima et al., ECOC 2014, paper P.3.25.

– Note that similar approaches were presented recently, but the details are not described

• Reimer et al., OFC 2016, paper M3A.4.• Turukhin et al., ECOC’16, paper Tu.1.D.3.

02/23/2017 9

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline• MERL Overview• Introduction

– Fiber Nonlinearity– Granularity vs Efficiency– GMI (Generalized Mutual Information)

• Modulation Format– 4D-2A8PSK Family (5, 6, and 7 bits/symbol)

• Nonlinear Transmission– Simulation Procedure and Results– Hardware-Efficient Soft-Demapping and Experiment

• Time Domain Hybrid– Using 4D-2A8PSK Family (4.5, 5.5, 6.5, 7.5 bits/symbol)– Simulation Results

• Summary

02/23/2017 10

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Effect of Granularity on Efficiency

02/23/2017 11

Ghobadi et al. (Microsoft), OFC’16, M.2.J.2

Based on the study on Microsoft’s North American optical backbone, 1) Using 100G QPSK as the baseline, having the ability to support 150G 8QAM

and 200G 16QAM increases the available network capacity by up to 70%2) Adding the ability to support 25G granularity increases the available network

capacity by an additional 16%

Finer granularity leads to efficient use of network

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline• MERL Overview• Introduction

– Fiber Nonlinearity– Granularity vs Efficiency– GMI (Generalized Mutual Information)

• Modulation Format– 4D-2A8PSK Family (5, 6, and 7 bits/symbol)

• Nonlinear Transmission– Simulation Procedure and Results– Hardware-Efficient Soft-Demapping and Experiment

• Time Domain Hybrid– Using 4D-2A8PSK Family (4.5, 5.5, 6.5, 7.5 bits/symbol)– Simulation Results

• Summary

02/23/2017 12

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Generalized Mutual Information (GMI)• Maximum achievable bit rate given a channel, modulation format and

demodulator, with any encoding and decoding schemes.• Upper bound for a channel, modulation format and demodulator.• Useful when we want to consider standard bit-interleaved coded modulation

(BICM) systems. (Soft Decision FEC)

02/23/2017 13

Source Encoder Modulator

Channel

Soft-Decision Bit-Wise

DemodulatorDecoderSink

Fixed Free

GMI

A. Alvarado and E. Agrell, JLT 2015

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Bit Error Rate (BER)• Maximum achievable bit rate given a channel, modulation format and

demodulator, with any encoding and hard-decision decoding schemes.• Upper bound for a channel, modulation format and demodulator.• Useful when we want to consider hard-decision bit-interleaved coded

modulation (BICM) systems. (Hard Decision FEC)

02/23/2017 14

Source Encoder Modulator

Channel

Hard-Decision DemodulatorDecoderSink

Fixed Free

BER

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Q(BER) vs. GMI

02/23/2017 15

Normalized GMI0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Q fr

om p

re-F

EC B

ER (d

B)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

DP-QPSKDP-Star-8QAM6b4D-2A8PSKDP-16QAM

BER~4e-2

There is ~0.1 dB difference in Qat GMI = 0.85The difference becomes larger when GMI is lower

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline• MERL Overview• Introduction

– Fiber Nonlinearity– Granularity vs Efficiency– GMI (Generalized Mutual Information)

• Modulation Format– 4D-2A8PSK Family (5, 6, and 7 bits/symbol)

• Nonlinear Transmission– Simulation Procedure and Results– Hardware-Efficient Soft-Demapping and Experiment

• Time Domain Hybrid– Using 4D-2A8PSK Family (4.5, 5.5, 6.5, 7.5 bits/symbol)– Simulation Results

• Summary

02/23/2017 16

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

6 bit/sym Modulation Formats

02/23/2017 17

• This fills the gap between DP-QPSK (4 bit/symbol) and DP-16QAM (8 bit/symbol).

