Nondeterministic Automata (NFA) - Uni...

43
Nondeterministic Automata (NFA) = {0,1} Informal example q 0 q 1 0,ε 0,1 1 M 2 : q 2 q 3 0,1 1

Transcript of Nondeterministic Automata (NFA) - Uni...

Page 1: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Nondeterministic Automata (NFA)

∑ = {0,1}

Informal example

q0 q10,ε

0,1

1

M2:

q2 q3

0,11

Page 2: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Nondeterministic Automata (NFA)

∑ = {0,1}

Informal example

q0 q10,ε

0,1

1

M2:

sources of nondeterminism

q2 q3

0,11

Page 3: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Nondeterministic Automata (NFA)

∑ = {0,1}

Informal example

q0 q10,ε

0,1

1

M2:

sources of nondeterminism

q2 q3

0,11

Page 4: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Nondeterministic Automata (NFA)

∑ = {0,1}

Informal example

q0 q10,ε

0,1

1

M2:

sources of nondeterminism

q2 q3

0,11

Page 5: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

no 1 transition

Nondeterministic Automata (NFA)

∑ = {0,1}

Informal example

q0 q10,ε

0,1

1

M2:

sources of nondeterminism

q2 q3

0,11

Page 6: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

no 1 transition

Nondeterministic Automata (NFA)

∑ = {0,1}

Informal example

q0 q10,ε

0,1

1

M2:

sources of nondeterminism

q2 q3

0,11

no 0 transition

Page 7: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

no 1 transition

Nondeterministic Automata (NFA)

∑ = {0,1}

Informal example

q0 q10,ε

0,1

1

M2:

sources of nondeterminism

q2 q3

0,11

no 0 transition

Accepts a word iff there exists an accepting run

Page 8: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where ! Q is a finite set of states ∑ is a finite alphabet δ: Q x ∑ε⟶ P(Q) is the transition function q0 is the initial state, q0 ∈Q F is a set of final states, F⊆Q

Definition

Page 9: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where ! Q is a finite set of states ∑ is a finite alphabet δ: Q x ∑ε⟶ P(Q) is the transition function q0 is the initial state, q0 ∈Q F is a set of final states, F⊆Q

Definition

∑ε = ∑ ∪ {ε}

Page 10: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

In the example M

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where ! Q is a finite set of states ∑ is a finite alphabet δ: Q x ∑ε⟶ P(Q) is the transition function q0 is the initial state, q0 ∈Q F is a set of final states, F⊆Q

Definition

∑ε = ∑ ∪ {ε}

Page 11: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where ! Q is a finite set of states ∑ is a finite alphabet δ: Q x ∑ε⟶ P(Q) is the transition function q0 is the initial state, q0 ∈Q F is a set of final states, F⊆Q

Definition

∑ε = ∑ ∪ {ε}

Page 12: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where ! Q is a finite set of states ∑ is a finite alphabet δ: Q x ∑ε⟶ P(Q) is the transition function q0 is the initial state, q0 ∈Q F is a set of final states, F⊆Q

Definition

Q = {q0, q1, q2, q3}

∑ε = ∑ ∪ {ε}

Page 13: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where ! Q is a finite set of states ∑ is a finite alphabet δ: Q x ∑ε⟶ P(Q) is the transition function q0 is the initial state, q0 ∈Q F is a set of final states, F⊆Q

Definition

Q = {q0, q1, q2, q3}

∑ = {0, 1}

∑ε = ∑ ∪ {ε}

Page 14: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where ! Q is a finite set of states ∑ is a finite alphabet δ: Q x ∑ε⟶ P(Q) is the transition function q0 is the initial state, q0 ∈Q F is a set of final states, F⊆Q

Definition

Q = {q0, q1, q2, q3}

∑ = {0, 1} F = {q3}

∑ε = ∑ ∪ {ε}

Page 15: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where ! Q is a finite set of states ∑ is a finite alphabet δ: Q x ∑ε⟶ P(Q) is the transition function q0 is the initial state, q0 ∈Q F is a set of final states, F⊆Q

Definition

Q = {q0, q1, q2, q3}

∑ = {0, 1} F = {q3}

δ(q0, 0) = {q0} δ(q0, 1) = {q0,q1} δ(q0, ε) = ∅ …..