• Very important these days when more granularity for distance is required• Most common format is DP-Star-8QAM

• Issues of DP-Star-8QAM• Not constant modulus – susceptible to fiber nonlinearity• Not Gray labeling – BER/GMI performance compromised

• Evaluation of several modulation formats was done by using GMI in the linear region• Rios-Mueller et al., OFC 2015

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

6 bit/sym Modulation Formats

02/23/2017

(a)$Star(8QAM$ (b)$Circular(8QAM$

I-1 -0.5 0 0.5 1

Q

-1

-0.5

0

0.5

1 (1 1 1)

(1 0 1)

(0 0 1)

(0 1 1)(0 0 0)

(1 1 0)

(1 0 0)

(0 1 0)

I-1 -0.5 0 0.5 1

Q

-1

-0.5

0

0.5

1

(1 0 1)

(0 1 0)

(0 0 0)

(1 1 0)(1 0 0)

(1 1 1)

(0 1 1)

(0 0 1)

I-1 -0.5 0 0.5 1

Q

-1

-0.5

0

0.5

1

(0 0 0)

(0 0 1)(1 1 1)

(1 0 1)

(1 0 0)

(1 1 0)

(0 1 0)

(0 1 1)

(c)$8PSK$

18

(a)$Star(8QAM$ (b)$Circular(8QAM$

I-1 -0.5 0 0.5 1

Q

-1

-0.5

0

0.5

1 (1 1 1)

(1 0 1)

(0 0 1)

(0 1 1)(0 0 0)

(1 1 0)

(1 0 0)

(0 1 0)

I-1 -0.5 0 0.5 1

Q

-1

-0.5

0

0.5

1

(1 0 1)

(0 1 0)

(0 0 0)

(1 1 0)(1 0 0)

(1 1 1)

(0 1 1)

(0 0 1)

I-1 -0.5 0 0.5 1

Q

-1

-0.5

0

0.5

1

(0 0 0)

(0 0 1)(1 1 1)

(1 0 1)

(1 0 0)

(1 1 0)

(0 1 0)

(0 1 1)

(c)$8PSK$DP-Star-8QAM DP-8PSK

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Stokes Representation of 6 bits/symbol formats

02/23/2017 19

DP-Star-8QAM DP-8PSK 6b4D-2A8PSK

2D constant modulus 4D constant modulus

Euclidean distance:0.94 – 1.01

Euclidean distance: 0.76Euclidean distance: 0.92

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

6b4D-2A8PSK

02/23/2017 20

I-1 -0.5 0 0.5 1

Q

-1

-0.5

0

0.5

1

x-polarization

(0 1 1)(0 1 0)

(1 1 0)

(1 1 1)

(1 0 1)(1 0 0)

(0 0 0)

(0 0 1)

2, 4, 6, 8

1, 3, 5, 7

I-1 -0.5 0 0.5 1

Q-1

-0.5

0

0.5

1

y-polarization

3

2

1

8

7

6

5

(0 1 1)

(1 1 0)

(1 1 1)(1 0 1)

(1 0 0)

(0 0 0)

(0 0 1)

4

(0 1 0)

• Derived from DP-8PSK.• If the inner circle from x-polarization is chosen, then

outer circle will be chosen from y-polarization• Euclidean distance:

• 1.01 (opt. for BER)• 0.94 (opt. for GMI under fiber nonlinearity)

• Gray labeling (coding)

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

r1r2

Ring ratio: r1/r2

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

GMI vs. SNR

02/23/2017 21

GMI = 0.85

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Set-Partitioned 16QAM (4D)

02/23/2017 22

32SP-16QAM 128SP-16QAM

Renaudier et al., ECOC’12, We.1.C.5

b7 = b0⨁b1⨁b2⨁b3⨁b4⨁b5⨁b6

b0, b1

27 = 12825 = 32

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Generic 2A-8PSK Representation

02/23/2017 23

-1 0 1XI

-1.5

-1

-0.5

0

0.5

1

1.5

XQ

X-polarization

-1 0 1YI

-1.5

-1

-0.5

0

0.5

1

1.5

YQ

Y-polarizationB[0]B[1]B[2],B[6] B[3]B[4]B[5],B[7]