∑ε = ∑ ∪ {ε}

Page 16: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

The extended transition function

Page 17: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

Given an NFA M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑ε⟶ P(Q) to ! δ*: Q x ∑*⟶ P(Q) !inductively, by: !

δ*(q, ε) = E(q) and δ*(q,wa) = E(∪q’ ∈ δ*(q,w) δ(q’, a))

The extended transition function

Page 18: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

Given an NFA M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑ε⟶ P(Q) to ! δ*: Q x ∑*⟶ P(Q) !inductively, by: !

δ*(q, ε) = E(q) and δ*(q,wa) = E(∪q’ ∈ δ*(q,w) δ(q’, a))

The extended transition function

E(q) = {q’ | q’ = q ∨ ∃n∈N+.∃q0, .., qn ∈Q.q0 = q, qn = q’, qi+1 ∈δ(qi,ε), for i= 0, .., n-1}

Page 19: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

Given an NFA M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑ε⟶ P(Q) to ! δ*: Q x ∑*⟶ P(Q) !inductively, by: !

δ*(q, ε) = E(q) and δ*(q,wa) = E(∪q’ ∈ δ*(q,w) δ(q’, a))

The extended transition function

E(q) = {q’ | q’ = q ∨ ∃n∈N+.∃q0, .., qn ∈Q.q0 = q, qn = q’, qi+1 ∈δ(qi,ε), for i= 0, .., n-1}

ε-closure of q, all states reachable by ε-transitions from q

Page 20: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

Given an NFA M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑ε⟶ P(Q) to ! δ*: Q x ∑*⟶ P(Q) !inductively, by: !

δ*(q, ε) = E(q) and δ*(q,wa) = E(∪q’ ∈ δ*(q,w) δ(q’, a))

The extended transition function

!

E(X) = ∪x ∈ X E(x)

E(q) = {q’ | q’ = q ∨ ∃n∈N+.∃q0, .., qn ∈Q.q0 = q, qn = q’, qi+1 ∈δ(qi,ε), for i= 0, .., n-1}

ε-closure of q, all states reachable by ε-transitions from q

Page 21: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

Given an NFA M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑ε⟶ P(Q) to ! δ*: Q x ∑*⟶ P(Q) !inductively, by: !

δ*(q, ε) = E(q) and δ*(q,wa) = E(∪q’ ∈ δ*(q,w) δ(q’, a))

The extended transition function

In M2, δ*(q0,0110) = {q0,q2,q3}

!

E(X) = ∪x ∈ X E(x)

E(q) = {q’ | q’ = q ∨ ∃n∈N+.∃q0, .., qn ∈Q.q0 = q, qn = q’, qi+1 ∈δ(qi,ε), for i= 0, .., n-1}

ε-closure of q, all states reachable by ε-transitions from q

Page 22: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

Given an NFA M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑ε⟶ P(Q) to ! δ*: Q x ∑*⟶ P(Q) !inductively, by: !

δ*(q, ε) = E(q) and δ*(q,wa) = E(∪q’ ∈ δ*(q,w) δ(q’, a))

The extended transition function

DefinitionThe language recognised / accepted by a nondeterministic finite automaton M = (Q, ∑, δ, q0, F) is !

L(M) = {w ∈ ∑*| δ*(q0,w) ∩ F ≠ ∅}

In M2, δ*(q0,0110) = {q0,q2,q3}

!

E(X) = ∪x ∈ X E(x)

E(q) = {q’ | q’ = q ∨ ∃n∈N+.∃q0, .., qn ∈Q.q0 = q, qn = q’, qi+1 ∈δ(qi,ε), for i= 0, .., n-1}

ε-closure of q, all states reachable by ε-transitions from q

Page 23: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

NFA

if y is not free in P and Q

Given an NFA M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑ε⟶ P(Q) to ! δ*: Q x ∑*⟶ P(Q) !inductively, by: !

δ*(q, ε) = E(q) and δ*(q,wa) = E(∪q’ ∈ δ*(q,w) δ(q’, a))

The extended transition function

DefinitionThe language recognised / accepted by a nondeterministic finite automaton M = (Q, ∑, δ, q0, F) is !

L(M) = {w ∈ ∑*| δ*(q0,w) ∩ F ≠ ∅}

In M2, δ*(q0,0110) = {q0,q2,q3}

L(M2) = {u101w | u,w ∈ {0,1}*} ∪

{u11w | u,w ∈ {0,1}*}

!