0-0-0,0-0-0-0,1-

0-0-1,0-0-0-1,1-

0-1-1,0-

0-1-1,1-0-1-0,0-

0-1-0,1-

1-1-0,1-

1-1-0,0-

1-1-1,1-

1-0-1,1-

1-0-0,1-

1-0-0,0-1-0-1,0-

1-1-1,0-

0-0-0,0-0-0-0,1-

0-0-1,0-

0-0-1,1-

0-1-1,0-0-1-1,1-

0-1-0,0-

0-1-0,1-

1-1-0,1-

1-1-0,0-

1-1-1,1-

1-0-1,1-

1-0-0,1-

1-0-0,0-1-0-1,0-

1-1-1,0-

B[0]-B[2]: Phase for X-polarizationB[3]-B[5]: Phase for Y-polarizationB[6]: Amplitude for X-polarizationB[7]: Amplitude for Y-polarization

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Code for 6b4D-2A8PSK

02/23/2017 24

• 6 bits/symbol 6b4D (64SP)-2A8PSK

B[0] – B[5] are information bitsB[6] – B[7] are parity bits

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Code for 7b4D-2A8PSK

02/23/2017 25

B[7] = B[6].

• 7 bits/symbol7B4D (128SP)-2A8PSK

B[0] – B[6] are information bitsB[7] is the parity bit

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Codes for 5b4D-2A8PSK

02/23/2017 26

• 5 bits/symbol5b4D (32SP)-2A8PSK

B[0] – B[4] are information bitsB[5] – B[7] are parity bits

B[5] = B[0] B[1] B[2],B[6] = B[2] B[3] B[4].B[7] = B[6].

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline• MERL Overview• Introduction

– Fiber Nonlinearity– Granularity vs Efficiency– GMI (Generalized Mutual Information)

• Modulation Format– 4D-2A8PSK Family (5, 6, and 7 bits/symbol)

• Nonlinear Transmission– Simulation Procedure and Results– Hardware-Efficient Soft-Demapping and Experiment

• Time Domain Hybrid– Using 4D-2A8PSK Family (4.5, 5.5, 6.5, 7.5 bits/symbol)– Simulation Results

• Summary

02/23/2017 27

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Transmission Simulation Procedures and Parameters• 34GBd, 11 ch with 37.5 GHz spacing, root raised cosine filter (roll-off = 0.1) • Two types of link

– Dispersion managed (DM) link• 25 spans x 80km NZDSF ( = 2,000 km) link• 90% inline dispersion compensation, 50% pre-compensation

– Uncompensated link• 50 spans x 80km SSMF ( = 4,000 km) link• No inline dispersion compensation, no pre-compensation

• EDFA noise loaded just before the receiver• Data-directed LMS equalizer, and minimum distance decision• PMD is assumed to be zero• Calculate the ROSNR that achieves GMI = 0.85 (normalized)• Span loss budget is used to show the margin (NF = 5 dB)

02/23/2017 28

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Simulation Setup

LD Mod.

Pulse

RRCfilter Totalof25spansof80kmfiber

Symbol

OA+DCOA

Transmitter

OA+DC

Link

CoherentDetection

NoiseLoading

RRCfilter

DataDirectedEq.

LLR

ROSNR Receiver

SpanLossBudget

AdjustGMI=0.85?

02/23/2017 29

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

5 bits/symbol Modulation Formats

-10 -8 -6 -4 -2 0Launch power (dBm)

17

18

19

20

21

22

23

24

25Sp

an L

oss

Budg

et (d

B)

5b4D-2A8PSK8PolSK-QPSK32SP-16QAM

02/23/2017 30

Chagnon et al., Opt. Exp. 2013.