E(X) = ∪x ∈ X E(x)

E(q) = {q’ | q’ = q ∨ ∃n∈N+.∃q0, .., qn ∈Q.q0 = q, qn = q’, qi+1 ∈δ(qi,ε), for i= 0, .., n-1}

ε-closure of q, all states reachable by ε-transitions from q

Page 24: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Equivalence of automata

if y is not free in P and Q

Definition

Page 25: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Equivalence of automata

if y is not free in P and Q

Two automata M1 and M2 are equivalent if L(M1) = L(M2)

Definition

Page 26: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Equivalence of automata

if y is not free in P and Q

Two automata M1 and M2 are equivalent if L(M1) = L(M2)

Definition

Theorem NFA ~ DFAEvery NFA has an equivalent DFA

Page 27: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Equivalence of automata

if y is not free in P and Q

Two automata M1 and M2 are equivalent if L(M1) = L(M2)

Definition

Theorem NFA ~ DFAEvery NFA has an equivalent DFA

Proof via the “powerset construction” / determinization

Page 28: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Equivalence of automata

if y is not free in P and Q

Two automata M1 and M2 are equivalent if L(M1) = L(M2)

Definition

Theorem NFA ~ DFAEvery NFA has an equivalent DFA

Proof via the “powerset construction” / determinization

CorollaryA language is regular iff it is recognised by a NFA

Page 29: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Closure under regular operations

Page 30: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Closure under regular operations

Theorem C1

The class of regular languages is closed under union

Page 31: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Closure under regular operations

Theorem C1

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Page 32: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Closure under regular operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C2

The class of regular languages is closed under complement

Page 33: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Closure under regular operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Theorem C2

The class of regular languages is closed under complement

Page 34: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Closure under regular operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Now we can prove these too

Theorem C2

The class of regular languages is closed under complement

Page 35: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Regular expressions

Definition

Page 36: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Regular expressions

Definition

finite representation of infinite languages

Page 37: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Regular expressions

Let ∑ be an alphabet. The following are regular expressions !!1. a for a ∈ ∑ 2. ε 3. ∅ 4. (R1 ∪ R2) for R1, R2 regular expressions 5. (R1·R2) for R1, R2 regular expressions 6. (R1)* for R1 regular expression

Definition

finite representation of infinite languages

Page 38: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Regular expressions

Let ∑ be an alphabet. The following are regular expressions !!1. a for a ∈ ∑ 2. ε 3. ∅ 4. (R1 ∪ R2) for R1, R2 regular expressions 5. (R1·R2) for R1, R2 regular expressions 6. (R1)* for R1 regular expression

Definition

inductive

finite representation of infinite languages

Page 39: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Regular expressions

Let ∑ be an alphabet. The following are regular expressions !!1. a for a ∈ ∑ 2. ε 3. ∅ 4. (R1 ∪ R2) for R1, R2 regular expressions 5. (R1·R2) for R1, R2 regular expressions 6. (R1)* for R1 regular expression

Definition

inductiveexample: (ab ∪ a)*

finite representation of infinite languages

Page 40: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Regular expressions

Let ∑ be an alphabet. The following are regular expressions !!1. a for a ∈ ∑ 2. ε 3. ∅ 4. (R1 ∪ R2) for R1, R2 regular expressions 5. (R1·R2) for R1, R2 regular expressions 6. (R1)* for R1 regular expression

Definition

inductiveexample: (ab ∪ a)*

corresponding languages

L(a) = {a} L(ε) = {ε} L(∅) = ∅

L(R1 ∪ R2) = L(R1) ∪ L(R2) L(R1·R2) = L(R1)·L(R2)

L(R1*) = L(R1)*

finite representation of infinite languages

Page 41: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Equivalence of regular expressions and regular languages

if y is not free in P and Q

Page 42: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Equivalence of regular expressions and regular languages

if y is not free in P and Q

Theorem (Kleene)A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Page 43: Nondeterministic Automata (NFA) - Uni Salzburgcs.uni-salzburg.at/~anas/teaching/Automata2014/Week2-4-11-14.pdf · no 1 transition Nondeterministic Automata (NFA) ∑ = {0,1} Informal

Equivalence of regular expressions and regular languages

if y is not free in P and Q

Theorem (Kleene)A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Proof ⇐ easy, as the constructions for

the closure properties, ⇒ not so easy, we’ll skip it for now…