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

6 bits/symbol Modulation Formats

-10 -8 -6 -4 -2 0Launch power (dBm)

15

16

17

18

19

20

21

22

23

Span

Los

s Bu

dget

(dB)

6b4D-2A8PSKDP-8PSKDP-Star-8QAM

02/23/2017 31

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

7 bits/symbol Modulation Formats

-10 -8 -6 -4 -2 0Launch power (dBm)

12

14

16

18

20

Span

Los

s Bu

dget

(dB)

7b4D-2A8PSK128SP-16QAMDP-16QAM (7/8)*34 GBd

02/23/2017 32

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Peak Span Loss Budget vs. Spectral EfficiencyDM Link

02/23/2017 33

bits/symbol4 5 6 7 8

Span

Los

s Bu

dget

(dB)

14

16

18

20

22

24

26

28

DP-QPSK, 4D-2A8PSK, DP-16QAMOther Modulation Formats

DP-QPSK

DP-16QAM

7b4D-2A8PSK

6b4D-2A8PSK

5b4D-2A8PSK

DP-Star-8QAM

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Q with separated nonlinear effects

AWGN SPM XPM XPolM AllNonlinearity

4

4.5

5

5.5

6

6.5

7

7.5

8

Q fro

m G

MI (d

B)

6b4D-2A8PSKDP-Star-8QAM

02/23/2017 34

Launch power of -4 dBm and OSNR of 15.2 dBMain benefit of 4D constant modulus format comes from the reduction of SPM and XPM, and not XPolM

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Dispersion Managed vs. Uncompensated Link5 bits/symbol formats

02/23/2017 35

-10 -8 -6 -4 -2 0Launch power (dBm)

17

18

19

20

21

22

23

24

25

Span

Los

s Bu

dget

(dB)

5b4D-2A8PSK8PolSK-QPSK32SP-16QAM

Dispersion Managed Link

25 x 80km NZDSF90% inline compensation50% pre-compensation

Uncompensated Link

50 x 80km SSMFNo inline compensationNo pre-compensation

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline• MERL Overview• Introduction

– Fiber Nonlinearity– Granularity vs Efficiency– GMI (Generalized Mutual Information)

• Modulation Format– 4D-2A8PSK Family (5, 6, and 7 bits/symbol)

• Nonlinear Transmission– Simulation Procedure and Results– Hardware-Efficient Soft-Demapping and Experiment

• Time Domain Hybrid– Using 4D-2A8PSK Family (4.5, 5.5, 6.5, 7.5 bits/symbol)

• Simulation Results• Summary

02/23/2017 36

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Hardware-efficient Soft-demapping

02/23/2017 37

2DLLR

Table(X)

2DLLR

Table(Y)

β0(0)β1(0)β2(0)β6(0)

XI

XQ

YI

YQ

β3(0)β4(0)β5(0)β7(0)

LLRup

date(2SPC

cod

es)

1DLLRTable

(Quantization)

ToSD-FECDecod

er

From

Phase-SlipCom

p.

β0(1)β1(1)β2(1)β3(1)β4(1)β5(1)

β0(2)β1(2)β2(2)β3(2)β4(2)β5(2)

Two 64x64 LUTs

64 levels (in) 16 levels (out)

Yoshida et al., ECOC’16 , paper Th.2.P2.SC3.27

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Hardware-efficient Soft-demapping

02/23/2017 38

4D-2A8PSK DP-Star-8QAM

TunableLD

s

Mux(A

WG)

Bulk

Mod

ulation

Quad.Parallel

Decorrelation

Pre-CD

comp.

(50%

oftotal)

TransmissionLine

OBP

F

Cohe

rentRx

Tx OfflineDSP

RxOfflineDS

P

50GHz spaced,70channelsLinewidth:<500kHz

32Gbaud

Average span: 70kmTotal length: 1260 kmMixture of NZDSF (local CD of -3ps/nm) and SSMF

Yoshida et al., ECOC’16 , paper Th.2.P2.SC3.27

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Q (from GMI) vs. Launch Power

02/23/2017 39

4D-2A8PSK(IdealSD)DP-Star-8QAM(IdealSD)4D-2A8PSK(ProposedSD)DP-Star-8QAM(QuantizedSD)

LaunchedPower(dBm/ch)

Q-fa

ctorfrom

GMI(dB

)

9.0

8.0

7.0

6.0

-8 -7 -6 -5 -4 -3 -2 -1 0

8.5

7.5

6.5

5.51

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline• MERL Overview• Introduction

– Fiber Nonlinearity– Granularity vs Efficiency– GMI (Generalized Mutual Information)

• Modulation Format– 4D-2A8PSK Family (5, 6, and 7 bits/symbol)

• Nonlinear Transmission– Simulation Procedure and Results– Hardware-Efficient Soft-Demapping and Experiment

• Time Domain Hybrid– Using 4D-2A8PSK Family (for 4.5, 5.5, 6.5, 7.5 … bits/symbol)– Simulation Results

• Summary

02/23/2017 40

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Time Hybrid Modulation

02/23/2017 41

6b4D5b4D5b4D 5b4D

Benefit of 2A8PSK family- Start with fine granularity (5, 6, 7 bits/symbol)- 4D constant modulus

- power ratio is not compromised by nonlinearity

5.5 bits/symbol

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Proposed and conventional formats (4 – 6 bits/symbol)

02/23/2017 42

Launch power (dBm)-10 -8 -6 -4 -2 0

Span

Los

s Bu

dget

for G

MI =

0.8

5 (d

B)

16

18

20

22

24

26

28

DP-QPSK (4b/sym)TDH DP-QPSK 5b4D-2A8PSK(4.5b/sym)5b4D-2A8PSK (5b/sym)TDH 5b4D-2A8PSK 6b4D-2A8PSK (5.5b/sym)6b4D-2A8PSK (6 b/sym)TDH DP-QPSK 32SP-QAM (4.5b/sym)TDH SP32-QAM S8QAM (5.5b/sym)

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Proposed and conventional formats (6.5 – 8 bits/symbol)

02/23/2017 43

Launch power (dBm)-10 -8 -6 -4 -2 0

Span

Los

s Bu

dget

for G

MI =

0.8

5 (d

B)

10

12

14

16

18

20

22

TDH 6b4D-2A8PSK 7b4D-2A8PSK(6.5b/sym)7b4D-2A8PSK (7b/sym)TDH 7b4D-2A8PSK DP-16QAM (7.5b/sym)DP-16QAM (8b/sym)TDH S8QAM 128SP-QAM (6.5b/sym)TDH 128SP-QAM DP-16QAM (7.5b/sym)

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Span Loss Budget Summary

02/23/2017 44

4 5 6 7 8bits/symbol

16

18

20

22

24

26

28Pe

ak S

pan

Loss

Bud

get (

dB) TDH based on 2A8PSK

TDH based on conventional formatsDP-QPSK

DP-16QAM

TDH 7b4D-16QAM7b4D-2A8PSK

6b4D-2A8PSK

5b4D-2A8PSKTDH 5b4D-6b4D

TDH QPSK-5b4D

TDH 6b4D-7b4D

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Summary• Fiber nonlinearity is a limiting factor for dispersion managed links.• Finer granularity is important for higher network utilization.• GMI is used as a metric for transmission quality.• 4D-2A8PSK family is proposed for 5, 6, and 7 bits/symbol spectral

efficiency, corresponding to 25 Gb/s granularity at ~34 GBd.– Linear performance better than most other modulation formats.– 4D constant modulus -> Superb nonlinear performance.– Experimental results of 6b4D-2A8PSK, with HW implementation in

mind, confirmed better performance than DP-Star-8PSK.• Time-domain hybrid modulation using 4D-2A8PSK inherit the excellent

characteristics of the original modulation formats.– Spectral efficiency such as 4.5, 5.5, 6.5, and 7.5 bits/symbol can be

covered (and possibly 4.25, 4.75,…..).

02/23/2017 45